(1)- A 120 g granite cube slides down a 45 ∘ frictionless ramp. At the bottom, just as it exits onto a horizontal table, it collides with a 300 g steel cube at rest. Assume an elastic collision. (a)How high above the table should the granite cube be released to give the steel cube a speed of 170 cm/s ?
(2)-Olaf is standing on a sheet of ice that covers the football stadium parking lot in Buffalo, New York; there is negligible friction between his feet and the ice. A friend throws Olaf a ball of mass 0.400 kg that is traveling horizontally at 11.9 m/s . Olaf's mass is 65.8 kg
(a)If Olaf catches the ball, with what speed vf do Olaf and the ball move afterward?
(b)If the ball hits Olaf and bounces off his chest horizontally at 8.30 m/s in the opposite direction, what is his speed vf after the collision?

Answers

Answer 1

a) To find the initial velocity of the granite cube, use the conservation of energy principle.
The gravitational potential energy (GPE) at the top of the ramp is converted into

kinetic energy

(KE) at the bottom, which is then conserved during the collision.GPE = mghKE = 1/2mv²mgh = 1/2mv²v = √(2gh)where m = 120 g = 0.12 kg, g = 9.8 m/s², h is the height above the table to release the granite cube, and v is the velocity of the cube just before the collision.

When the steel cube is at rest, all of the kinetic energy is

transferred

to the steel cube.mv = mv₁ + mv₂where m₁ = 120 g = 0.12 kg and m₂ = 300 g = 0.3 kg are the masses of the granite and steel cubes, respectively. Since the collision is elastic, the kinetic energy is conserved.0.12v = 0.12(170) + 0.3v₂0.18v = 20.4 + 0.12v₂v₂ = 108 m/sNow, use the conservation of energy principle again to find the height above the table that the granite cube should be released to achieve this velocity.GPE = KE_m²gh = 1/2mv₂²h = (v₂²/2g)h = (108²/2(9.8))h ≈ 607 mmb) Use the conservation of momentum principle to find the final velocity of Olaf and the ball.

In this case,

momentum

is conserved in the horizontal direction before and after the collision.m₁v₁ = m₂v₂ + m₃v₃where m₁ = 0.4 kg is the mass of the ball, m₂ = 0.1 kg is the mass of Olaf, v₁ = 20 m/s is the initial velocity of the ball, v₂ = 0 m/s is the initial velocity of Olaf, v₃ is the final velocity of Olaf and the ball, and m₃ = m₁ + m₂ = 0.5 kg. Solving for v₃ gives:v₃ = (m₁v₁ - m₂v₂)/m₃ = (0.4)(20)/(0.5) = 16 m/sTherefore, Olaf and the ball move with a velocity of 16 m/s after the collision.c) To find Olaf's final velocity after the collision in the opposite direction, use the conservation of momentum principle again.

This time, momentum is

conserved

in the vertical direction before and after the collision.m₁v₁ + m₂v₂ = m₁v₃ + m₂v₄where v₄ is Olaf's final velocity in the opposite direction, which is what we're looking for. Since Olaf is initially at rest in the vertical direction, v₂ = 0. Also, the vertical component of the ball's velocity is zero after the collision, so v₃ = vf.cosθ, where θ is the angle of incidence (45°) and vf is the final velocity of the ball. Therefore,m₁v₁ = m₁vf.cosθ + m₂v₄Solving for v₄ gives:v₄ = (m₁v₁ - m₁vf.cosθ)/m₂ = (0.4)(8.3)/0.1 = 33.2 m/sTherefore, Olaf's final velocity after the collision in the opposite direction is 33.2 m/s.

to know more about

kinetic energy  

pls visit-

https://brainly.com/question/999862

#SPJ11


Related Questions

Arescue helicopter is lifting a man (weight - 705.717994328948 N) from a capsized boat by means of a cable and harness. (a) What is the tension in the cable when the man is given an initial upward acceleration of 2.01 m/s?? (b) What is the tension during the remainder of the rescue when he is pulled upward at a constant velocity?

Answers

The tension during the remainder of the rescue when he is pulled upward at a constant velocity is 705.717994328948 N

The tension in the cable during this phase is equal to the weight of the man:

Tension = Weight

              = 705.717994328948 N

(a) To determine the tension in the cable when the man is given an initial upward acceleration of 2.01 m/s², we need to consider the forces acting on the man.

When the man is initially accelerated upward, the net force acting on him is given by Newton's second law:

Net force = mass * acceleration

The weight of the man is acting downward, opposing the upward force applied by the helicopter. So, the equation becomes:

Tension - Weight = mass * acceleration

where Tension is the tension in the cable, Weight is the weight of the man, mass is the mass of the man (Weight divided by gravitational acceleration), and acceleration is the given upward acceleration.

Weight = 705.717994328948 N

acceleration = 2.01 m/s²

gravitational acceleration (g) ≈ 9.8 m/s²

First, let's calculate the mass of the man:

mass = Weight / g

         = 705.717994328948 N / 9.8 m/s²

Now we can substitute the values into the equation:

Tension - Weight = mass * acceleration

Tension - 705.717994328948 N = (705.717994328948 N / 9.8 m/s²) * 2.01 m/s²

Simplifying and solving for Tension:

Tension = (705.717994328948 N / 9.8 m/s²) * 2.01 m/s² + 705.717994328948 N

(b) During the remainder of the rescue when the man is pulled upward at a constant velocity, the net force acting on the man is zero. This means the upward force applied by the helicopter (tension) equals the weight of the man.

Therefore,

During this stage, the cable's tension is equivalent to the man's weight:

Weight x Tension = c

Please note that due to rounding errors, the final values may vary slightly.

learn more about velocity from given link

https://brainly.com/question/21729272

#SPJ11

a 190-lb man carries a 20-lb can of paint up a helical staircase that encircles a silo with radius 15 ft. if the silo is 80 ft high and the man makes exactly four complete revolutions, how much work is done by the man against gravity in climbing to the top?

Answers

The work done by the man against gravity in climbing to the top is 9,480 foot-pounds.

To calculate the work done by the man, we need to determine the total change in potential energy as he climbs up the helical staircase that encircles the silo. The potential energy can be calculated using the formula PE = mgh, where m represents the mass, g represents the acceleration due to gravity, and h represents the height.

In this case, the mass of the man is 190 lb, and the height of the silo is 80 ft. Since the man makes exactly four complete revolutions around the silo, we can calculate the circumference of the helical staircase. The circumference of a circle is given by the formula C = 2πr, where r represents the radius. In this case, the radius of the silo is 15 ft.

To find the work done against gravity, we need to multiply the change in potential energy by the number of revolutions. The change in potential energy is obtained by multiplying the mass, the acceleration due to gravity (32.2 ft/s²), and the height. The number of revolutions is four.

Therefore, the work done by the man against gravity in climbing to the top can be calculated as follows:

Work = 4 * m * g * h

    = 4 * 190 lb * 32.2 ft/s² * 80 ft

    = 9,480 foot-pounds.

Learn more about Work

brainly.com/question/18094932

#SPJ11

The electric field E in a given region is described by E - Eo a, where a, is the unit vector along x-direction. The potential difference VAB between 2 points A and B located at A(x-d) and B(x-0) is given by: (a) VAB= Eod (b) VAB= -Eod (c) VAB= 0
The uniform plane wave in a non-magnetic medium has an electric field component: E-10 cos (2x10 t-2z) a, V/m. The wave propagation constant k and wavelength λ are given by: (a) π.2 (b) 2, π
(c) 2X10³, (d), 2X10^8

Answers

in summary, For the first question, the potential difference VAB between points A and B in the given region is VAB = -Eo d. Therefore, the correct answer is (b) VAB = -Eo d. For the second question, the wave propagation constant k and wavelength λ are related by the equation k = 2π/λ. Since the given wave has a wave number of 10, the wavelength can be calculated as λ = 2π/10 = π/5. Hence, the correct answer is (b) 2, π.

1.In the given scenario, the electric field E is given as E = Eo a, where a is the unit vector along the x-direction. To find the potential difference VAB between two points A and B located at A(x - d) and B(x - 0), we need to integrate the electric field over the distance between A and B. Since the electric field is constant, the integration simply results in the product of the electric field and the distance (Eo * d). Therefore, the potential difference VAB is given by VAB = Eo * d. Hence, the correct answer is (a) VAB = Eo * d.

2.In the case of the uniform plane wave with an electric field component E = 10 cos(2x10 t - 2z) a V/m, we can observe that the wave is propagating in the z-direction. The wave propagation constant k is determined by the coefficient in front of the z variable, which is 2 in this case. The wavelength λ is given by the formula λ = 2π/k. Substituting the value of k as 2, we find that λ = 2π/2 = π. Hence, the correct answer is (b) 2, π, where the wave propagation constant k is 2 and the wavelength λ is π.

learn more about electric field here:

https://brainly.com/question/11482745

#SPJ11

3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δy ). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) (2pts)

Answers

The angle from the horizontal to throw the ball is 37. 03 degrees

How to determine the value

First, let us use the equation;

Δy = Vyt + (1/2)gt²

Substitute the values, we have;

32 = 0× t + (1/2)32t²

t² = 2

Find the square root

t = 1.414 seconds.

The formula for distance (d) is d = Vx× t

Substitute the values, we have;

d = 30 ×  1.414

d =  42.42 feet.

The angle is determined with the tangent identity

tan θ = Δy / d.

Substitute the values, we have

tan θ = 32 / 42.42

Divide the values

tan θ = 0. 7544

Take the tangent inverse

θ = 37. 03 degrees

Learn more about distance at: https://brainly.com/question/4931057

#SPJ4

Consider the circuit shown in (Figure 1). Suppose that R = 5.0 kΩ? What is the time constant for the discharge of the capacitor? 1 microFarad = C

Answers

The time constant for the discharge of the capacitor in the given circuit is 5.0 milliseconds (ms).

To determine the time constant for the discharge of the capacitor in the given circuit, we can use the formula: Time constant (τ) = R * C

Given that R = 5.0 kΩ (kiloohms) and C = 1 microFarad (μF), we need to ensure that the units are consistent. Since the time constant is typically expressed in seconds (s), we need to convert kiloohms to ohms and microFarads to Farads. 1 kiloohm (kΩ) = 1000 ohms (Ω)

1 microFarad (μF) = 1 x 10^(-6) Farads (F)

Substituting the converted values into the formula, we have:
Time constant (τ) = (5.0 kΩ) * (1 x 10^(-6) F) = 5.0 x 10^(-3) s
Therefore, the time constant for the discharge of the capacitor in the given circuit is 5.0 milliseconds (ms).

To learn more about capacitor:

https://brainly.com/question/33438178

#SPJ11

How much power is necessary to produce a sound wave with an
intensity of 0.693 W/m2 when the wave front is vibrating
an area of 2.16 m2?
1.47 W
3.12 W
0.321 W
1.50 W

Answers

The power required to produce a sound wave with an intensity of 0.693 W/m2 when the wave front is vibrating an area of 2.16 m2 is 1.50 W.Given,Intensity of the sound wave = I = 0.693 W/m2Vibration area of the wave front = A = 2.16 m2The formula to calculate the power of sound wave isP = I * A

Where,P = Power of sound waveI = Intensity of sound waveA = Vibration area of the wave frontBy putting the given values in the above formula, we getP = 0.693 W/m2 * 2.16 m2P = 1.50 W

Therefore, the power required to produce a sound wave with an intensity of 0.693 W/m2 when the wave front is vibrating an area of 2.16 m2 is 1.50 W.

For more questions like Intensity click the link below:

brainly.com/question/28448844

#SPJ11

The electric field in a sinusoidal wave changes as
E=(27N/C)cos[(1.2×1011rad/s)t+(4.2×102rad/m)x]E=(27N/C)cos⁡[(1.2×1011rad/s)t+(4.2×102rad/m)x]
Part C
What is the frequency of the wave?
Express

Answers

To determine the frequency of the wave, we can examine the equation provided and identify the coefficient of the time variable. The frequency of the wave is approximately 1.91 × 10^10 Hz.

In the given equation, E = (27 N/C) cos[(1.2 × 10^11 rad/s)t + (4.2 × 10^2 rad/m)x], we can see that the coefficient of the time term is 1.2 × 10^11 rad/s.

The coefficient of the time term represents the angular frequency of the wave, which is related to the frequency by the equation: ω = 2πf, where ω is the angular frequency and f is the frequency.

The frequency corresponds to the coefficient of the time term, which represents the number of oscillations per unit of time. By comparing the given coefficient with the equation ω = 2πf, we can determine the frequency of the wave.

Dividing the angular frequency (1.2 × 10^11 rad/s) by 2π, we find the frequency to be approximately 1.91 × 10^10 Hz.

Therefore, the frequency of the wave is approximately 1.91 × 10^10 Hz.

Learn more about frequency here; brainly.com/question/254161

#SPJ11

A car moving at 38 km/h negotiates a 160 m -radius banked turn
designed for 60 km/h. What coefficient of friction is needed to
keep the car on the road?

Answers

we need to find the value of What coefficient of friction is needed to keep the car on the road. The concepts we can use are centripetal force, gravity etc.

Given data:
The speed of the car v = 38 km/h

Radius of the turn r = 160 m

The turn is designed for the speed of the car v' = 60 km/h

The coefficient of friction between the tires and the road = μ

First, we convert the speed of the car into m/s.1 km/h = 0.27778 m/s

Therefore, 38 km/h = 38 × 0.27778 m/s = 10.56 m/s

Similarly, we convert the speed designed for the turn into m/s
60 km/h = 60 × 0.27778 m/s
60 km/h = 16.67 m/s

To keep the car on the road, the required centripetal force must be provided by the frictional force acting on the car. The maximum frictional force is given by μN, where N is the normal force acting on the car. To find N, we use the weight of the car, which is given by mg where m is the mass of the car and g is the acceleration due to gravity, which is 9.81 m/s². We assume that the car is traveling on a level road. So, N = mg. We can find the mass of the car from the centripetal force equation. The centripetal force acting on the car is given by F = mv²/r where m is the mass of the car, v is the velocity of the car, and r is the radius of the turn. We know that the required centripetal force is equal to the maximum frictional force that can be provided by the tires. Therefore,

F = μN

F = μmg

So,
mv²/r = μmg

m = μgr/v²

Now we can substitute the values in the above formula to calculate the required coefficient of friction.

μ = mv²/(gr)

μ = v²/(gr) × m = (10.56)²/(160 × 9.81)

μ = 0.205

So, the required coefficient of friction to keep the car on the road is μ = 0.205.

to know more about coefficient of friction visit:

brainly.com/question/29281540

#SPJ11

Light with a wavelength of 655 nm (6.55 x 10-7 m) is incident upon a double slit with a separation of 0.9 mm (9 x 104 m). A screen is location 2.5 m from the double slit. (a) At what distance from the center of the screen will the first bright fringe beyond the center fringe appear?

Answers

The distance of the first bright fringe from the center of the screen is 1.81 × 10⁻³ m.

Given Datalight with wavelength λ = 655 nm = 6.55 x 10⁻⁷ m

Distance between double slit = d = 0.9 mm = 9 x 10⁻⁴ m

Distance of screen from the double slit = D = 2.5 m

Formula to find the position of mth bright fringe on the screen

ym=msinθ=(mλ)/dθ= (mλ)/dsinθ

For the first bright fringe, m = 1θ = sin⁻¹(y/D)

Now putting the values in the above formula, we get the distance of the first bright fringe from the center of the screen.

y_1= (1 × 6.55 × 10⁻⁷)/0.9sin(sin⁻¹(y/D))

y_1= (6.55 × 10⁻⁷)/0.9 × (9 × 10⁻⁴)/2.5

y_1= (6.55 × 10⁻⁷ × 2.5)/(0.9 × 9 × 10⁻⁴)

y_1= 1.81 × 10⁻³ m

Hence, the distance of the first bright fringe from the center of the screen is 1.81 × 10⁻³ m.

Learn more about distance and  wavelength  https://brainly.com/question/24452579

#SPJ11

A superconducting solenoid with 2000 turns/m is meant to generate a magnetic field of 12.0 T. Calculate the current required. KA (+ 0.02 kA)

Answers

The current required to generate a magnetic field of 12.0 T in a superconducting solenoid with 2000 turns/m is approximately 6.0 kA.

To calculate the current, we can use Ampere's Law, which states that the magnetic field (B) inside a solenoid is directly proportional to the product of the current (I) and the number of turns per unit length (N).

B = μ₀ * N * I

where μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A).

Rearranging the equation to solve for current (I):

I = B / (μ₀ * N)

Plugging in the given values:

I = 12.0 T / (4π × 10⁻⁷ T·m/A * 2000 turns/m)

I ≈ 6.0 kA

learn more about Ampere's Law, here:

https://brainly.com/question/32676356

#SPJ11

One of the fundamental forces of nature is the strong nuclear force. This force is responsible for a) Keeping electrons from falling into the nucleus b) Keeping the particles in the nucleus together c) Transforming particles via radioactive decay d) Sticking atoms together to form molecules

Answers

The strong nuclear force is responsible for keeping the particles in the nucleus together. So the answer is b. The strong nuclear force is the strongest of the four fundamental forces of nature.

The strong nuclear force is the strongest of the four fundamental forces of nature. It is responsible for holding the protons and neutrons in the nucleus of an atom together. The strong nuclear force is much stronger than the electromagnetic force, which is responsible for holding electrons in orbit around the nucleus.

The strong nuclear force is a short-range force, which means that it only works over very small distances. This is why the protons and neutrons in the nucleus are able to stay together, even though they are positively charged and repel each other.

The strong nuclear force is also a very attractive force, which means that it pulls the protons and neutrons together very strongly. This is why the nucleus is so stable.

The other three fundamental forces of nature are the electromagnetic force, the weak nuclear force, and gravity. The electromagnetic force is responsible for holding electrons in orbit around the nucleus, as well as for many other phenomena, such as magnetism and light. The weak nuclear force is responsible for radioactive decay, and gravity is responsible for the attraction between objects with mass.

To learn more about nuclear force click here

https://brainly.com/question/19271485

#SPJ11

An electron enters a magnetic field of magnitude 13 T with a speed of 7.2 x 10 m/s. The angle between the magnetic field and the electron's velocity is 35 a) If the direction of the magnetic field is pointing from right to left on a horizontal plane, with the aid of a diagram show the direction of the magnetic force applied on the electron ( ) b) Find the magnitude of the magnetic force and the acceleration of the electron

Answers

a) The direction of the magnetic force applied on the electron is upward, perpendicular to both the velocity and the magnetic field,b) The magnitude of the magnetic force on the electron is 1.94 x [tex]10^-17[/tex] N, and the acceleration of the electron is 2.69 x [tex]10^15 m/s^2.[/tex]

a) According to the right-hand rule, when a charged particle moves in a magnetic field, the direction of the magnetic force can be determined by aligning the right-hand thumb with the velocity vector and the fingers with the magnetic field direction.

In this case, with the magnetic field pointing from right to left, and the electron's velocity pointing towards us (out of the page), the magnetic force on the electron is directed upward, perpendicular to both the velocity and the magnetic field.

b) The magnitude of the magnetic force on the electron can be calculated using the equation:

F = qvBsinθ

where F is the magnetic force, q is the charge of the electron, v is the velocity, B is the magnetic field magnitude, and θ is the angle between the velocity and the magnetic field. Plugging in the given values, we find that the magnitude of the magnetic force is 1.94 x [tex]10^-17[/tex] N.

The acceleration of the electron can be obtained using Newton's second law:

F = ma

Rearranging the equation, we have:

a = F/m

where a is the acceleration and m is the mass of the electron. The mass of an electron is approximately 9.11 x [tex]10^-31[/tex]kg.

Substituting the values, we find that the acceleration of the electron is 2.69 x [tex]10^15 m/s^2.[/tex]

Therefore, the magnetic force applied on the electron is upward, perpendicular to the velocity and the magnetic field.

The magnitude of the magnetic force is 1.94 x [tex]10^-17[/tex] N, and the acceleration of the electron is 2.69 x[tex]10^15 m/s^2.[/tex]

Learn more about magnetic force from the given link:

https://brainly.com/question/30532541

#SPJ11

Consider two different media, one water and the other unknown. With them, it is determined that the critical angle is 55° What is the refractive index of this unknown medium?

Answers

The refractive index of the unknown medium is approximately 1.758. The answer is arrived at using the formula n2 = sin (critical angle) x n1.

The critical angle is determined by the equation:sin (critical angle) = n2/n1, where n1 and n2 are the refractive indices of the media.Therefore, the refractive index of the unknown medium is given by the equation:n2 = sin (critical angle) x n1. Given that the critical angle is 55° and n1 is the refractive index of water, which is 1.33, we can determine the refractive index of the unknown medium as follows:n2 = sin (critical angle) x n1 = sin (55°) x 1.33 ≈ 1.758 (to three significant figures). Therefore, the refractive index of the unknown medium is approximately 1.758.

The refractive index of the unknown medium can be determined when the critical angle and refractive index of another medium (in this case, water) is known.

To know more about refractive index visit:

brainly.com/question/30761100

#SPJ11

The diameter of an oxygen (02) molecule is approximately 0.300 nm.
For an oxygen molecule in air at atmospheric pressure and 18.3°C, estimate the total distance traveled during a 1.00-s time interval.

Answers

The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters.

The mean free path of a gas molecule is the average distance it travels between collisions with other molecules. At atmospheric pressure and 18.3°C, the mean free path of an oxygen molecule is approximately 6.7 nm.

During a 1.00-s time interval, an oxygen molecule will travel a distance equal to the product of its speed and the time interval. The speed of an oxygen molecule at atmospheric pressure and 18.3°C can be estimated using the root-mean-square speed equation:

[tex]v_{rms}[/tex] = √(3kT/m)

where k is Boltzmann's constant, T is the temperature in Kelvin, and m is the mass of the molecule.

For an oxygen molecule, [tex]k = 1.38 * 10^{-23}[/tex] J/K, T = 291.45 K (18.3°C + 273.15), and [tex]m = 5.31 * 10^{-26}[/tex] kg.

Plugging in the values, we get:

[tex]v_{rms} = \sqrt {(3 * 1.38 * 10^{-23} J/K * 291.45 K / 5.31 * 10^{-26} kg)} = 484 m/s[/tex]

Therefore, during a 1.00-s time interval, an oxygen molecule will travel approximately:

distance = speed * time = 484 m/s * 1.00 s ≈ 484 meters

However, we need to take into account that the oxygen molecule will collide with other molecules in the air, and its direction will change randomly after each collision. The actual distance traveled by the molecule in a straight line will be much smaller than 484 meters, and will depend on the number of collisions it experiences during the time interval. Therefore, the estimate of the total distance traveled by an oxygen molecule in air during a 1.00-s time interval should be considered a very rough approximation.

Learn more about "Distance travelled by the molecule" : https://brainly.com/question/29409777

#SPJ11

In a region of space, a quantum particle with zero total energy has a wave functionψ(x) = Axe⁻ˣ²/L²

(b) Make a sketch of U(x) versus x .

Answers

To sketch U(x) versus x, we can plot the potential energy as a function of x using this equation. Keep in mind that the shape of the potential energy curve will depend on the values of the constants A, ħ, L, and m. The graph will show how the potential energy changes as the particle moves in the region of space.

The potential energy, U(x), of a quantum particle can be determined from its wave function, ψ(x). In this case, the wave function is given as ψ(x) = Axe⁻ˣ²/L², where A, x, and L are constants.

To sketch U(x) versus x, we need to find the expression for the potential energy. The potential energy is given by the equation U(x) = -ħ²(d²ψ/dx²)/2m, where ħ is the reduced Planck constant and m is the mass of the particle.

First, we need to find the second derivative of ψ(x). Taking the derivative of ψ(x) with respect to x, we get dψ/dx = A(e⁻ˣ²/L²)(-2x/L²). Taking the derivative again, we get [tex]d²ψ/dx² = A(e⁻ˣ²/L²)(4x²/L⁴ - 2/L²).[/tex]

Now, we can substitute the expression for the second derivative into the equation for the potential energy.

U(x) = -ħ²(d²ψ/dx²)/2m

= -ħ²A(e⁻ˣ²/L²)(4x²/L⁴ - 2/L²)/2m.

Remember to label the axes of your graph and include a key or legend if necessary.

To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

1. Two lenses are placed along the x axis, with a diverging lens of focal length −7.70
cm on the left and a converging lens of focal length 17.0 cm on the right. When an object is placed 12.0 cm to the left of the diverging lens, what should the separation s of the two lenses be if the final image is to be focused at
x = [infinity]?
cm
2) An object has a height of 0.052 m and is held 0.230 m in front of a converging lens with a focal length of 0.140 m. (Include the sign of the value in your answers.)
(a) What is the magnification?
(b) What is the image height?
m

Answers

The magnification is 0.61. The image height is 0.0317 m, indicating that the image is smaller than the object's height.

To determine the separation s between the lenses, we can use the lens formula:

1/f_total = 1/f1 - 1/f2

where f_total is the effective focal length of the combination of lenses, f1 is the focal length of the diverging lens, and f2 is the focal length of the converging lens.

Plugging in the values, we have:

1/f_total = 1/-7.70 - 1/17.0

Solving for f_total, we get:

f_total = -26.7 cm

Since the final image is to be focused at x = infinity, the lenses need to be positioned such that the combined focal length is -26.7 cm. Therefore, the separation s between the lenses should also be 26.7 cm.

(a) The magnification (m) of an image formed by a lens is given by the formula:

m = -i/o

where i is the image distance and o is the object distance. The negative sign indicates that the image is inverted.

Plugging in the values, we have:

m = -(-0.140 m)/(0.230 m) = 0.61

Therefore, the magnification is 0.61, indicating that the image is reduced in size.

(b) The image height (h') can be calculated using the magnification formula:

h' = m * h

where h is the object height.

Plugging in the values, we have:

h' = 0.61 * 0.052 m = 0.0317 m

Therefore, the image height is 0.0317 m, indicating that the image is smaller than the object's height.

To learn more about focal length click here:

brainly.com/question/2194024

#SPJ11

A 20.0 kg object starts from rest and slides down an inclined plane. The change in its elevation is 3.0 m and its final speed is 6 m/sec. How much energy did the object lose due to friction as it slid down the plane?

Answers

The object lost 228 J of energy due to friction as it slid down the inclined plane.

To find the energy lost due to friction as the object slides down the inclined plane, we need to calculate the initial mechanical energy and the final mechanical energy of the object.

The initial mechanical energy (Ei) is given by the potential energy at the initial height, which is equal to the product of the mass (m), acceleration due to gravity (g), and the initial height (h):

Ei = m * g * h

The final mechanical energy (Ef) is given by the sum of the kinetic energy at the final speed (KEf) and the potential energy at the final height (PEf):

Ef = KEf + PEf

The kinetic energy (KE) is given by the formula:

KE = (1/2) * m * v^2

where m is the mass and v is the velocity.

The potential energy (PE) is given by the formula:

PE = m * g * h

Given:

Mass of the object (m) = 20.0 kg

Change in elevation (h) = 3.0 m

Final speed (v) = 6 m/s

[tex]\\ΔE = Ei - Ef\\ΔE = 588 J - 360 J\\ΔE = 228 J[/tex]

Next, let's calculate the final mechanical energy (Ef):

The energy lost due to friction (ΔE) can be calculated as the difference between the initial mechanical energy and the final mechanical energy:

[tex]ΔE = Ei - Ef\\ΔE = 588 J - 360 J\\ΔE = 228 J[/tex]

Therefore, the object lost 228 J of energy due to friction as it slid down the inclined plane.

Learn more about friction

https://brainly.com/question/28356847

#SPJ11

17). If you were to live another 65 years and there was a starship ready to go right now, how fast would it have to be going for you to live long enough to get to the galactic center (30,000 1.y.)? How fast would you have to go to reach the Andromeda Galaxy (2.54 million 1.y.)? 18). A friend tells you that we should ignore claims of climate change on Earth, because the scientists making such claims are simply relying on their authority as scientists (argument from authority) to support their claims. What are the problems with your friend's claim? This friend is far from alone... 19). To get a de Broglie wave that is visible to human eyes (size-wise, not visibility-wise, so 1 > 0,1 mm), of an particle, what particle should it be and what is the greatest speed it can be moving?

Answers

17) The required speed to reach the galactic center or the Andromeda Galaxy is obtained by dividing the distance by the time.

18) Dismissing scientific claims solely based on authority (argument from authority) overlooks the rigorous scientific process and the wealth of evidence supporting claims like climate change.

19) Achieving a visible-sized de Broglie wave would require a particle with low mass (e.g., an electron) to approach speeds near the speed of light, which is currently not attainable.

17) To calculate the speed required to reach the galactic center or the Andromeda Galaxy within a given time frame, we can use the equation:

Speed = Distance / Time

For the galactic center:

Distance = 30,000 light-years = 30,000 * 9.461 × 10^15 meters (approx.)

Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)

Speed = (30,000 * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)

Calculating this value gives the required speed in meters per second.

For the Andromeda Galaxy:

Distance = 2.54 million light-years = 2.54 million * 9.461 × 10^15 meters (approx.)

Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)

Speed = (2.54 million * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)

Calculating this value gives the required speed in meters per second.

18) The claim made by your friend that scientists are simply relying on their authority as scientists (argument from authority) to support claims of climate change on Earth has several problems. Firstly, it is a logical fallacy to dismiss scientific claims solely based on the authority of the scientists making them. Scientific claims should be evaluated based on the evidence, data, and rigorous research methods used to support them.

Furthermore, the consensus on climate change is not solely based on the authority of individual scientists but is the result of extensive research, data analysis, and peer review within the scientific community. There is a wealth of scientific evidence supporting the existence and impact of climate change, including observed temperature increases, melting glaciers, and changing weather patterns. Ignoring or dismissing these claims without proper scientific analysis undermines the importance of scientific consensus and the rigorous process of scientific inquiry.

19) To obtain a de Broglie wave visible to human eyes (with a size greater than 0.1 mm), the particle should have a relatively small mass and a corresponding wavelength within the visible light range.

According to the de Broglie equation:

Wavelength = h / momentum

To achieve a visible-sized de Broglie wave, the wavelength needs to be on the order of 0.1 mm or larger. This corresponds to the visible light range of the electromagnetic spectrum.

Particles with low mass and high velocity can exhibit shorter wavelengths. For example, electrons or even smaller particles like neutrinos could potentially have wavelengths in the visible light range if they are moving at high speeds. However, the velocity of these particles would need to be extremely close to the speed of light, which is not currently achievable in practice.

In summary, to obtain a visible-sized de Broglie wave, a particle with low mass (such as an electron) would need to be moving at a velocity very close to the speed of light.

learn more about "distance ":- https://brainly.com/question/26550516

#SPJ11

(e) Why is the minimisation of internal resistance important for battery design? Discuss some of the factors that contribute to internal resistance and what steps manufacturers are taken to minimise this effect in batteries for electric vehicles.

Answers

The minimization of internal resistance is crucial for battery design due to the following reasons:

Efficiency: Internal resistance leads to energy losses within the battery.

Power Delivery: Internal resistance affects the battery's ability to deliver power quickly.

Factors contributing to internal resistance in batteries include:

Electrode Resistance: The intrinsic properties of electrode materials and their interfaces contribute to resistance. Manufacturers optimize electrode materials and structures to reduce their inherent resistance and enhance charge transfer efficiency.

Electrolyte Resistance: The electrolyte, which facilitates ion movement between electrodes, adds to internal resistance.

Separator Resistance: The separator material between the positive and negative electrodes can introduce resistance to ion flow.

Steps taken by manufacturers to minimize internal resistance in batteries for electric vehicles:

Material Optimization: Manufacturers explore electrode materials with high electrical conductivity and optimize their structures to enhance charge transfer efficiency.

Electrolyte Improvements: Advanced electrolytes with higher ionic conductivity are developed to reduce resistance.

Interface Enhancements: Manufacturers work on improving the electrode-electrolyte interface to reduce resistance.

Separator Optimization: Manufacturers choose separator materials with low resistance, ensuring efficient ion flow.

Cell Design: Optimizing cell geometry, electrode thickness, and overall architecture helps reduce internal resistance and improve battery performance.

By addressing these factors and employing advanced materials and design techniques, manufacturers minimize internal resistance, resulting in improved battery efficiency, power delivery, and overall performance in electric vehicles.

learn more about Resistance here:

brainly.com/question/32301085

#SPJ11

What is the critical angle for light going from ethanol to air? Submit Answer Incorrect. Tries 1/40 Previous Tries

Answers

The critical angle for light going from ethanol to air the critical angle for light going from ethanol to air is approximately 48.6 degrees.

To calculate the critical angle for light going from ethanol to air, we need to use Snell's law, which relates the angles of incidence and refraction for light traveling between two different media. Snell's law is given by:

n₁ * sin(θ₁) = n₂ * sin(θ₂)

Where:

n₁ is the refractive index of the initial medium (ethanol)

n₂ is the refractive index of the final medium (air)

θ₁ is the angle of incidence

θ₂ is the angle of refraction

The critical angle occurs when the angle of refraction is 90 degrees (light travels along the boundary). So we can rewrite Snell's law as:

n₁ * sin(θ_c) = n₂ * sin(90)

Since sin(90) = 1, the equation simplifies to:

n₁ * sin(θ_c) = n₂

To find the critical angle (θ_c), we need to know the refractive indices of ethanol and air. The refractive index of ethanol (n₁) is approximately 1.36, and the refractive index of air (n₂) is approximately 1.

Plugging in the values, we get:

1.36 * sin(θ_c) = 1

Now, we can solve for the critical angle:

sin(θ_c) = 1 / 1.36

θ_c = arcsin(1 / 1.36)

Using a calculator, we find:

θ_c ≈ 48.6 degrees

Therefore, the critical angle for light going from ethanol to air is approximately 48.6 degrees.

To know more about ethanol refer here:

https://brainly.com/question/29294678#

#SPJ11

A 4 mm high object is placed 5 cm in front of a concave mirror with radius of curvature 20 cm. Questions 13-15 refer to this situation. The image distance is: Greater than 15 cm Between 15 cm and zero Between 0 and 15 cm Less than −15 cm A 4 mm high object is placed 5 cm in front of a concave mirror with radius of curvature 20 cm. Questions 13−15 refer to this situation. The magnitude of the image height will be: Between 3 and 6 mm Between 6 and 9 mm Greater than 9 mm Less than 3 mm

Answers

The magnitude of the image height will be between 3 and 6 mm.

Thus, the correct option is Between 3 and 6 mm.

Radius of curvature of concave mirror = -20 cmObject distance, u = -5 cmObject height, h = 4 mmFor concave mirror, f = -10 cm, as f = R/2Where R is the radius of curvatureThe focal length of a concave mirror is negative, which means the mirror is concave and reflects the incoming light rays inward toward a focal point.Use the formula,1/f = 1/v + 1/uHere, v = ?1/-10 = 1/v + 1/-5⇒ -1/10 = 1/v - 1/5⇒ 1/v = -1/20⇒ v = -20 cm.

The image distance is -20 cm.Now, using the magnification formula,m = -v/u = -(-20)/(-5) = -4m = -v/uThe negative sign indicates that the image is inverted. The magnitude of the image height will be between 3 and 6 mm.Thus, the correct option is Between 3 and 6 mm.

To know more about magnitude  visit:-

https://brainly.com/question/31022175

#SPJ11

An automobile traveling 76.0 km/h has tires of 70.0 cm diameter. (a) What is the angular speed of the tires about their axles? (b) If the car is brought to a stop uniformly in 39.0 complete turns of the tires, what is the magnitude of the angular acceleration of the wheels? (c) How far does the car move during the braking? (

Answers

(a) Angular speed: 60.3 rad/s

(b) Angular acceleration: 0.244 rad/s²

(c) Distance moved: 5182.4 meters

(a) To find the angular speed of the tires about their axles, we can use the formula:

Angular speed (ω) = Linear speed (v) / Radius (r)

First, let's convert the speed from km/h to m/s:

76.0 km/h = (76.0 km/h) * (1000 m/km) * (1/3600 h/s) ≈ 21.1 m/s

The radius of the tire is half of its diameter:

Radius (r) = 70.0 cm / 2 = 0.35 m

Now we can calculate the angular speed:

Angular speed (ω) = 21.1 m/s / 0.35 m ≈ 60.3 rad/s

Therefore, the angular speed of the tires about their axles is approximately 60.3 rad/s.

(b) To find the magnitude of the angular acceleration of the wheels, we can use the formula:

Angular acceleration (α) = Change in angular velocity (Δω) / Time (t)

The change in angular velocity can be found by subtracting the initial angular velocity (ω_i = 60.3 rad/s) from the final angular velocity (ω_f = 0 rad/s), as the car is brought to a stop:

Δω = ω_f - ω_i = 0 rad/s - 60.3 rad/s = -60.3 rad/s

The time (t) is given as 39.0 complete turns of the tires. One complete turn corresponds to a full circle, or 2π radians. Therefore:

Time (t) = 39.0 turns * 2π radians/turn = 39.0 * 2π rad

Now we can calculate the magnitude of the angular acceleration:

Angular acceleration (α) = (-60.3 rad/s) / (39.0 * 2π rad) ≈ -0.244 rad/s²

The magnitude of the angular acceleration of the wheels is approximately 0.244 rad/s².

(c) To find the distance the car moves during the braking, we can use the formula:

Distance (d) = Linear speed (v) * Time (t)

The linear speed is given as 21.1 m/s, and the time is the same as calculated before:

Time (t) = 39.0 turns * 2π radians/turn = 39.0 * 2π rad

Now we can calculate the distance:

Distance (d) = 21.1 m/s * (39.0 * 2π rad) ≈ 5182.4 m

Therefore, the car moves approximately 5182.4 meters during the braking.

To learn more about angular acceleration, Visit:

https://brainly.com/question/13014974

#SPJ11

An AC generator supplies an rms voltage of 240 V at 50.0 Hz. It is connected in series with a 0.250 H inductor, a 5.80 μF capacitor and a 286 Ω resistor.
What is the impedance of the circuit?
Tries 0/12 What is the rms current through the resistor?
Tries 0/12 What is the average power dissipated in the circuit?
Tries 0/12 What is the peak current through the resistor?
Tries 0/12 What is the peak voltage across the inductor?
Tries 0/12 What is the peak voltage across the capacitor?
Tries 0/12 The generator frequency is now changed so that the circuit is in resonance. What is that new (resonance) frequency?

Answers

The impedance of the circuit is approximately 287.6 Ω. The rms current through the resistor is approximately 0.836 A. The average power dissipated in the circuit is approximately 142.2 W. The peak current through the resistor is approximately 1.18 A. The peak voltage across the inductor is approximately 286.2 V. The peak voltage across the capacitor is approximately 286.2 V. The new resonance frequency of the circuit is 50.0 Hz.

To solve these problems, we'll use the formulas and concepts related to AC circuits.

1. Impedance (Z) of the circuit:

The impedance of the circuit is given by the formula:

Z = √(R^2 + (Xl - Xc)^2)

where R is the resistance, Xl is the inductive reactance, and Xc is the capacitive reactance.

Given:

R = 286 Ω

Xl = 2πfL = 2π(50.0 Hz)(0.250 H) ≈ 78.54 Ω

Xc = 1 / (2πfC) = 1 / (2π(50.0 Hz)(5.80 × 10^-6 F)) ≈ 54.42 Ω

Substituting the values into the formula, we get:

Z = √(286^2 + (78.54 - 54.42)^2)

 ≈ 287.6 Ω

Therefore, the impedance of the circuit is approximately 287.6 Ω.

2. RMS current through the resistor:

The rms current through the resistor can be calculated using Ohm's Law:

I = V / Z

where V is the rms voltage and Z is the impedance.

Given:

V = 240 V

Z = 287.6 Ω

Substituting the values into the formula, we have:

I = 240 V / 287.6 Ω

 ≈ 0.836 A

Therefore, the rms current through the resistor is approximately 0.836 A.

3. Average power dissipated in the circuit:

The average power dissipated in the circuit can be calculated using the formula:

P = I^2 * R

where I is the rms current and R is the resistance.

Given:

I = 0.836 A

R = 286 Ω

Substituting the values into the formula, we get:

P = (0.836 A)^2 * 286 Ω

 ≈ 142.2 W

Therefore, the average power dissipated in the circuit is approximately 142.2 W.

4. Peak current through the resistor:

The peak current through the resistor is equal to the rms current multiplied by √2:

Peak current = I * √2

Given:

I = 0.836 A

Substituting the value into the formula, we have:

Peak current = 0.836 A * √2

 ≈ 1.18 A

Therefore, the peak current through the resistor is approximately 1.18 A.

5. Peak voltage across the inductor and capacitor:

The peak voltage across the inductor and capacitor is equal to the rms voltage:

Peak voltage = V

Given:

V = 240 V

Substituting the value into the formula, we have:

Peak voltage = 240 V

 ≈ 240 V

Therefore, the peak voltage across the inductor and capacitor is approximately 240 V.

6. New resonance frequency:

In a resonant circuit, the inductive reactance (Xl) is equal to the capacitive reactance (Xc

To know more about impedance click here:

https://brainly.com/question/30887212

#SPJ11

An electron moves with velocity (2 i^ )m/s through a uniform magnetic field equal to (−5 k^ )T. The magnetic force in Newton acting on the electron is:

Answers

The velocity of the electron = (2i^)m/s. The magnetic field = (−5k^)T. We have to determine the magnetic force in Newton acting on the electron.  

The magnetic force acting on a charged particle that moves through a magnetic field is given by the formula:F = qvB sinθWhereq is the charge of the is the velocity of the particle B is the magnetic field strength of the magnetic fieldθ is the angle between the velocity of the particle and the magnetic field.

Direction of Magnetic Force: To determine the direction of the magnetic force on a moving charge, we use Fleming’s left-hand rule. Fleming's Left-hand Rule: Stretch out the left-hand forefinger, the central finger, and the thumb mutually perpendicular to each other.  

To know more about magnetic visit:

https://brainly.com/question/3617233

#SPJ11

Two positive charges \( \mathrm{Q} 1 \) and \( \mathrm{Q} 2 \) are separated by a distance \( r \). The charges repel each other with a force \( F \). If the magnitude of each charge is doubled and th

Answers

If the magnitude of each charge is doubled and the distance between them is halved, the new force between them will be four times the original force.

Let's denote the original charges as Q1 and Q2, and the original force as F. The electric force between two charges is given by Coulomb's law:

F = k * (Q1 * Q2) / r^2, where k is the Coulomb's constant and r is the distance between the charges.

If the magnitude of each charge is doubled (2Q1 and 2Q2) and the distance between them is halved (r/2), the new force (F') can be calculated as:

F' = k * (2Q1 * 2Q2) / (r/2)^2.

Simplifying the equation:

F' = k * (4Q1 * 4Q2) / (r/2)^2,

F' = k * (16Q1 * Q2) / (r^2/4),

F' = k * (16Q1 * Q2) * (4/r^2),

F' = 64 * k * (Q1 * Q2) / r^2.

Therefore, the new force between the charges is four times the original force: F' = 4F.

To learn more about magnitude click here.

brainly.com/question/30033702

#SPJ11

A group of astronauts wish to know the gravitational acceleration of a newly discovered planet. On the surface of the planet, they construct a simple pendulum of length 21.0 m. The pendulum yields a 18.7 s period of oscillation. Part 1 Find the gravitational acceleration of the planet. Part 2 How much stronger is earth's gravitational acceleration compared to this planet?

Answers

The gravitational acceleration on Earth is 4.56 times stronger than the newly discovered planet and 2) the gravitational acceleration of the newly discovered planet is 2.15 m/s².

Part 1- The time period of a simple pendulum is given by the following formula:

T=2π√(L/g) where T is the time period, L is the length of the pendulum and g is the gravitational acceleration.

Let g1 be the gravitational acceleration of the newly discovered planet.

We know that the length of the pendulum is L= 21.0 m and the time period of oscillation of the pendulum is T= 18.7s.

Substituting these values in the formula, we get:

18.7=2π√(21.0/g1)

Squaring both sides of the equation, we get:

g1=(4π²×21.0)/18.7² = 2.15 m/s²

Therefore, the gravitational acceleration of the newly discovered planet is 2.15 m/s².



Part 2- Let g2 be the gravitational acceleration of Earth.

The acceleration due to gravity on the surface of the Earth is g2 = 9.81 m/s².

Comparing the gravitational acceleration of Earth to that of the newly discovered planet, we have:

The ratio of the gravitational acceleration of Earth to that of the newly discovered planet = g2/g1

= 9.81 m/s²/2.15 m/s² = 4.56

Therefore, the gravitational acceleration on Earth is 4.56 times stronger than the newly discovered planet.

know more about  gravitational

https://brainly.com/question/3009841

#SPJ11

How much work is done on the gas in the process as shown, in Joules? Vf = 94 cm3.(1.00 cm3 = 1.00×10-6 m3, 1.00 kPa = 1.00×103 Pa.)
Your answer needs to have 2 significant figures, including the negative sign in your answer if needed. Do not include the positive sign if the answer is positive. No unit is needed in your answer, it is already given in the question statement.

Answers

The work done on the gas in the process shown is approximately -3.5 × 10⁻³ Joules.

Given: Vi = 40.0 cm³ = 40.0 × 10⁻⁶ m³

          Vf = 94 cm³ = 94 × 10⁻⁶ m³

          P = 101 k

         Pa ΔV = Vf - Vi

                     = 94 × 10⁻⁶ - 40.0 × 10⁻⁶

                      = 54.0 × 10⁻⁶ m³

By the ideal gas law,

                         PV = nRTHere, n, R, T are constantn = number of moles of the gas R = gas constant

       T = temperature of the gas in kelvin

Assuming that the temperature of the gas remains constant during the process, we get,

                       P₁V₁ = P₂V₂or, P₁V₁ = P₂(V₁ + ΔV)or, P₂ = P₁V₁ / (V₁ + ΔV)

                        = 101 × 40.0 × 10⁳ / (40.0 + 54.0) × 10⁻⁶

                             = 65.1 kPa

Work done on the gas, w = -PΔV= -65.1 × 54.0 × 10⁻⁶

                           = -3.52 × 10⁻³ ≈ -3.5 × 10⁻³

The work done on the gas in the process shown is approximately -3.5 × 10⁻³ Joules.

Learn more about ideal gas law,

brainly.com/question/30458409

#SPJ11

A 688.78 mm long aluminum wire with a diameter of 41.4 mm changes temperature from 131.6 C to 253.3 C. Calculate the change in length of the wire due to the temperature change. Report your answer in millimeters rounded to 3 decimal places with units.

Answers

We know that the coefficient of linear expansion of aluminum, α = 23.1 x 10-6 K-1 Hence,∆L = αL∆T= 23.1 × 10-6 × 688.78 × (253.3 − 131.6)= 4.655 mmThus, the change in length of the wire due to the temperature change is 4.655 mm (rounded to 3 decimal places with u

The length change of an aluminum wire with a diameter of 41.4 mm and 688.78 mm length from a temperature change from 131.6 C to 253.3 C is 4.655 mm. The formula that is used to calculate the change in length of the wire due to temperature change is:∆L

= αL∆T

where, ∆L is the change in length L is the original length of the wireα is the coefficient of linear expansion of the material of the wire∆T is the change in temperature From the provided data, we know the following:Length of the aluminum wire

= 688.78 mm Diameter of the aluminum wire

= 41.4 mm Radius of the aluminum wire

= Diameter/2

= 41.4/2

= 20.7 mm Initial temperature of the aluminum wire

= 131.6 C Final temperature of the aluminum wire

= 253.3 C

We first need to find the coefficient of linear expansion of aluminum. From the formula,α

= ∆L/L∆T We know that the change in length, ∆L

= ?L = 688.78 mm (given)We know that the initial temperature, T1

= 131.6 C

We know that the final temperature, T2

= 253.3 C.We know that the coefficient of linear expansion of aluminum, α

= 23.1 x 10-6 K-1 Hence,∆L

= αL∆T

= 23.1 × 10-6 × 688.78 × (253.3 − 131.6)

= 4.655 mm Thus, the change in length of the wire due to the temperature change is 4.655 mm (rounded to 3 decimal places with units).

To know more about aluminum visit:
https://brainly.com/question/28989771

#SPJ11

A 180 ohm resistor can dissipate a maximum power of .250W. Calculate the maximum current that it can carry and still meet this limitation.

Answers

As 180-ohm resistor can dissipate a maximum power of .250W The maximum current that can pass through the resistor while meeting the power limit is 0.027 A which can be obtained by the formula P = I²R

The resistance of the resistor, R = 180 Ω. The maximum power dissipated by the resistor, P = 0.250 W. We need to find the maximum current that can be passed through the resistor while maintaining the power limit. The maximum power that can be dissipated by the resistor is given by the formula;

P = I²R …………… (1)

Where; P = Power in watts, I = Current in amperes, and R = Resistance in ohms.

Rewriting the above equation, we get,

I = √(P / R) ………… (2)

Substitute the given values into the equation 2 and solve for the current,

I = √(0.250 / 180)

⇒I = 0.027 A

The maximum current that can pass through the resistor while meeting the power limit is 0.027 A.

Learn more about power: https://brainly.com/question/24858512

#SPJ11

12 A car travels in a straight line at speed v along a horizontal road. The car moves
against a resistive force F given by the equation
F = 400+kv²
where F is in newtons, v in ms-1 and k is a constant.
At speed v = 15ms-1, the resistive force F is 1100 N.
a
Calculate, for this car:
i the power necessary to maintain the speed of 15ms-¹,
ii the total resistive force at a speed of 30 ms-¹,
iii the power required to maintain the speed of 30ms-¹.

Answers

Answer:

i) Power = Force * Velocity = 1100 * 15 = 16500 W = 16.5 kW(ii)  Find the value of k first: F = 400 + k(15^2)                                              k = 28/9    F = 400 +(28/9)(30^2) = 320

Explanation:

a. The power necessary to maintain the speed of 15ms^-1 can be found using the equation for power, P = Force * velocity, where P is in watts, force is in newtons and velocity is in meters per second. Substituting the values given in the question, we get:

P = (400 + k * 15²) * 15
P = (400 + 11250) * 15
P = 11650 Watts

Therefore, the power necessary to maintain the speed of 15ms^-1 is approximately 11650 Watts.

b. The total resistive force at a speed of 30ms^-1 can be found by substituting 30 for v in the force equation:

F = 400 + k * 30^2

F = 12000 N

Therefore, the total resistive force at a speed of 30ms^-1 is approximately 12000 N.

c. The power required to maintain the speed of 30ms^-1 can be found using the same equation as in part a:

P = (400 + k * 30^2) * 30
P = (1500 + 600000) * 30
P = 625000000 Watts

Therefore, the power required to maintain the speed of 30ms^-1 is approximately 625000000 Watts. This is a very large amount of power and would require a significant amount of energy to maintain.
Other Questions
600 words explain the cycle of life of a NORMAL CTFR protein(from birth to death) Cash conversion cyclePrimrose Corp has $10 million of sales, $1 million of inventories, $2 million of receivables, and $2 million of payables. Its cost of goods sold is 70% of sales, and it finances working capital with bank loans at an 9% rate. Assume 365 days in year for your calculations. Do not round intermediate steps.1. What is Primrose's cash conversion cycle (CCC)? Round your answer to two decimal places.days2. If Primrose could lower its inventories and receivables by 8% each and increase its payables by 8%, all without affecting sales or cost of goods sold, what would be the new CCC? Round your answer to two decimal places.days3. How much cash would be freed-up? Round your answer to the nearest cent.4. By how much would pre-tax profits change? Round your answer to the nearest cent.$ (20\%) Problem 4: Consider the circuit diagram depicted in the figure. A 50% Part (a) What equation do you get when you apply the loop rule to the loop abcdefgha, in t 0= Hints: deduction per hint. Hints remaining: 22 Feedback: 10% deduction per feedback. (A) 50% Part (b) If the current through the top branch is I2=0.59 A, what is the current through the Saved Question 10 (10 points) A bond has a $1,000 par value, 17 years to maturity, and pays a coupon of 5.25% per year, semiannually. The bond is callable in four years at $1,065. If the bond's curren Discuss the level of involvement in a purchase situation that affects the central processing versus the peripheral processing. Suggest the different ways in which Dells computer advertising message would differ due to the different routes of information processing. Think of a time when you set a goal for yourself that you did not meet. In a one- to two-paragraph post to the discussion, answer the following questions:What was the goal, and what do you think was the challenge that contributed to you not meeting your goal?What did you learn from that experience that can help you in setting and attaining future goals? Use the method of variation of parameters to solve the nonhomogeneous second order ODE: y+25y=cos(5x)csc^2(5x) The transfer function of a linear system is defined as the ratio of the Laplace transform of the output function y(t) to the Laplace transform of the input function g(t), when all initial conditions are zero. If a linear Y(s) for this system. system is governed by the differential equation below, use the linearity property of the Laplace transform and Theorem 5 to determine the transfer function H(s) = - G(s) y''(t) + 2y'(t) + 6y(t) = g(t), t>0 Click here to view Theorem 5 H(s) = Let f(t) f'(t), ..., f(n 1) ..., f(n-1) (t) be continuous on [0,[infinity]) and let f(n) (t) be piecewise continous on [0,[infinity]), with all these functions of exponential order . Then for s> , the following equation holds true. - L {f(n)} (s) = s^ L{f}(s) s^f(0) - s^-f'(0) - ... - f(n 1) (0) - S O Evaluation Clear selection 17. In the FHSAA, the question " in a scale of 0-10, how would you rate your 1 point symptom" falls under which letter in the acronym O,P,Q,R,S,T UV and what it stand for? HAS-6505 Health Care Risk Management: Assignment Week 1Critical Reflection Paper: Chapters 1, 2, 3Objective: To critically reflect your understanding of the readings and your ability to apply them to your Health care Setting.ASSIGNMENT GUIDELINES (10%):Students will critically analyze the readings from Chapter 1, 2 and 3 in your textbook. This assignment is designed to help you review, critique, and apply the readings to your Health Care setting as well as become the foundation for all of your remaining assignments.You need to read the chapters assigned for week 1 and develop a 2-3-page paper reflecting your understanding and ability to apply the readings to your Health Care Setting. Each paper must be typewritten with 12-point font and double-spaced with standard margins. Follow APA style 7th edition format when referring to the selected articles and include a reference page.EACH PAPER SHOULD INCLUDE THE FOLLOWING:1. Introduction (25%) Provide a brief synopsis of the meaning (not a description) of each Chapter and articles you read, in your own words.2. Your Critique (50%)What is your reaction to the content of the chapters?What did you learn about Risk Management Activities and Tools?What did you learn about Legal Standards and Risk Management related with OSHA and HIPAA? Hollow flywheel system a 400kg hollow steel flywheel energy storage with 2m outer diameter and a thickness of 225mm spins at 6000rpm. with 80fficiency, how long it will support 100kw load? The Miami Heat were able to improve profits and wins in the 2013 season. Pick a professional team and four consecutive years prior to 2020. List the profit and win percentage for the team for those four years. Based on the information that you found, do you perceive the team to be win maximizing, profit maximizing or both. Explain. Note: If you cannot find profit information, operating income is acceptable. The general level of prices in the economy, for example the consumer price index (CPI) and the GDP level, can be analysed by using the AD-AS model. Discuss your understanding of this statement, using a graph to illustrate it. [20] Suppose you have an estimated functions for the demand and supply of an environmentally friendly product as follows: MWTP = 120 Q and MC = 1.5Q What would be the socially efficient equilibrium output (Q) and the net social value? Show your calculations. 10. A monopoly drug producer that has a constant marginal cost of $1 sells in only two countries and faces a linear demand curve of Q = 12-2P, in Country 1 and Q = 9-P in Country 2. What price does it charge in each country? What quantity does it sell in each country? 2 A depolarising graded potential:a. makes the membrane more polarised.b. is the last part of an action potential.c. is seen when the cell approaches threshold.d. is considered to be a type of action potential. Question 16 of 20:Select the best answer for the question16. Which of the following facts would require a citation?OA. The Sun is many times larger than the EarthO B. At its farthest point, the Earth is 152.6 million kilometers away from the Sun.O C. The Earth is the third planet from the Sun.O D. The Earth revolves around the sun in a semicircular path.OMark for review (Will be highlighted on the review page)> The fundamental vibration frequency of CO is 6.41013Hz. The atomic masses of C and O are 12u and 16u, where u is the atomic mass unit of1.66x10-27kg. Find the force constant for the CO molecule in the unit of N/m. Force acting between two argons are well approximated by the Lennard-aJones potential given by U(r) =712 -46. Find the equilibrium separationdistance between the argons. The energy gap for silicon is 1.11eV at room temperature. Calculate the longest wavelength of a photon to excite the electron to the conductingband. 6. If a cartoonist has six different colours of ink, how many different combinations of colours could the cartoon have? a. 64 b. 720 C. 63 d. 31 What political behaviors have you observed in (or engaged yourself in) school groups or your workplace? Were they successful? Why or why not? Please explain in depthI listed two ethical questions that one should ask prior to engaging in politicking. Can you think of additional question(s) that we should ask in determining if political behavior is acceptable or not? Steam Workshop Downloader