18. 19. 21. The number of solutions to the equation in the interval 0 ≤ x ≤ 2π is A. 1 B. 2 A. B. 2sin²x - sin x-1=0 C. D. An air traffic controller on the ground sees a plane that has a 6.5 degree angle of elevation. If the plane is 2 kilometers from the airport, what is its current altitude? 228 m 57 m 2 km 18 km B. 3 4 C. D. Find the exact value for sin 20 if cos 0 = 4/5 and 0 is a first-quadrant angle A. 7/25 C. 24/7 24/25 D. 25/24

Answers

Answer 1

18. there are two solutions in the interval 0 ≤ x ≤ 2π.

19. the current altitude of the plane is approximately 226.406 meters.

21. Since cos 20 is not given, we cannot find the exact value of sin 20 without additional information or a trigonometric table.

18. The number of solutions to the equation 2sin²x - sin x - 1 = 0 in the interval 0 ≤ x ≤ 2π is:

C. 2

To solve this quadratic equation, we can factor it as follows:

2sin²x - sin x - 1 = 0

(2sin x + 1)(sin x - 1) = 0

Setting each factor equal to zero:

2sin x + 1 = 0 or sin x - 1 = 0

Solving for sin x in each equation:

2sin x = -1 or sin x = 1

sin x = -1/2 or sin x = 1

The solutions for sin x = -1/2 in the interval 0 ≤ x ≤ 2π are π/6 and 5π/6.

The solution for sin x = 1 in the interval 0 ≤ x ≤ 2π is π/2.

As a result, the range 0 x 2 contains two solutions.

19. The current altitude of the plane with a 6.5-degree angle of elevation, when it is 2 kilometers from the airport, can be calculated using trigonometry.

We can use the tangent function:

tan(angle) = opposite/adjacent

In this case, the opposite side is the altitude of the plane and the adjacent side is the distance from the airport.

tan(6.5 degrees) = altitude/2 kilometers

Using a calculator to find the tangent of 6.5 degrees, we have:

tan(6.5 degrees) ≈ 0.113203

altitude/2 = 0.113203

altitude = 0.113203 * 2

altitude ≈ 0.226406 kilometers

Converting the altitude to meters:

altitude ≈ 0.226406 * 1000

altitude ≈ 226.406 meters

As a result, the aircraft is currently flying at a height of about 226.406 metres.

21. To find the exact value of sin 20, we will use the trigonometric identity:

sin²θ + cos²θ = 1

Given that cos 0 = 4/5 and 0 is a first-quadrant angle, we can find sin 0 using the identity:

cos²θ + sin²θ = 1

Since θ is a first-quadrant angle, cos 0 = 4/5 implies sin 0 = √(1 - cos²0):

sin 0 = √(1 - (4/5)²)

sin 0 = √(1 - 16/25)

sin 0 = √(9/25)

sin 0 = 3/5

Now, we can find sin 20 using the half-angle formula for sin:

sin (20/2) = √((1 - cos 20)/2)

We cannot determine the precise value of sin 20 without additional information or a trigonometric table because cos 20 is not given.

learn more about interval

https://brainly.com/question/11051767

#SPJ11


Related Questions

Which pairs of angles in the figure below are vertical angles? check all that apply.

Answers

Answer:

A. ∡ BTD and ∡ ATP

B. ∡ ATN and ∡ RTD

Step-by-step explanation:

Note:
Vertical angles are a pair of angles that are opposite each other at the point where two lines intersect. They are also called vertically opposite angles. Vertical angles are always congruent, which means that they have the same measure.

For question:

A. ∡ BTD and ∡ ATP True

B. ∡ ATN and ∡ RTD True

C. ∡ RTP and ∡ ATB   False

D.  ∡ DTN and ∡ ATP False

What are the additive and multiplicative inverses of h(x) = x â€"" 24? additive inverse: j(x) = x 24; multiplicative inverse: k(x) = startfraction 1 over x minus 24 endfraction additive inverse: j(x) = startfraction 1 over x minus 24 endfraction; multiplicative inverse: k(x) = â€""x 24 additive inverse: j(x) = â€""x 24; multiplicative inverse: k(x) = startfraction 1 over x minus 24 endfraction additive inverse: j(x) = â€""x 24; multiplicative inverse: k(x) = x 24

Answers

The additive inverse of a function f(x) is the function that, when added to f(x), equals 0. In other words, the additive inverse of f(x) is the function that "undoes" the effect of f(x).

The multiplicative inverse of a function f(x) is the function that, when multiplied by f(x), equals 1. In other words, the multiplicative inverse of f(x) is the function that "undoes" the effect of f(x) being multiplied by itself.

For the function h(x) = x - 24, the additive inverse is j(x) = -x + 24. This is because when j(x) is added to h(x), the result is 0:

[tex]h(x) + j(x) = x - 24 + (-x + 24) = 0[/tex]

The multiplicative inverse of h(x) is k(x) = 1/(x - 24). This is because when k(x) is multiplied by h(x), the result is 1:

[tex]h(x) * k(x) = (x - 24) * 1/(x - 24) = 1[/tex]

Therefore, the additive inverse of  [tex]h(x) = x - 24[/tex] is [tex]j(x) = -x + 24\\[/tex],

and the multiplicative inverse of [tex]h(x) = x - 24[/tex]is [tex]k(x) = \frac{1}{x - 24}[/tex].

Learn more about additive inverse here:

brainly.com/question/30098463

#SPJ11

Select the correct answer. The product of two numbers is 21. If the first number is -3, which equation represents this situation and what is the second number? О А. The equation that represents this situation is x - 3= 21. The second number is 24. OB. The equation that represents this situation is 3x = 21. The second number is 7. OC. The equation that represents this situation is -3x = 21. The second number is -7. OD. The equation that represents this situation is -3 + x = 21. The second number is 18.​

Answers

Answer:

The correct answer is:

B. The equation that represents this situation is 3x = 21. The second number is 7.

Since the product of two numbers is 21 and the first number is given as -3, we can represent this situation using the equation 3x = 21. Solving for x, we find that x = 7. Therefore, the second number is 7.

Step-by-step explanation:

Which permutation of {1,2,3,4,5} follows 31524 in using the algorithm de- scribed in Section 4.1? Which permutation comes before 31524? Show that the largest number of inversions of a permutation of {1,2,...,n} equals n(n-1)/2. Determine the unique permutation with n(n-1)/2 inversions. Also determine all those permutations with one fewer inversion.

Answers

1. To find the permutation that follows 31524, swap 1 with the smallest number larger than 1 to the right of it (swap 1 with 2), then reverse the numbers to the right of 1's new position (reverse 524) to get 32145.

2. To find the permutation that comes before 31524, swap 5 with the largest number smaller than 5 to the right of it (swap 5 with 4), then reverse the numbers to the right of 5's new position (reverse 241) to get 31452.

3. The largest number of inversions in a permutation of {1,2,...,n} equals n(n-1)/2.

4. The unique permutation with n(n-1)/2 inversions is the reversed sorted order of {1,2,...,n}.

5. Permutations with one fewer inversion can be obtained by swapping adjacent elements in descending order.To determine the permutation that follows 31524 using the algorithm described in Section 4.1, let's step through the process:

1. Start with the given permutation: 31524.

2. Find the rightmost ascent, which is the first occurrence where a number is followed by a larger number. In this case, the rightmost ascent is 15.

3. Swap the number at the rightmost ascent with the smallest number to its right that is larger than it. In this case, we swap 1 with 2.

4. Reverse the numbers to the right of the rightmost ascent. In this case, we reverse 524 to get 425.

Putting it all together, the permutation that follows 31524 is 32145.

To find the permutation that comes before 31524, we can reverse the steps:

1. Start with the given permutation: 31524.

2. Find the rightmost descent, which is the first occurrence where a number is followed by a smaller number. In this case, the rightmost descent is 52.

3. Swap the number at the rightmost descent with the largest number to its right that is smaller than it. In this case, we swap 5 with 4.

4. Reverse the numbers to the right of the rightmost descent. In this case, we reverse 241 to get 142. The permutation that comes before 31524 is 31452.

i. Next, let's prove that the largest number of inversions of a permutation of {1,2,...,n} equals n(n-1)/2.

ii. Consider a permutation of {1,2,...,n}. An inversion occurs whenever a larger number appears before a smaller number. In a sorted permutation, there are no inversions, so the number of inversions is 0.

iii. For a permutation with n-1 inversions, we can observe that each number from 1 to n-1 appears before the number n. So, there is exactly one inversion for each of these pairs.

iv. To find the maximum number of inversions, we consider the permutation where each number from 1 to n-1 appears after the number n. This arrangement creates n-1 inversions for each of the n-1 numbers. Therefore, the total number of inversions in this case is (n-1) * (n-1) = n(n-1).

Since this is the maximum number of inversions, the largest number of inversions of a permutation of {1,2,...,n} equals n(n-1)/2.

v. Lastly, let's determine the unique permutation with n(n-1)/2 inversions. This permutation corresponds to the reversed sorted order of {1,2,...,n}. For example, if n = 5, the unique permutation with 5(5-1)/2 = 10 inversions is 54321.

vi. To find all permutations with one fewer inversion, we can swap adjacent elements that are in descending order. For example, if n = 5, we can take the permutation 51342 (which has 9 inversions) and swap 3 and 4 to get 51432 (which has 8 inversions).

By following this process, we can generate permutations with one fewer inversion from the permutation with n(n-1)/2 inversions.

Learn more about permutation visit

brainly.com/question/29855401

#SPJ11

Let A = (9 1) Let B = (3 1)
(4 -1) (-2 -3)
Find A+B, If possible

Answers

Let A = (9 1) Let B = (3 1)

(4 -1) (-2 -3)

Find A+B, then solution is A + B = (12 2)

(2 -4).

To find the sum of matrices A and B, we add the corresponding entries of the matrices. The given matrices are A = (9 1) and B = (3 1).

(4 -1) (-2 -3)

Adding the corresponding entries, we get:

A + B = (9 + 3 1 + 1)

(4 + (-2) -1 + (-3))

Simplifying the additions, we have:

A + B = (12 2)

(2 -4)

Therefore, the sum of matrices A and B is:

A + B = (12 2)

(2 -4)

Learn more about sum of matrices

brainly.com/question/12492706

#SPJ11

Vector u has initial point at (4, 8) and terminal point at (–12, 14). Which are the magnitude and direction of u?

||u|| = 17.088; θ = 159.444°
||u|| = 17.088; θ = 20.556°
||u|| = 18.439; θ = 130.601°
||u|| = 18.439; θ = 49.399°

Answers

Answer:

The correct answer is:

||u|| = 18.439; θ = 130.601°

Final answer:

The magnitude of the vector u is 18.439 and its direction is 130.601°. These values come from the formulae for the magnitude and direction of a vector, given its initial and terminal points.

Explanation:

The initial and terminal points of vector u decide its magnitude and direction. The magnitude of the vector ||u|| can be calculated using the distance formula which is √[(x2-x1)²+(y2-y1)²]. The direction of the vector can be found using the inverse tangent or arctan(y/x), but there are adjustments required depending on the quadrant.

Given the initial point (4, 8) and terminal point (–12, 14), we derive the magnitude as √[(-12-4)²+(14-8)²] = 18.439, and the direction θ as atan ((14-8)/(-12-4)) = -49.399°. However, since the vector is in the second quadrant, we add 180° to the angle to get the actual direction, which becomes 130.601°. Therefore, ||u|| = 18.439; θ = 130.601°.

Learn more about Vector Calculations here:

https://brainly.com/question/35891441

#SPJ2

Complete the following statement of congruence

Answers

Answer:

the right answer is a) ∆RTS=∆MON

Let U=the set of the days of the​ week, A={Monday, Tuesday,
Wednesday, Thursday, Friday} and B={Friday, Saturday, Sunday}.
Find (A ∩ B)'

Answers

The value of (A ∩ B)' is {Monday, Tuesday, Wednesday, Thursday, Saturday, Sunday}.

Let U = the set of the days of the week, A = {Monday, Tuesday, Wednesday, Thursday, Friday} and B = {Friday, Saturday, Sunday}.

To find (A ∩ B)', we need to first find the intersection of sets A and B. The intersection of two sets is the set of all elements that are in both sets.

In this case, the intersection of sets A and B is just the element "Friday," since that is the only element that is in both sets.

A ∩ B = {Friday}

Now we need to find the complement of A ∩ B. The complement of a set is the set of all elements in the universal set U that are not in the given set.

Since U is the set of all days of the week and A ∩ B = {Friday}, the complement of A ∩ B is the set of all days of the week that are not Friday.

Thus,(A ∩ B)' = {Monday, Tuesday, Wednesday, Thursday, Saturday, Sunday}

Learn more about the set at

https://brainly.com/question/30320949

#SPJ11

If graph G has K, as a subgraph, then we know that O (a) the chromatic number of the graph is equal to n O (b) the chromatic number of the graph is at least n O (c) the chromatic number of the graph is at most n

Answers

The answer is (b) the chromatic number of the graph is at least n.

A graph's chromatic number is the minimum number of colors needed to color its vertices so that no two adjacent vertices have the same color. A complete graph is a graph in which every pair of vertices is adjacent.

If graph G has K as a subgraph, then every vertex in K must be colored differently from every other vertex in K. This means that the chromatic number of G must be at least n, where n is the number of vertices in K.

For example, if graph G has K3 as a subgraph, then the chromatic number of G must be at least 3. This is because every vertex in K3 must be colored differently from every other vertex in K3.

It is possible for the chromatic number of G to be equal to n. For example, if graph G is a complete graph with n vertices, then the chromatic number of G is equal to n.

However, it is not possible for the chromatic number of G to be less than n. This is because if the chromatic number of G were less than n, then there would be some vertex in G that could be colored the same color as one of its adjacent vertices. This would violate the definition of a chromatic number.

Therefore, if graph G has K as a subgraph, then we know that the chromatic number of the graph is at least n.

Learn more about chromatic number in the below link,

https://brainly.com/question/32318432

#SPJ11

Explain whether or not has a solution, using a graphical representation. 2. Given the function y=cos(x−π) in the interval x∈[0,4π], state each of the following: a) an interval where the average rate of change is a negative value (include a sketch) b) x-value[s] when the instantaneous rate of change is zero (refer to sketch above) 3. Determine an exact solution(s) for each equation in the interval x∈[0,2π]. sin2x−0.25=0

Answers

1. The function y = cos(x-π) has a solution in the interval [0, 4π].

2.The exact solution for the equation sin(2x) - 0.25 = 0 in the interval

   [0,2π] is x = π/6, 5π/6, 7π/6, and 11π/6.

To determine whether the equation sin(2x) - 0.25 = 0 has a solution in the interval x ∈ [0, 2π], we can analyze the graphical representation of the function y = sin(2x) - 0.25.

Plotting the graph of y = sin(2x) - 0.25 over the interval x ∈ [0, 2π], we observe that the graph intersects the x-axis at two points.

These points indicate the solutions to the equation sin(2x) - 0.25 = 0 in the given interval.

To find the exact solutions, we can set sin(2x) - 0.25 equal to zero and solve for x.

Rearranging the equation, we have sin(2x) = 0.25. Taking the inverse sine (or arcsine) of both sides, we obtain 2x = arcsin(0.25).

Now, we can solve for x by dividing both sides of the equation by 2. Thus, x = (1/2) * arcsin(0.25).

Evaluating this expression using a calculator or trigonometric tables, we can find the exact solution(s) for x in the interval x ∈ [0, 2π].

Learn more about trigonometric :

brainly.com/question/29156330

#SPJ11

Problem A2. For the initial value problem y = y³ + 2, y (0) = 1, show that there is some interval I with 0 € I such that the IVP has a unique solution defined on I.

Answers

The IVP has a unique solution defined on some interval I with 0 € I.

here is the  solution to show that there is some interval I with 0 € I such that the IVP has a unique solution defined on I:

The given differential equation is y = y³ + 2.

The initial condition is y(0) = 1.

Let's first show that the differential equation is locally solvable. This means that for any fixed point x0, there is an interval I around x0 such that the IVP has a unique solution defined on I.

To show this, we need to show that the differential equation is differentiable and that the derivative is continuous at x0.

The differential equation is differentiable at x0 because the derivative of y³ + 2 is 3y².

The derivative of 3y² is continuous at x0 because y² is continuous at x0.

Therefore, the differential equation is locally solvable.

Now, we need to show that the IVP has a unique solution defined on some interval I with 0 € I.

To show this, we need to show that the solution does not blow up as x approaches infinity.

We can show this by using the fact that y³ + 2 is bounded above by 2.

This means that the solution cannot grow too large as x approaches infinity.

Therefore, the IVP has a unique solution defined on some interval I with 0 € I.

Learn more about IVP with the given link,

https://brainly.com/question/32626096

#SPJ11

Amy and amanda restaurant bill comes to 22.80 if they tip the waitress 15% how much will the waitress get

Answers

If Amy and Amanda's restaurant bill comes to $22.80 and they decide to tip the waitress 15%, the waitress will receive $3.42 as a tip.

To calculate the tip amount, we need to find 15% of the total bill. In this case, the total bill is $22.80. Convert the percentage to decimal form. To do this, we divide the percentage by 100. In this case, 15 divided by 100 is equal to 0.15. Therefore, 15% can be written as 0.15 in decimal form.

Multiply the decimal form of the percentage by the total bill. By multiplying 0.15 by $22.80, we can find the amount of the tip. 0.15 × $22.80 = $3.42.

Therefore, the waitress will receive a tip of $3.42. In total, the amount the waitress will receive, including the tip, is the sum of the bill and the tip. $22.80 (bill) + $3.42 (tip) = $26.22. So, the waitress will receive a total of $26.22, including the tip.

Learn more about percentage here:

brainly.com/question/14801224

#SPJ11

Question 4 of 25
The graph of a certain quadratic function has no x-intercepts. Which of the
following are possible values for the discriminant? Check all that apply.
A. 3
B. -1
C. 0
D. -18
ctiXA

Answers

Answer:

B, D

Step-by-step explanation:

If the discriminant has a positive value, there are two real roots. If it is 0, it has one real root (double root). If it is a negative value, then there are no real roots. When a quadratic function does not have x-intercepts, it has no roots and thus has a negative value for its discriminant.

15. Angle AOD has what measurement according to the protractor?

Answers

Answer:

90 degrees

Step-by-step explanation:

We can see in the attachment that AOD extends from 0 degrees to 90 degrees, creating a 90 degree or right angle.

Hope this helps! :)

Consider the following U t ​ =α^2 U xx ​ ,t>0,a

Answers

The given equation,[tex]U_t = α^2 U_xx,[/tex]describes a parabolic partial differential equation.

The equation[tex]U_t = α^2 U_xx[/tex] represents a parabolic partial differential equation (PDE), where U is a function of two variables: time (t) and space (x). The subscripts t and xx denote partial derivatives with respect to time and space, respectively. The parameter[tex]α^2[/tex] represents a constant.

This type of PDE is commonly known as the heat equation. It describes the diffusion of heat in a medium over time. The equation states that the rate of change of the function U with respect to time is proportional to the second derivative of U with respect to space, multiplied by[tex]α^2.[/tex]

The heat equation has various applications in physics and engineering. It is often used to model heat transfer phenomena, such as the temperature distribution in a solid object or the spread of a chemical substance in a fluid. By solving the heat equation, one can determine how the temperature or concentration of the substance changes over time and space.

To solve the heat equation, one typically employs techniques such as separation of variables, Fourier series, or Fourier transforms. These methods allow the derivation of a general solution that satisfies the initial conditions and any prescribed boundary conditions.

Learn more about  equation

brainly.com/question/29657983

#SPJ11

The volume of solid a is 792pi, it is a hemisphere plus cyclinder
The volume of solid b is 99pi it is a similar shape to solid a
Calculate the ratio of the surface areas in the form 1:n
The ratio of the radius of the cylinder to the height is 1:3

Answers

To solve this problem, let's start by finding the individual components of solid A.

Let the radius of the hemisphere in solid A be denoted as r, and the height of the cylinder be denoted as h.

The volume of a hemisphere is given by V_hemisphere = (2/3)πr^3, and the volume of a cylinder is given by V_cylinder = πr^2h.

Given that the volume of solid A is 792π, we can set up the equation:

(2/3)πr^3 + πr^2h = 792π

To simplify the equation, we can divide both sides by π:

(2/3)r^3 + r^2h = 792

Now, let's consider solid B. Since it has a similar shape to solid A, the ratio of their volumes is the same as the ratio of their surface areas.

The volume of solid B is given as 99π, so we can set up the equation:

(2/3)r_b^3 + r_b^2h_b = 99

Given that the ratio of the radius to the height of the cylinder is 1:3, we can express h in terms of r as h = 3r.

Substituting this into the equations, we have:

(2/3)r^3 + r^2(3r) = 792

(2/3)r_b^3 + r_b^2(3r_b) = 99

Simplifying the equations further, we get:

(2/3)r^3 + 3r^3 = 792

(2/3)r_b^3 + 3r_b^3 = 99

Combining like terms:

(8/3)r^3 = 792

(8/3)r_b^3 = 99

To isolate r^3 and r_b^3, we divide both sides by (8/3):

r^3 = 297

r_b^3 = 37.125

Now, let's calculate the surface areas of solid A and solid B.

The surface area of a hemisphere is given by A_hemisphere = 2πr^2, and the surface area of a cylinder is given by A_cylinder = 2πrh.

For solid A, the surface area is:

A_a = 2πr^2 (hemisphere) + 2πrh (cylinder)

A_a = 2πr^2 + 2πrh

A_a = 2πr^2 + 2πr(3r) (substituting h = 3r)

A_a = 2πr^2 + 6πr^2

A_a = 8πr^2

For solid B, the surface area is:

A_b = 2πr_b^2 (hemisphere) + 2πr_bh_b (cylinder)

A_b = 2πr_b^2 + 2πr_b(3r_b) (substituting h_b = 3r_b)

A_b = 2πr_b^2 + 6πr_b^2

A_b = 8πr_b^2

Now, let's calculate the ratio of the surface areas:

Ratio = A_a : A_b

Ratio = 8πr^2 : 8πr_b^2

Ratio = r^2 : r_b^2

Ratio = (297) : (37.125)

Ratio = 8 : 1

Therefore, the ratio of the surface areas is 1:8.

2. Solve the following pair of ODEs over the interval from t = 0 to 0. 4 using a step size of 0. 1. The initial conditions are y(0) = 2 and z(0) = 4. Obtain your solution with a. Euler's method and b. The second-order RK method

Answers

The given pair of ODEs can be solved using Euler's method and the second-order Runge-Kutta (RK2) method to approximate the solutions numerically.

To solve the given pair of ODEs using Euler's method and the second-order Runge-Kutta (RK2) method, we'll consider the equations:

1) y' = f(t, y, z)

2) z' = g(t, y, z)

with the initial conditions y(0) = 2 and z(0) = 4.

a) Euler's Method:

In Euler's method, we approximate the derivatives using forward difference approximations and update the solution iteratively. The general update formulas are:

y[i+1] = y[i] + h * f(t[i], y[i], z[i])

z[i+1] = z[i] + h * g(t[i], y[i], z[i])

where h is the step size and t[i] represents the current time.

Using a step size of h = 0.1, we can perform the calculations as follows:

At t = 0:

y[0] = 2

z[0] = 4

Using the update formulas, we can calculate the values of y and z at each time step. We repeat this process until we reach the desired end time (t = 0.4 in this case).

b) Second-Order Runge-Kutta (RK2) Method:

In the RK2 method, we use weighted averages of slopes to update the solution. The general update formulas are:

k1 = h * f(t[i], y[i], z[i])

l1 = h * g(t[i], y[i], z[i])

k2 = h * f(t[i] + h/2, y[i] + k1/2, z[i] + l1/2)

l2 = h * g(t[i] + h/2, y[i] + k1/2, z[i] + l1/2)

y[i+1] = y[i] + k2

z[i+1] = z[i] + l2

Again, using a step size of h = 0.1, we can perform the calculations iteratively until we reach t = 0.4.

These methods provide numerical approximations to the solutions of the given ODEs. The accuracy of the approximations depends on the step size chosen. Smaller step sizes generally result in more accurate solutions but require more computational effort.

Learn more about Euler's method here :-

https://brainly.com/question/30699690

#SPJ11

Two quadratic functions are shown:
Function 1: Function 2:
x g(x)
-22
f(x)=2x²-8x+1 -1 -3
02
1 17
Which function has the lowest minimum value, and what are its coordinates?
O Function 1 has the lowest minimum value, and its coordinates are (0, 1)
O Function 1 has the lowest minimum value, and its coordinates are (2. -7)
O Function 2 has the lowest minimum value, and its coordinates are (0, 2)
O Function 2 has the lowest minimum value, and its coordinates are (-1.-3)

Answers

The correct answer is Function 1 has the lowest minimum value, and its coordinates are (2, -7).

To determine which function has the lowest minimum value and its coordinates, we need to compare the minimum values of both quadratic functions.

Function 1: f(x) = 2x² - 8x + 1

Function 2: g(x)

We can find the minimum value of a quadratic function using the formula x = -b / (2a), where a and b are coefficients of the quadratic equation in the form ax² + bx + c.

For Function 1, the coefficient of x² is 2, and the coefficient of x is -8. Plugging these values into the formula, we get:

x = -(-8) / (2 * 2) = 8 / 4 = 2

To find the corresponding y-coordinate, we substitute x = 2 into the equation f(x):

f(2) = 2(2)² - 8(2) + 1

= 8 - 16 + 1

= -7

Therefore, the minimum value for Function 1 is -7, and its coordinates are (2, -7).

Now let's analyze Function 2 using the given data points:

x g(x)

-1 -3

0 2

1 17

We can observe that the value of g(x) is increasing as x moves from -1 to 1. Therefore, the minimum value for Function 2 lies between these two x-values.

Comparing the minimum values, we can conclude that Function 1 has the lowest minimum value of -7, whereas Function 2 has a minimum value of -3.

Therefore, the correct answer is:

Function 1 has the lowest minimum value, and its coordinates are (2, -7).

for such more question on coordinates

https://brainly.com/question/23907194

#SPJ8

On a coordinate plane, 5 points are plotted. The points are (1, 1,296), (2, 1,080), (3, 900), (4, 750), (5, 625).
Which function can be used to model the graphed geometric sequence?

f(x + 1) = Five-sixthsf(x)
f(x + 1) = Six-fifthsf(x)
f(x + 1) = Five-sixths Superscript f (x)
f(x + 1) = Six-Fifths Superscript f (x)

Answers

The function that can be used to model the given geometric sequence is f(x + 1) = Five-sixthsf(x). OPtion A.

To determine the function that can be used to model the given geometric sequence, let's analyze the relationship between the points.

The given points (1, 1,296), (2, 1,080), (3, 900), (4, 750), (5, 625) represent a geometric sequence where each term is obtained by multiplying the previous term by a constant ratio.

Let's calculate the ratio between consecutive terms:

Ratio = Term(n+1) / Term(n)

For the given sequence, the ratios are as follows:

Ratio = 1,080 / 1,296 = 0.8333...

Ratio = 900 / 1,080 = 0.8333...

Ratio = 750 / 900 = 0.8333...

Ratio = 625 / 750 = 0.8333...

We can observe that the ratio between consecutive terms is consistent and equal to 0.8333..., which can be expressed as 5/6 or five-sixths.

Among the given options, the correct function that models the graphed geometric sequence is f(x + 1) = Five-sixthsf(x)

This equation represents a recursive relationship where each term (f(x + 1)) is obtained by multiplying the previous term (f(x)) by the constant ratio (five-sixths).

In summary, the function that can be used to model the given geometric sequence is f(x + 1) = Five-sixthsf(x). So Option A is correct.

For more question on function visit:

https://brainly.com/question/11624077

#SPJ8

Answer:

the function that can be used to model the graphed geometric sequence is f(x + 1) = Five-sixthsf(x) (option 1).

Step-by-step explanation:

The graphed points represent a geometric sequence, which means that each term is obtained by multiplying the previous term by a constant ratio. In this case, we can observe that the ratio between consecutive terms is decreasing.

To determine the function that models this geometric sequence, let's examine the ratios between the consecutive terms:

- The ratio between the second and first terms is 1,080/1,296 = 5/6.

- The ratio between the third and second terms is 900/1,080 = 5/6.

- The ratio between the fourth and third terms is 750/900 = 5/6.

- The ratio between the fifth and fourth terms is 625/750 = 5/6.

Based on these ratios, we can see that the constant ratio between terms is 5/6.

Now, let's consider the function options provided:

1. f(x + 1) = Five-sixthsf(x)

2. f(x + 1) = Six-fifthsf(x)

3. f(x + 1) = Five-sixths Superscript f (x)

4. f(x + 1) = Six-Fifths Superscript f (x)

We can eliminate options 3 and 4 since they include "Superscript f (x)", which is not a valid mathematical notation.

Now, let's analyze options 1 and 2.

In option 1, the function is f(x + 1) = Five-sixthsf(x). This represents a constant ratio of 5/6 between consecutive terms, which matches the observed ratios in the geometric sequence. Therefore, option 1 can be used to model the graphed geometric sequence.

In option 2, the function is f(x + 1) = Six-fifthsf(x). This represents a constant ratio of 6/5 between consecutive terms, which does not match the observed ratios in the geometric sequence. Therefore, option 2 does not accurately model the graphed geometric sequence.

For a pair of similar triangles, if the ratio of their corresponding sides is 1/4, what is the ratio of their areas? A. 1/64
B. 1/16
C. 1/4
D. 1/2

Answers

The ratio of the areas of similar triangles is equal to the square of the ratio of their corresponding sides. In this case, since the ratio of their corresponding sides is 1/4, the ratio of their areas is A. 1/16.

Let's consider two similar triangles, Triangle 1 and Triangle 2. The given ratio of their corresponding sides is 1/4, which means that the length of any side in Triangle 1 is 1/4 times the length of the corresponding side in Triangle 2.

The area of a triangle is proportional to the square of its side length. Therefore, if the ratio of the corresponding sides is 1/4, the ratio of the areas will be (1/4)^2 = 1/16.

Hence, the correct answer is A. 1/16.

Learn more about the properties of similar triangles visit:

https://brainly.com/question/30284173

#SPJ11









Find the work required to pitch a 6. 6 oz softball at 90 ft/sec. GOODS The work required to pitch a 6. 6 oz softball at 90 ft/sec is ft-lb. (Do not round until the final answer. Then round to the neares

Answers

The work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.

To find the work required to pitch a softball, we can use the formula:

Work = Force * Distance

In this case, we need to calculate the force and the distance.

Force:

The force required to pitch the softball can be calculated using Newton's second law, which states that force is equal to mass times acceleration:

Force = Mass * Acceleration

The mass of the softball is given as 6.6 oz. We need to convert it to pounds for consistency. Since 1 pound is equal to 16 ounces, the mass of the softball in pounds is:

6.6 oz * (1 lb / 16 oz) = 0.4125 lb (rounded to four decimal places)

Acceleration:

The acceleration is given as 90 ft/sec.

Distance:

The distance is also given as 90 ft.

Now we can calculate the work:

Work = Force * Distance

= (0.4125 lb) * (90 ft)

= 37.125 lb-ft (rounded to three decimal places)

Therefore, the work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.

Learn more about softbal here:

https://brainly.com/question/15069776

#SPJ11

a car manufacturer is reducing the number of incidents with the transmission by issuing a voluntary recall during week three of the recall the manufacturer fix 391 calls in week 13 the manufacture affect fixed three 361 assume the reduction in the number of calls each week is liner write an equation in function form to show the number of calls in each week by the mechanic

Answers

Answer:

To write the equation in function form for the number of calls in each week by the mechanic, we can use the concept of linear reduction.

Let's assume:

- Week 3 as the starting week (x = 0).

- Week 13 as the ending week (x = 10).

We have two data points:

- (x1, y1) = (0, 391) (week 3, number of calls fixed in week 3)

- (x2, y2) = (10, 361) (week 13, number of calls fixed in week 13)

We can use these two points to determine the equation of a straight line in the form y = mx + b, where m is the slope and b is the y-intercept.

First, calculate the slope (m):

m = (y2 - y1) / (x2 - x1)

= (361 - 391) / (10 - 0)

= -3

Next, substitute the slope (m) and one of the data points (x1, y1) into the equation y = mx + b to find the y-intercept (b):

391 = -3(0) + b

b = 391

Therefore, the equation in function form to show the number of calls in each week by the mechanic is:

y = -3x + 391

Where:

- y represents the number of calls in each week fixed by the mechanic.

- x represents the week number, starting from week 3 (x = 0) and ending at week 13 (x = 10).

1. A ⊃ (E ⊃ ∼ F)
2. H ∨ (∼ F ⊃ M)
3. A
4. ∼ H / E ⊃ M

Answers

Based on the given premises, assuming ¬H and using conditional proof and indirect proof, we have derived E ⊃ M as the conclusion.

To prove the argument:

1. A ⊃ (E ⊃ ∼ F)

2. H ∨ (∼ F ⊃ M)

3. A

4. ∼ H / E ⊃ M

We will use a method called conditional proof and indirect proof (proof by contradiction) to derive the conclusion. Here's the step-by-step proof:

5. Assume ¬(E ⊃ M) [Assumption for Indirect Proof]

6. ¬E ∨ M [Implication of Material Conditional in 5]

7. ¬E ∨ (H ∨ (∼ F ⊃ M)) [Substitute 2 into 6]

8. (¬E ∨ H) ∨ (∼ F ⊃ M) [Associativity of ∨ in 7]

9. H ∨ (¬E ∨ (∼ F ⊃ M)) [Associativity of ∨ in 8]

10. H ∨ (∼ F ⊃ M) [Disjunction Elimination on 9]

11. ¬(∼ F ⊃ M) [Assumption for Indirect Proof]

12. ¬(¬ F ∨ M) [Implication of Material Conditional in 11]

13. (¬¬ F ∧ ¬M) [De Morgan's Law in 12]

14. (F ∧ ¬M) [Double Negation in 13]

15. F [Simplification in 14]

16. ¬H [Modus Tollens on 4 and 15]

17. H ∨ (∼ F ⊃ M) [Addition on 16]

18. ¬(H ∨ (∼ F ⊃ M)) [Contradiction between 10 and 17]

19. E ⊃ M [Proof by Contradiction: ¬(E ⊃ M) implies E ⊃ M]

20. QED (Quod Erat Demonstrandum) - Conclusion reached.

Learn more about Modus

https://brainly.com/question/27990635

#SPJ11

Find the maximum or minimum value of \( f(x)=3 x^{2}-6 x+6 \) The is Invalid use of a incomplete.

Answers

[tex]The given function is f(x)=3x²-6x+6.[/tex]Let's find the maximum or minimum value of this function.

Step 1: Find the vertex of the parabola is given by the formula X = -b/2a, where a and b are the coefficients of x² and x, respectively

[tex]In this case, a = 3 and b = -6x = -(-6)/2(3) = 1Plug x = 1 into the function to getf(1) = 3(1)² - 6(1) + 6 = 3 - 6 + 6 = 3[/tex]

Therefore, the vertex of the parabola is (1, 3)

Step 2: Determine the shape of the parabola coefficient of x² is positive (a = 3 > 0), which means that the parabola opens upwards and the vertex is a minimum value

Step 3: Find the minimum value of the function

The minimum value of the function occurs at the vertex, which is (1, 3)

Therefore, the minimum value of f(x) = 3x² - 6x + 6 is 3, which occurs at x = 1.

To know more about the word parabola visits :

https://brainly.com/question/21888580

#SPJ11

Select the values below that are not equivalent to 72%

A.0.72

B. 72%

C. 3 72 / 100 - 3

D. 36/50

E. 72

F. 1 - 0.28

Answers

Answer:

Step-by-step explanation:

The values that are not equivalent to 72% are:

C. 3 72 / 100 - 3

D. 36/50

F. 1 - 0.28

Determine k so that the following has exactly one real solution. kx^2+8x=4 k=

Answers

To find the value of k that makes the given quadratic equation to have exactly one solution, we can use the discriminant of the quadratic equation (b² - 4ac) which should be equal to zero. We are given the quadratic equation:kx² + 8x = 4.

Now, let us compare this equation with the standard form of the quadratic equation which is ax² + bx + c = 0. Here a = k, b = 8 and c = -4. Substituting these values in the discriminant formula, we get:(b² - 4ac) = 8² - 4(k)(-4) = 64 + 16kTo have only one real solution, the discriminant should be equal to zero.

Therefore, we have:64 + 16k = 0⇒ 16k = -64⇒ k = -4Now, substituting this value of k in the given quadratic equation, we get:-4x² + 8x = 4⇒ -x² + 2x = -1⇒ x² - 2x + 1 = 0⇒ (x - 1)² = 0So, the given quadratic equation kx² + 8x = 4 will have exactly one real solution when k = -4, and the solution is x = 1.

The given quadratic equation kx² + 8x = 4 will have exactly one real solution when k = -4, and the solution is x = 1. This can be obtained by equating the discriminant of the given equation to zero and solving for k.

To know more about discriminant formula :

brainly.com/question/29018418

#SPJ11

Suppose three riders rode a total of 240 miles. If they used a total of 16 horses, and rode each horse the same number of miles, how many miles did they ride before replacing each horse?​

Answers

They rode 15 miles before replacing each horse.

Let's assume that each rider rode a different number of horses, denoted as x, y, and z respectively. Since they used a total of 16 horses, we have the equation x + y + z = 16.

Since they rode the same number of miles on each horse, let's denote the distance traveled by each horse as d. Therefore, the total distance covered by all the horses can be calculated as 16d.

We are given that the three riders rode a total of 240 miles. Therefore, we have the equation xd + yd + z*d = 240.

From the given information, we have two equations:

x + y + z = 16 (Equation 1)

xd + yd + z*d = 240 (Equation 2)

Since we need to find the number of miles they rode before replacing each horse, we need to find the value of d. To solve this system of equations, we can substitute one variable in terms of the others.

Let's assume x = 16 - y - z. Substituting this into Equation 2, we get:

(16 - y - z)d + yd + z*d = 240

Simplifying, we have:

16d - yd - zd + yd + zd = 240

16d = 240

d = 240/16

d = 15

For more such questions on miles

https://brainly.com/question/29806974

#SPJ8

A researcher studied iron-deficiency anemia in women in each of two developing countries. Differences in the dietary habits between the two countries led the researcher to believe that anemia is less prevalent among women in the first country than among women in the second country. A random sample of
a. 2000 women from the first country yielded
b. 326 women with anemia, and an independently chosen, random sample of
c. 1800 women from the second country yielded
d. 340 women with anemia

Answers

We cannot conclude at the 0.01 level of significance that the proportion of women with anemia in the first country is less than the proportion in the second country.

Why can we not conclude at this level of significance ?

We are conducting a one-tailed test. Here are the hypotheses:

H0: p₁ - p₂ >= 0 (null hypothesis: the proportion of women with anemia in the first country is the same or greater than in the second country)

H1: p₁ - p₂ < 0 (alternative hypothesis: the proportion of women with anemia in the first country is less than in the second country)

Calculate the sample proportions and their difference:

n₁ = 2000 (sample size in first country)

x₁ = 326 (number of success in first country)

p₁= x₁ / n₁ = 326 / 2000

= 0.163 (sample proportion in first country)

n₂ = 1800 (sample size in second country)

x₂ = 340 (number of success in second country)

p₂ = x₂ / n₂ = 340 / 1800

= 0.189 (sample proportion in second country)

The difference in sample proportions is:

Δp = p₁ - p₂

= 0.163 - 0.189

= -0.026

Now let's find the standard error (SE) of the difference in proportions:

SE = √[ p₁*(1 - p₁) / n₁ + p₂*(1 - p₂) / n₂ ]

= √[ (0.163 * 0.837) / 2000 + (0.189 * 0.811) / 1800 ]

= 0.013

The z score is the difference in sample proportions divided by the standard error:

z = Δp / SE

= -0.026 / 0.013

= -2.0

For a one-tailed test at the 0.01 level of significance, we compare the observed z score to the critical z value. The critical z value for a one-tailed test at the 0.01 level of significance is -2.33.

Since our calculated z score (-2.0) is greater than the critical z value (-2.33), we do not reject the null hypothesis.

Find out more on levels of significance at https://brainly.com/question/30400745

#SPJ4

Full question is:

A researcher studied iron-deficiency anemia in women in each of two developing countries. Differences in the dietary habits between the two countries led the researcher to believe that anemia is less prevalent among women in the first country than among women in the second country. A random sample of 2000 women from the first country yielded 326 women with anemia, and an independently chosen, random sample of 1800 women from the second country yielded 340 women with anemia.

Based on the study can we conclude, at the 0.01 level of significance, that the proportion P of women with anemia in the first country is less than the proportion p₂ of women with anemia in the second country?

The half life for a first order reaction is 20 min. What is the
rate constant in units of s-1?
Select one:

Answers

The rate constant for the first-order reaction is approximately 0.035 s⁻¹. The correct answer is B

To find the rate constant in units of s⁻¹ for a first-order reaction, we can use the relationship between the half-life (t1/2) and the rate constant (k).

The half-life for a first-order reaction is given by the formula:

t1/2 = (ln(2)) / k

Given that the half-life is 20 minutes, we can substitute this value into the equation:

20 = (ln(2)) / k

To solve for the rate constant (k), we can rearrange the equation:

k = (ln(2)) / 20

Using the natural logarithm of 2 (ln(2)) as approximately 0.693, we can calculate the rate constant:

k ≈ 0.693 / 20

k ≈ 0.03465 s⁻¹

Therefore, the rate constant for the first-order reaction is approximately 0.0345 s⁻¹. The correct answer is B

Your question is incomplete but most probably your full question was attached below

To know more about rate constant refer here:

brainly.com/question/15053008

#SPJ11

5. Find all of the fourth roots of -4. Write them in standard form. Show your work.

Answers

The fourth roots are:

√2 * cis(π/4) = √2/2 + √2/2 * i√2 * cis(3π/4) = -√2/2 + √2/2 * i√2 * cis(5π/4) = -√2/2 - √2/2 * i√2 * cis(7π/4) = √2/2 - √2/2 * i

How to determine the fourth root

When we find the n-th roots of a complex number written in polar form, we divide the angle by n and find all the resulting angles by adding integer multiples of 2π/n.

The fourth roots of -4 are found by taking the angles

π/4, 3π/4, 5π/4, and 7π/4

(these are π/4 + k*(2π/4) f

or k = 0, 1, 2, 3).

The magnitude of the roots is the fourth root of the magnitude of -4, which is √2. So the roots are:

√2 * cis(π/4) = √2/2 + √2/2 * i

√2 * cis(3π/4) = -√2/2 + √2/2 * i

√2 * cis(5π/4) = -√2/2 - √2/2 * i

√2 * cis(7π/4) = √2/2 - √2/2 * i

These are the four fourth roots of -4.

Read more on fourth roots https://brainly.com/question/21298897

#SPJ4

Other Questions
(15%) Under the assumptions of the BSM model, consider a binary option on a non-dividend paying stock with a strike price of $30 per share and one year to expiry. The stock's current price is $20 per share, its continuously compounded expected return (or growth rate) is 10% per annum, and its volatility is 20% per annum. Finally, the continuously compounded risk-free rate is 3% per annum. A) (5%) Calculate the current price of the binary option. B) (5%) Determine the real-world expected payoff on the binary option. Hint: The expected payoff of a binary option is the probability of the payoff event. C) (5%) Determine the binary option's real-world, continuously compounded expected return The Double Wall of Encapsulation model of addiction says that people use drugs in order to? A. Get rid of physical pain B. Numb themselves and escape reality C. Reach an alternate state of consciousness D. Get in touch with their emotions An air-filled capacitor consists of two parallel plates, each with an area of 7.60cm , separated by a distance of 1.80mm. A 20.0 -V potential difference is applied to these plates. Calculate.(b) the surface charge density. This week we have learned about Intellectual Property Crimes, including Trademark infringemen Patent infringement, and Copyright infringement. 71 Notorious Patent, Trademark, and Copyright Infringement Cases Nine Nasty Trademark Infringement Cases - and How to Avoid Them Music Copyright Cases - Musicians Institute Library Today's Most Famous Intellectual Property Cases The assignment is worth 12 total points, broken down below. You must include the following information: (SEE SAMPLE BELOW) 1. Title of your article? 2. Give a definition for this type of infringement. 3. Who is the main celebrity/famous company documented in the article? 4. Which year did this case occur? 5. Which type of infringement case is described in the article? 6. Who was affected? 7. What was the result of the infringement case? 8. Conclusion section Include the article link at the bottom. Jeff Associates needs to repay $25,000. The company plans to set up a sinking fund that will repay the loan at the end of 7 years. Assume a 12% interest rate compounded semiannually. What must Jeff pay into the fund each period of time? In the following case, which cognitive bias, if any, is it reasonable to conclude is occurring in Nora?Nora goes to a sports bar to watch the NBA Championship game between the Golden State Warriors and the Cavaliers. She is a big fan of Golden State Warriors. At the bar, there are some fans of the Cavaliers who are cheering and getting rowdy when the Cavaliers score points. Nora immediately thinks that Cavaliers fans are annoying and rude. However, whenever the Golden State Warriors score points, fans of the Golden State Warriors, including Nora, cheer and get rowdy as well. Despite acting similarly to Cavaliers fans, Nora thinks that fans of Golden State Warriors are just polite but passionately loyal fans.a. In-Group Biasb. Confirmation Biasc. Availability Heuristicd. Plausible that there is no cognitive biase. Fundamental Attribution Error Place the structures of the inner ear in order for the transmission of action potentials from the spiral organ to the temporal lobe. Rank the options below. Hair cells Cochlear nucleus Inferior colliculus Cochlear nerve fibers Superior olivary nucleus Medial geniculate nucleus Auditory cortex > > < > > ( Place the structures of the inner ear in order for the transmission of action potentials from the spiral organ to the temporal lobe. Rank the options below. Hair cells Cochlear nucleus Inferior colliculus Cochlear nerve fibers Superior olivary nucleus Medial geniculate nucleus Auditory cortex Light of wavelength 553.0 nm is incident on a narrow slit. The diffraction pattern is viewed on a screen 91.5 cm from the slit. The distance on the screen between the fourth order minimum and the central maximum is 1.19 cm. What is the width of the slit in micrometers (m)? An Apple annual coupon bond has a coupon rate of 6.6%, face value of $1,000, and 4 years to maturity. If its yield to maturity is 6.6%, what is its Macaulay Duration? Consider an annual coupon bond with a coupon rate of 8.3%, face value of $1,000, and 2 years to maturity. If its yield to maturity is 3.4%, what is its Macaulay Duration? Answer in years, rounded to three decimal places. click or tap the TWO underlined sentences on these pages that BEST support the inference that Salim disagrees with Khalil's ideas about what to serve the new families. E Homework: HW 4.3 Question 10, 4.3.19 10 7 400 Let v = -9 V = 6 V3 = -8 and H= Span {V V2 V3}. It can be verified that 4v +2v - 3v3 = 0. Use this information to find -5 C HW Score: 50%, 5 of 10 points O Points: 0 of 1 A basis for H is (Type an integer or decimal for each matrix element. Use a comma to separate vectors as needed.) basis for H. Save Look up sex education. Choose one source of sex information such as the Internet, parents, health class, etc., and evaluate its quality.A. What are the advantages of this source?B. What are the disadvantages of this source?C. What do you think about restricting sex education courses to abstinence education? A can of beans has a wotume of 0.612 m ^3 and mass of 534 kg it is heid fully 75% submerged in salty water with denisty of 1050 kg im? a) Find the density of the cube: b) Find the buoyant force on the cube Kristen, the president and sole shareholder of Egret Corporation, has earned a salary bonus of $277,500 for the current y Because of the lower tax rates on qualifying dividends, Kristen is considering substituting a dividend for the bonus. Assume that the tax rates are 24% for Kristen and 21% for Egret Corporation. Round your answers to nearest dollar, required. a. How much better off would kristen be if she were paid a dividend rather than salary? If Kristen were paid a bonus, she would receive $X after taxes, If Kristen receives a dividend rather than salary, she would receive & X after taxes. Thus, she would be better off by receiving the Feedhack 3. Check My Wak: b. How much better off would Egret Corporation be if it paid Kristen a salary rather than a dividend? The net after tox cost of the bonus for eqret corporation would be s. and the net arter-taxcost for the cluidend would be s (1.) Theretore Egras would be better off by 5 x if it paid the Yeechack C. Assume Egret Corporation paid Kristen a salary bonus of $360,750 instead of a $277,500 dividend. If Egret Corporation were to pay Kristen a salary bonus of $360,750 instead of a $277,500 dividend, Kristen would rece X after taxes. The bonus would cost Egret Corporation $ X after taxes. Feedback T Check My Work Incorrect d. What should Kristen do? Both Egret Corporation and Kristen are better off with the please use a keyboard for the answerMaternal and child health is an important public health issue because we have the opportunity to end preventable deaths among all women and children and to greatly improve their health and well-being.On the light of this statement, answer the following questions (using both the national and global level comparative data): -Explain the infant and under five mortality rates (definitions, statistics, causes) Watch the CH 15 Film Clip and answer the questions below.CH 15 FILM CLIPS: Cracks in the MaskFor more than a century, explorers, collectors, and anthropologists have gathered artifacts from the Torres Strait in northern Australia and carried them back to museums throughout Europe. This film follows two Torres Straight islanders as they travel to Europe to see the artifacts in person for the first time and attempt to persuade curators to return them to their native land.Submission InstructionsSubmit your answers to the questions below as directed by your instructor. (Cracks in the Mask)- Are objects like the mask displayed in the film "artifacts" or "art"? What's the difference?- The objects stored in European museums were actively used in Torres Strait cultural practices. What value do they have as objects on display behind glass or, perhaps, simply in storage?- Who "owns" the Torres Strait material? The museums? The Torres Strait islanders? How is power involved in that dynamic? Is it the same relationship of power that brought the objects to European museums in the first place? Write an equation of a parabola symmetric about x=-10 . 2. Show detailed steps to hybridization of the following molecules Use simple valence bond theory along with hybridization to show the bonding in the following molecules. Use the next page or extra paper for extra space /8 Marks) Your answer should include these steps: * a. Lewis structure (where applicable) * b. Bond analysis (L.e. the # of or bonds) * c. Diagram of valence shell energy level orbitals * d. Promotion, hybridization step and hybrid outcome are shown clearly, if applicable * e. Diagram of overlapping orbitals with label of types of bonds (o or ) formed. a. N H b. Show detailed hybridization for each atom: C, C2 and N H-C 1 CH-N-H 2 H Calculate the total output in mL. 3 oz of urine 1.5 L of NG drainage 1500 mL of urine 4 oz JP drain Describe how destruction of the walls of the alveoli would affect oxygen diffusion andtherefore oxygen levels in the blood. Steam Workshop Downloader