3) For questions a-f, first state which, if any, of the following differentiation rules you need to use. If more than one needs to be used, specify the order. Use the product rule, quotient rule and/o

Answers

Answer 1

For question a-f, first state the differentiation rules  One can use the product rule or quotient rule to find the derivative of a function.

Differentiation is a procedure for finding the derivative of a function. The derivative of a function can be found using a set of rules referred to as differentiation rules. Some of the differentiation rules include the product rule, quotient rule, power rule, chain rule, and others. The product rule is used to find the derivative of the product of two functions. It states that the derivative of the product of two functions is equal to the sum of the product of the first function and the derivative of the second function and the product of the second function and the derivative of the first function.
For question a-f, one can use the product rule to find the derivative of the product of two functions. The product rule is used to find the derivative of the product of two functions. It states that the derivative of the product of two functions is equal to the sum of the product of the first function and the derivative of the second function and the product of the second function and the derivative of the first function. The formula for the product rule is given as:
`d/dx[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)`
The quotient rule is used to find the derivative of the quotient of two functions. It states that the derivative of the quotient of two functions is equal to the difference between the product of the first function and the derivative of the second function and the product of the second function and the derivative of the first function divided by the square of the second function. The formula for the quotient rule is given as:
`d/dx[f(x)/g(x)] = [g(x)f'(x) - f(x)g'(x)]/g(x)²`

To know more about the quotient rule
https://brainly.com/question/30278964

#SPJ11


Related Questions

convert to hexadecimal and then to binary: (a) 757.1710 (b) 356.2510

Answers

Converting the given decimal numbers to hexadecimal and then to binary, we find that

(a) 757.1710 is equivalent to 2F5.2E16 in hexadecimal and 1011110101.001011002 in binary.

(b) 356.2510 is equivalent to 164.4016 in hexadecimal and 101100100.01000011012 in binary.

To convert a decimal number to hexadecimal, we divide the whole number part and the fractional part separately by 16 and convert the remainders to hexadecimal digits.

For the whole number part of (a) 757, dividing it by 16 gives us a quotient of 47 and a remainder of 5, which corresponds to the hexadecimal digit 5.

Dividing the fractional part 0.17 by 16 gives us a hexadecimal digit of 2. Combining these digits, we get the hexadecimal representation 2F5.

To convert (b) 356 to hexadecimal, we divide it by 16, obtaining a quotient of 22 and a remainder of 4, which corresponds to the hexadecimal digit 4.

For the fractional part 0.25, dividing by 16 gives us a hexadecimal digit of 1. Combining these digits, we get the hexadecimal representation 164.

To convert hexadecimal numbers to binary, we simply replace each hexadecimal digit with its equivalent four-digit binary representation. Converting (a) 2F5 to binary, we get 1011110101.

Similarly, converting (b) 164 to binary, we get 101100100.

For the fractional parts, converting 0.2E to binary gives us 0010, and converting 0.401 to binary gives us 01000011.

Therefore, (a) 757.1710 is equivalent to 2F5.2E16 in hexadecimal and 1011110101.001011002 in binary, while (b) 356.2510 is equivalent to 164.4016 in hexadecimal and 101100100.01000011012 in binary.

To learn more about hexadecimal digit visit:

brainly.com/question/31868539

#SPJ11








1. What are the 3 conditions for a function to be continuous at xa? 2. the below. Discuss the continuity of function defined by graph 3. Does the functionf(x) = { ***

Answers

The three conditions for a function to be continuous at a point x=a are:

a) The function is defined at x=a.

b) The limit of the function as x approaches a exists.

c) The limit of the function as x approaches a is equal to the value of the function at x=a.

The continuity of a function can be analyzed by observing its graph. However, as the graph is not provided, a specific discussion about its continuity cannot be made without further information. It is necessary to examine the behavior of the function around the point in question and determine if the three conditions for continuity are satisfied.

The function f(x) = { *** is not defined in the question. In order to discuss its continuity, the function needs to be provided or described. Without the specific form of the function, it is impossible to analyze its continuity. Different functions can exhibit different behaviors with respect to continuity, so additional information is required to determine whether or not the function is continuous at a particular point or interval.

Learn more about continuous function here: brainly.com/question/28228313

#SPJ11

Find a recurrence relation for Cn , the number of ways to parenthesize the product of n+1 numbers, x0· x1 · x2 ... xn, to specify the order of multiplication. For example, C3: = 5 because there are five ways to parentheize x0 · x1 · x2 ..... xn to determine the order of multiplication: ((x0.x1).x2) • X3 , (x0. (x1 · x2)). • x3, (x0 • x1) . (x2 • x3), x0. ((x1. x2). x3), x0 · (x1 · x2 · x3))

Answers

Cₙ = C₀ * Cₙ₋₁ + C₁ * Cₙ₋₂ + C₂ * Cₙ₋₃ + ... + Cₙ₋₂ * C₁ + Cₙ₋₁ * C₀. This recurrence relation represents the number of ways to parenthesize the product of n + 1 numbers based on the parenthesization of smaller products.

The total number of ways to parenthesize x₀ · x₁ · x₂ · ... · xₙ, denoted as Cn, can be calculated by summing the products of [tex]C_k[/tex] and C_{(n - k)} for all possible values of k:

Cₙ = C₀ * Cₙ₋₁ + C₁ * Cₙ₋₂ + C₂ * Cₙ₋₃ + ... + Cₙ₋₂ * C₁ + Cₙ₋₁ * C₀

To find a recurrence relation for Cₙ, let's consider the base cases first:

C_0: There is only one number, x₀ , so no parenthesization is needed.

Therefore, [tex]C_0[/tex] = 1.

C1: There are two numbers, x₀ and x₁. We can only multiply them in one way, so [tex]C_1[/tex] = 1.

Now, let's consider the case for n ≥ 2:

To parenthesize the product x₀ · x₁ · x₂ · ... · xₙ, we can split it at each position k, where 1 ≤ k ≤ n.

If we split at position k, the left side will have k + 1 numbers (x₀ · x₁ · x₂ · ... · x[tex]_k[/tex]) and the right side will have (n - k) + 1 numbers ([tex]x_{k+1}, x_{k+2}, ..., x_n[/tex]).

The number of ways to parenthesize the left side is C_k, and the number of ways to parenthesize the right side is [tex]C_{(n - k)}[/tex].

Therefore, the total number of ways to parenthesize x₀ · x₁ · x₂ · ... · xₙ, denoted as Cn, can be calculated by summing the products of [tex]C_k[/tex] and [tex]C_{(n - k)[/tex] for all possible values of k:

Cₙ = C₀ * Cₙ₋₁ + C₁ * Cₙ₋₂ + C₂ * Cₙ₋₃ + ... + Cₙ₋₂ * C₁ + Cₙ₋₁ * C₀

This recurrence relation represents the number of ways to parenthesize the product of n + 1 numbers based on the parenthesization of smaller products.

To learn more about recurrence relation visit:

brainly.com/question/31384990

#SPJ11

show the andwer to all of the parts please
8. Determine whether each of the following series converges converges or di- verges. In each case briefly indicate why. o 1 (a) V2" =0 8 - (b) 13 00 1 (c) 27" + ท แ1

Answers

Question A series is divereges.

Question B series is converges.

Question C series is diverges.

(a) ∑(n=0 to ∞) 2^n

This series represents a geometric series with a common ratio of 2. To determine if it converges or diverges, we can use the geometric series test. The geometric series converges if the absolute value of the common ratio is less than 1.

In this case, the common ratio is 2, and its absolute value is greater than 1. Therefore, the series diverges.

(b) ∑(n=1 to ∞) 1/(3^n)

This series represents a geometric series with a common ratio of 1/3. Applying the geometric series test, we find that the absolute value of the common ratio, 1/3, is less than 1. Hence, the series converges.

(c) ∑(n=1 to ∞) 27^n + (-1)^n

This series involves alternating terms with an exponential term and a factor of (-1)^n. The alternating series test can be used to determine its convergence. For an alternating series to converge, three conditions must be satisfied:

The terms alternate in sign.

The absolute value of each term is decreasing.

The limit of the absolute value of the terms approaches zero.

In this case, the terms alternate in sign due to the (-1)^n factor, and the absolute value of each term increases as n increases since 27^n grows exponentially. As a result, the absolute value of the terms does not approach zero, violating the third condition of the alternating series test. Therefore, the series diverges.

Learn more about Ratio:https://brainly.com/question/12024093

#SPJ11

Three students were given the following problem: f dx =, make out the actual question. However, we do know that Shannon's answer was sin? x + C, answer was – cos? x + C and Joe's answer was – sin x + C. Two of these students got the answer right. One got it wrong. What was the original question, and who got the answer wrong?

Answers

The original question was to find the antiderivative of f dx. Shannon's answer of [tex]$\sin{x}+C$[/tex] and Anne's answer of [tex]$-\cos{x}+C$[/tex] are both correct, while Joe's answer of [tex]$-\sin{x}+C$[/tex] is incorrect.

In calculus, finding the antiderivative or integral of a function involves determining a function whose derivative is equal to the given function. The integral is denoted by the symbol [tex]$\int$[/tex]. In this case, the question can be written as [tex]$\int f \, dx$[/tex].

Shannon correctly found the antiderivative by recognizing that the derivative of [tex]$\sin{x}$[/tex] is [tex]$-\cos{x}$[/tex]. Hence, her answer of [tex]$\sin{x}+C$[/tex] is correct, where C is the constant of integration. Anne also found the correct antiderivative by recognizing that the derivative of [tex]$-\cos{x}$[/tex] is [tex]$\sin{x}$[/tex]. Thus, her answer of [tex]$-\cos{x}+C$[/tex] is also correct.

On the other hand, Joe's answer of [tex]$-\sin{x}+C$[/tex] is incorrect. The derivative of [tex]$-\sin{x}$[/tex] is actually [tex]$-\cos{x}$[/tex], not [tex]$\sin{x}$[/tex]. Therefore, Joe got the answer wrong.

To learn more about antiderivative refer:

https://brainly.com/question/30637368

#SPJ11

True or False:
In a right triangle, if two acute angles are known, then the triangle can be solved.
A. False, because the missing side can be found using the Pythagorean Theorem, but the angles cannot be found.
B. True, because the missing side can be found using the complementary angle theorem.
C. False, because solving a right triangle requires knowing one of the acute angles A or B and a side, or else two sides.
D. True, because the missing side can be found using the Pythagorean Theorem and all the angles can be found using trigonometric functions.

Answers

C. False, because solving a right triangle requires knowing one of the acute angles A or B and a side, or else two sides.

In a right triangle, if one acute angle and a side are known, then the other acute angle and the remaining sides can be found using trigonometric functions or the Pythagorean Theorem.

A right triangle is a three-sided geometric figure having a right angle that is exactly 90 degrees. The intersection of the two shorter sides—known as the legs—and the longest side—known as the hypotenuse—opposite the right angle—creates this angle. A key idea in right triangles is the Pythagorean theorem, which states that the square of the hypotenuse is equal to the sum of the squares of the other two sides. Right triangles can have their unknown side lengths or angles calculated using this theorem. Right triangles are a crucial mathematical subject because of its numerous applications in geometry, trigonometry, and everyday life.

Learn more about right triangle here:

https://brainly.com/question/30966657

#SPJ11

Make up derivative questions which meet the following criteria. Then take the derivative. Do not simplify your answers 1. An equation which uses quotient rule involving a trig ratio and exponential (not base e) and the chain rule used exactly twice. 2. An equation which uses product ule involving a trig ratio and an exponential (base e permitted). The chain rule must be used for each of the trig ratio and exponential 3. An equation with a trio ratlo as both the outside and inside operation 4. An equation with a trig ratio as the inside operation, and the chain rule used exactly once 5. An equation with three terms the first term has basee, the second has an exponential base (note) and the last is a trigratio. Each of the terms should have a chain application,

Answers

The derivative questions that meet the given criteria:

1. [tex]f(x) = (sin(x) + e^{(2x)})/(cos(x) + e^{(3x)})[/tex]

2. [tex]g(x) = sin(x) * e^{(2x)}[/tex]

3.  [tex]h(x) = sin^2{(x)}[/tex]

4. i(x) = [tex]cos(e^{(x)})[/tex]

5.  [tex]j(x) = e^{x} + e^{(2x)} + sin(x)[/tex]

How to find an equation which uses quotient rule involving a trig ratio and exponential?

Here are derivative questions that meet the given criteria:

1. Find the derivative of [tex]f(x) = (sin(x) + e^{(2x)})/(cos(x) + e^{(3x)})[/tex]

1. f'(x) = [tex][(cos(x) + e^{(3x)})(sin(x) + e^{(2x)})' - (sin(x) + e^{(2x)})(cos(x) + e^{(3x)})']/(cos(x) + e^{(3x)})^2[/tex]

How to find an equation which uses product rule involving a trig ratio and an exponential?

2. Find the derivative of[tex]g(x) = sin(x) * e^{(2x)}[/tex]

g'(x) = [tex](sin(x) * e^{(2x)})' + (e^{(2x)} * sin(x))'[/tex]

How to find an equation with a trio ratio as both the outside and inside operation?

3. Find the derivative of [tex]h(x) = sin^2{(x)}[/tex]

[tex]h'(x) = (sin^2{(x)])'[/tex]

How to find an equation with a trig ratio as the inside operation, and the chain rule used exactly once?

4. Find the derivative of i(x) = [tex]cos(e^{(x)})[/tex]

[tex]i'(x) = (cos(e^{(x))})'[/tex]

How to find an equation with three terms the first term has base?

5. Find the derivative of [tex]j(x) = e^{x} + e^{(2x)} + sin(x)[/tex]

j'(x) =[tex](e^x + e^{(2x)} + sin(x))'[/tex]

[tex](e^x + e^{(2x)} + sin(x))'[/tex]

The answers provided above are the derivatives of the given functions based on the specified criteria, and they are not simplified.

Learn more about derivative

brainly.com/question/29144258

#SPJ11

The derivative of f(x) is the function f(x +h)-f(1) f'(x) = lim · (3 points) Find the formula for the derivative f'(x) of f(x) = (2x + 1) using the definition of derivative.

Answers

The formula for the derivative[tex]f'(x) of f(x) = (2x + 1)[/tex]can be found using the definition of the derivative.

The definition of the derivative states that f'(x) is equal to the limit as h approaches[tex]0 of (f(x + h) - f(x))/h.[/tex]

To find the derivative of[tex]f(x) = (2x + 1)[/tex], we substitute the function into the definition:

[tex]f'(x) = lim(h→0) [(2(x + h) + 1 - (2x + 1))/h][/tex]

Simplifying the expression inside the limit, we get:

[tex]f'(x) = lim(h→0) [2h/h][/tex]

Cancelling out h, we have:

[tex]f'(x) = lim(h→0) 2[/tex]

Since the limit does not depend on x, the derivative[tex]f'(x) of f(x) = (2x + 1)[/tex]is simply 2. Therefore, the formula for the derivative is [tex]f'(x) = 2.[/tex]

Learn more about the definition of derivative here:

https://brainly.com/question/30401596

#SPJ11

solve please
nortean h f + lis (x² + 2x))) Question 4.1. y = 6 x ³ + 4 3 x2

Answers

To solve the equation y = 6x³ + 4/3x², we can set it equal to zero and then apply algebraic techniques to find the values of x that satisfy the equation.

Setting y = 6x³ + 4/3x² equal to zero, we have 6x³ + 4/3x² = 0. To simplify the equation, we can factor out the common term x², resulting in x²(6x + 4/3) = 0. Now, we have two factors: x² = 0 and 6x + 4/3 = 0. For the first factor, x² = 0, we know that the only solution is x = 0. For the second factor, 6x + 4/3 = 0, we can solve for x by subtracting 4/3 from both sides and then dividing by 6. This gives us x = -4/18, which simplifies to x = -2/9. Therefore, the solutions to the equation y = 6x³ + 4/3x² are x = 0 and x = -2/9.

Learn more about algebraic techniques here:

https://brainly.com/question/28684985

#SPJ11

8- Find the critical values and determine their nature (minimum or maximum) for 2x5 f(x): 5x³ 5 4 =

Answers

We are given the function f(x) = 5x^3 + 5x^4 and need to find the critical values and determine their nature (minimum or maximum). To find the critical values, we calculate the derivative of f(x), set it equal to zero, and solve for x. Next, we determine the nature of the critical points by analyzing the second derivative.

First, we find the derivative of f(x) with respect to x. Taking the derivative, we get f'(x) = 15x^2 + 20x^3.

Next, we set f'(x) equal to zero and solve for x to find the critical values. Setting 15x^2 + 20x^3 = 0, we can factor out x^2 to get x^2(15 + 20x) = 0. This equation is satisfied when x = 0 or when 15 + 20x = 0, which gives x = -15/20 or x = -3/4.

To determine the nature of the critical points, we calculate the second derivative f''(x) of the function. Taking the second derivative, we get f''(x) = 30x + 60x^2.

Substituting the critical values into the second derivative, we find that f''(0) = 0 and f''(-15/20) = -27, while f''(-3/4) = 12.

Based on the second derivative test, when f''(x) > 0, it indicates a minimum point, and when f''(x) < 0, it indicates a maximum point. In this case, since f''(-3/4) = 12 > 0, it corresponds to a local minimum.

Therefore, the critical value x = -3/4 corresponds to a local minimum for the function f(x) = 5x^3 + 5x^4.

To learn more about critical value : brainly.com/question/31213260

#SPJ11

1. Derivative of y = 14 is: a) 0 b) 1 2. Derivative of f(x) = -9x +4 is: a) 9 b) -9 3. Derivative of g(x)=2x + x²-7x²+3 a) 6x² + x² - 7x True or False: 12 Marks] c) 14 d) Undefined c) 4 d) 0 b) 12

Answers

The derivatives of the given functions are as follows:

1. The derivative of y = 14 is 0.

2. The derivative of f(x) = -9x + 4 is -9.

3. The derivative of g(x) = 2x + x² - 7x² + 3 is 6x² + x² - 7x.

1. The derivative of a constant function is always 0 since the slope of a horizontal line is 0. Therefore, the derivative of y = 14 is 0.

2. To find the derivative of f(x) = -9x + 4, we apply the power rule, which states that the derivative of x^n is n*x^(n-1). In this case, the derivative of -9x is -9, and the derivative of 4 is 0. Thus, the derivative of f(x) = -9x + 4 is -9.

3. The derivative of g(x) = 2x + x² - 7x² + 3 can be found by applying the power rule to each term. The derivative of 2x is 2, the derivative of x² is 2x, the derivative of -7x² is -14x, and the derivative of 3 is 0. Combining these derivatives, we get 2 + 2x - 14x + 0, which simplifies to 6x² + x² - 7x. Therefore, the derivative of g(x) is 6x² + x² - 7x.

In summary, the derivatives of the given functions are:

1. y = 14: 0

2. f(x) = -9x + 4: -9

3. g(x) = 2x + x² - 7x² + 3: 6x² + x² - 7x.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Let A be an n x n matrix such that A^2 = 0. Prove that if B is similar to A, then B
Let B be similar to A, B = P^-1 AP. Then we have the following.
B^2 = (P^-1 AP)^2

Answers

If matrix A satisfies [tex]A^2[/tex] = 0 and matrix B is similar to A, then [tex]B^2[/tex] = 0 because similar matrices have the same eigenvalues and eigenvectors.

The proof begins by considering a matrix B that is similar to matrix A, where B = [tex]P^{(-1)}AP[/tex]. The goal is to show that if [tex]A^2[/tex]= 0, then [tex]B^2[/tex] = 0 as well. To prove this, we can start by expanding [tex]B^2[/tex]:

[tex]B^2 = (P^{(-1)}AP)(P^{(-1)}AP)[/tex]

Using the associative property of matrix multiplication, we can rearrange the terms:

[tex]B^2 = P^{(-1)}A(PP^{(-1)}AP[/tex]

Since [tex]P^{(-1)}P[/tex] is equal to the identity matrix I, we have:

[tex]B^2 = P^{(-1)}AIA^{(-1)}AP[/tex]

Simplifying further, we get:

[tex]B^2 = P^{(-1)}AA^{(-1)}AP[/tex]

Since [tex]A^2[/tex] = 0, we can substitute it in the equation:

[tex]B^2 = P^{(-1)}0AP[/tex]

The zero matrix multiplied by any matrix is always the zero matrix:

[tex]B^2[/tex] = 0

Therefore, we have shown that if [tex]A^2[/tex] = 0, then [tex]B^2[/tex] = 0 for any matrix B that is similar to A.

Learn more about matrix here:

https://brainly.com/question/28180105

#SPJ11


(10 pt) During a flu epidemic, the number of children in a school district who contracted influenza after t days is given by ( ) = 52000.0581 a) How many children had contracted influenza after six da

Answers

a) After six days, the number of children who contracted influenza can be calculated by substituting t = 6 into the given function. The number of children infected after six days is approximately 52000.0581.

The function ( ) = 52000.0581 represents the number of children in a school district who contracted influenza after t days during a flu epidemic. By substituting t = 6 into the function, we can find the specific number of children infected after six days. The result, approximately 52000.0581, represents an estimate of the number of children who contracted influenza based on the given function.

It's important to note that the answer is an approximation because the function is likely a mathematical model that provides an estimate rather than an exact count of the number of children infected. The function could be based on various factors such as the rate of infection, population density, and other relevant variables. The decimal fraction suggests a fractional number of children infected, which further reinforces the idea that the result is an estimation rather than a precise count.

Learn more about approximation here: brainly.com/question/29669607

#SPJ11

amanda is making a special gelatin dessert for the garden club meeting. she plans to fill a large flower-pot-shaped mold with 12 ounces of gelatin. she wants to use the rest of the gelatin to fill small daisy-shaped molds. each daisy-shaped mold holds 3 ounces, and the package of gelatin she bought makes 60 ounces in all. which equation can you use to find how many daisy-shaped molds, x, amanda can fill? wonderful!

Answers

Amanda can fill 16 daisy-shaped molds with the remaining gelatin.

To determine how many daisy-shaped molds Amanda can fill with the remaining gelatin, we can use the equation x = (60 - 12) / 3, where x represents the number of daisy-shaped molds.

Amanda plans to fill a large flower-pot-shaped mold with 12 ounces of gelatin, leaving her with the remaining amount to fill the daisy-shaped molds. The total amount of gelatin in the package she bought is 60 ounces. To find out how many daisy-shaped molds she can fill, we need to subtract the amount used for the large mold from the total amount of gelatin. Thus, (60 - 12) gives us the remaining gelatin available for the daisy-shaped molds, which is 48 ounces.

Since each daisy-shaped mold holds 3 ounces, we can divide the remaining gelatin by the capacity of each mold. Therefore, we divide 48 ounces by 3 ounces per mold, resulting in x = 16. This means that Amanda can fill 16 daisy-shaped molds with the remaining gelatin.

Learn more about equations here:

https://brainly.com/question/29657983

#SPJ11

the probability of winning on a slot machine game is 0.152. if you play the slot machine until you win for the first time, what is the expected number of games it will take?

Answers

The expected number of games it will take to win on a slot machine game with a probability of winning of 0.152 is approximately 6.579 games.

The expected number of games can be calculated using the formula for the expected value of a geometric distribution. In this case, the probability of winning on each game is 0.152.

The expected number of games is calculated as the reciprocal of the probability of winning. Therefore, the expected number of games is 1 divided by 0.152, which is approximately 6.579.

This means that on average, it is expected to take approximately 6.579 games to win on the slot machine. However, it's important to note that this is an average value and individual experiences may vary. Some players may win on their first few games, while others may take more games to win. Nonetheless, on average, it is expected to take approximately 6.579 games to achieve a win.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

work out the binomial expansion including and up to x^2 of 1/(4+4x+x^2)

Answers

The  binomial expansion of (1/(4+4x+x²))² up to x² is:

(1/(4+4x+x²))² = 1 + 2/(4+4x+x²) + 1/(4+4x+x²)²

To expand the expression (1/(4+4x+x²))² up to x², we can use the binomial expansion formula:

(1 + x)ⁿ = 1 + nx + (n(n-1)/2!)x² + ...

In this case, we have n = 2 and x = (1/(4+4x+x^2)). Therefore, we substitute these values into the formula:

(1/(4+4x+x^2))² = 1 + 2(1/(4+4x+x²)) + 2(2-1)/(2!)²

(1/(4+4x+x²))² = 1 + 2/(4+4x+x²) + 1/(4+4x+x²)²

So, the binomial expansion of (1/(4+4x+x²))² up to x² is:

(1/(4+4x+x²))² = 1 + 2/(4+4x+x²) + 1/(4+4x+x²)²

Learn more about Binomial Expansion here:

https://brainly.com/question/31363254

#SPJ1

what is the volume of a cylinder, in cubic m, with a height of 18m and a base diameter of 12m? round to the nearest tenths place.

Answers

The volume of the cylinder with a height of 18m and a base diameter of 12m is approximately 1940.4 cubic meters, rounded to the nearest tenths place. It is important to remember to use the correct formula and units when calculating the volume of a cylinder.


The volume of a cylinder can be calculated using the formula V=πr²h, where r is the radius of the base and h is the height of the cylinder.

The diameter of the base is given as 12m, which means the radius would be half of that, or 6m. Substituting these values in the formula, we get V=π(6)²(18), which simplifies to V=1940.4 cubic meters.


To find the volume of a cylinder, we need to know its height and the diameter of its base. In this case, the height is given as 18m and the base diameter as 12m.

We can calculate the radius of the base by dividing the diameter by 2, which gives us 6m.

Using the formula V=πr²h, we can substitute these values to get the volume of the cylinder. After simplification, we get a volume of 1940.4 cubic meters, rounded to the nearest tenths place. Therefore, the volume of the cylinder with a height of 18m and a base diameter of 12m is approximately 1940.4 cubic meters.


The volume of a cylinder can be calculated using the formula V=πr²h, where r is the radius of the base and h is the height of the cylinder. In this case, the volume of the cylinder with a height of 18m and a base diameter of 12m is approximately 1940.4 cubic meters, rounded to the nearest tenths place. It is important to remember to use the correct formula and units when calculating the volume of a cylinder.

To know more about volume visit:

brainly.com/question/28058531

#SPJ11

Find the number of independent components of an antisymmetric tensor of rank 2 in n dimensions

Answers

An antisymmetric tensor of rank 2 in n dimensions has n choose 2 (or n(n-1)/2) components since the indices must be distinct and the tensor is antisymmetric.

To find the number of independent components, we can use the fact that an antisymmetric tensor satisfies the condition that switching any two indices changes the sign of the tensor. This means that if we choose a set of n linearly independent vectors as a basis, we can construct the tensor by taking the exterior product (wedge product) of any two of them. Since the wedge product is antisymmetric, we only need to consider the set of distinct pairs of basis vectors. This set has n choose 2 elements, so the number of independent components of the antisymmetric tensor of rank 2 is also n choose 2.

To know more about the antisymmetric tensor, click here;

https://brainly.com/question/31425841

#SPJ11

The following data represent the flight time (in minutes) of a random sample of seven flights from one city to another.
287 270 260 266 257 264 258
Compute the range and sample standard deviation of flight time.

Answers

The range of the flight time data is 30 minutes, and the sample standard deviation is approximately 10.03 minutes.

To compute the range and sample standard deviation of the flight time data, we will follow these steps:

Calculate the range:

The range is the difference between the largest and the smallest values in the dataset.

In this case, the largest value is 287, and the smallest value is 257.

Range = 287 - 257 = 30.

Calculate the sample mean (average):

To compute the sample mean, we sum up all the values and divide by the number of observations.

Sum of the values = 287 + 270 + 260 + 266 + 257 + 264 + 258 = 1862.

Number of observations = 7.

Sample mean = 1862 / 7 ≈ 265.86 (rounded to two decimal places).

Calculate the deviations:

The deviation of each data point is the difference between that data point and the sample mean.

Deviation for each data point: (287 - 265.86), (270 - 265.86), (260 - 265.86), (266 - 265.86), (257 - 265.86), (264 - 265.86), (258 - 265.86).

Calculate the sum of squared deviations:

Square each deviation and sum up the squared deviations.

Sum of squared deviations = (287 - 265.86)^2 + (270 - 265.86)^2 + (260 - 265.86)^2 + (266 - 265.86)^2 + (257 - 265.86)^2 + (264 - 265.86)^2 + (258 - 265.86)^2.

Calculate the sample variance:

The sample variance is the sum of squared deviations divided by (n-1), where n is the number of observations.

Sample variance = Sum of squared deviations / (n-1).

Calculate the sample standard deviation:

The sample standard deviation is the square root of the sample variance.

Sample standard deviation = sqrt(sample variance).

Performing these calculations, we find:

Range = 30

Sample standard deviation ≈ 10.03 (rounded to two decimal places).

To know more about sample standard deviation,

https://brainly.com/question/14772466

#SPJ11

(8 points) Find the volume of the solid in R3 bounded by y = x², x = y2, z = x + y + 9, and z = 0. X= = V=

Answers

The volume of the solid bounded by the given surfaces is 49/30 cubic units.

To find the volume of the solid bounded by the given surfaces, we need to determine the limits of integration for each variable. Let's analyze the given surfaces one by one.

The curve y = x²:

Since x = y² is another bounding surface, we can find the limits of integration by solving the system of equations y = x² and x = y².

Substituting x = y² into y = x², we get:

y = (y²)²

y = y⁴

y⁴ - y = 0

y(y³ - 1) = 0

This equation has two solutions: y = 0 and y = 1.

The curve x = y²:

Substituting x = y² into z = x + y + 4, we have:

z = y² + y + 4

Now we need to find the limits of integration for y. For that, we consider the region between the curves y = 0 and y = 1.

The limits of integration for y are 0 and 1.

The surface z = 0:

This surface represents the xy-plane and acts as the lower bound for the volume.

Therefore, the limits of integration for z are 0 and z = y² + y + 4.

To calculate the volume, we integrate the constant 1 with respect to x, y, and z over the given bounds:

V = ∫∫∫ dV

V = ∫[0,1]∫[0,y²]∫[0,y²+y+4] dz dx dy

V = ∫[0,1] (y² + y + 4 - 0) [y²] dy

V = ∫[0,1] (y⁴ + y³ + 4y²) dy

V = (1/5)y⁵ + (1/4)y⁴ + (4/3)y³ |[0,1]

V = (1/5)(1)⁵ + (1/4)(1)⁴ + (4/3)(1)³ - (1/5)(0)⁵ - (1/4)(0)⁴ - (4/3)(0)³

V = 1/5 + 1/4 + 4/3

V = 3/60 + 15/60 + 80/60

V = 98/60

Simplifying the fraction, we get:

V = 49/30

Therefore, the volume of the solid bounded by the given surfaces is 49/30 cubic units.

Incomplete question:

Find the volume of the solid in R3 bounded by y = x², x = y², z = x + y + 4, and z = 0.

To know more about volume check the below link:

https://brainly.com/question/14197390

#SPJ4

In her geology class, Nora learned that quartz is found naturally in a variety of colors. Nora's teacher has a giant box of colorful quartz pieces that he and his students have collected over the years. Nora picks a piece of quartz out of the box, records the color, and places it back in the box. She does this 18 times and gets 3 purple, 2 yellow, 5 white, and 8 pink quartz pieces.

Answers

Nora's 18-piece sample from the box of colorful quartz yielded 3 purple, 2 yellow, 5 white, and 8 pink pieces. The estimated relative frequencies indicate that pink quartz is the most common color in the box.

Nora's sample of 18 pieces of quartz from the box yielded the following results:

3 purple pieces

2 yellow pieces

5 white pieces

8 pink pieces

From this sample, we can calculate the relative frequencies of each color. The relative frequency is obtained by dividing the number of occurrences of a particular color by the total number of pieces in the sample. Let's calculate the relative frequencies for each color:

Purple: 3/18 = 1/6 ≈ 0.167 or 16.7%

Yellow: 2/18 = 1/9 ≈ 0.111 or 11.1%

White: 5/18 ≈ 0.278 or 27.8%

Pink: 8/18 ≈ 0.444 or 44.4%

These relative frequencies give us an estimate of the probabilities of selecting a quartz piece of each color from the box, assuming the sample is representative of the entire collection.

Based on the sample, we can infer that pink quartz appears to be the most common color, followed by white, purple, and yellow. However, we should note that this inference is based solely on the limited sample of 18 pieces and may not accurately reflect the overall distribution of colors in the entire box of quartz. To make more precise conclusions about the color distribution in the box, a larger and more representative sample would be necessary.

for such more question on frequencies

https://brainly.com/question/26754018

#SPJ8

In order to conduct a chi-square test, I need to have a measure of: A The mean of the variables of interest B. The frequency distribution of the variables of interest C. The variance of the variables of interest D. The mean and the variance of the variables of interest

Answers

you should know the observed frequencies or counts for different categories or levels of the variable you are examining. Therefore, the correct answer is B.

The chi-square test is a statistical test used to determine if there is a significant association between categorical variables. It compares the observed frequencies in each category to the expected frequencies, assuming there is no association or difference between the variables. By comparing the observed and expected frequencies, the test calculates a chi-square statistic, which follows a chi-square distribution.

In order to calculate the expected frequencies, you need to have the frequency distribution of the variables of interest. This means knowing the counts or frequencies for each category or level of the variable. The test then compares the observed frequencies with the expected frequencies to determine if there is a significant difference.

The mean, variance, and other measures of central tendency and dispersion are not directly involved in the chi-square test. Instead, the focus is on comparing observed and expected frequencies to test for associations or differences between categorical variables.

learn more about chi-square test here:

https://brainly.com/question/30760432

#SPJ11

f(x+h)-f(x) h occur frequently in calculus. Evaluate this limit for the given value of x and function f. *** Limits of the form lim h-0 f(x)=x², x= -8 The value of the limit is. (Simplify your answer

Answers

The limit of the expression (f(x+h) - f(x))/h as h approaches 0, where f(x) = x² and x = -8, is 16.

In this problem, we are given the function f(x) = x² and the value x = -8. We need to evaluate the limit of the expression (f(x+h) - f(x))/h as h approaches 0.

To do this, we substitute the given values into the expression:

(f(x+h) - f(x))/h = (f(-8+h) - f(-8))/h

Next, we evaluate the function f(x) = x² at the given values:

f(-8) = (-8)² = 64

f(-8+h) = (-8+h)² = (h-8)² = h² - 16h + 64

Substituting these values back into the expression:

(f(-8+h) - f(-8))/h = (h² - 16h + 64 - 64)/h = (h² - 16h)/h = h - 16

Finally, we take the limit as h approaches 0:

lim h→0 (h - 16) = -16

Therefore, the value of the limit is -16.

Learn more about limit of the expression :

https://brainly.com/question/20405934

#SPJ11











2. DETAILS SCALCET9 6.2.013.EP. Consider the solid obtained by rotating the region bounded by the given curves about the specified line. y = x-1, y=0, x= 5; about the x-axis Set up an integral that ca

Answers

The integral to calculate the volume of the solid obtained by rotating the region bounded by[tex]y = x - 1, y = 0[/tex], and x = 5 about the x-axis can be set up as follows:

[tex]∫[0 to 5] π*(y^2) dx[/tex]

In this integral, [tex]π*(y^2)[/tex]represents the area of a circular disc at each value of x, and the integration is performed over the interval [0, 5] to cover the entire region of interest. The height (y) of the disc is given by the difference between the functions y = x - 1 and y = 0.

To find the volume of the solid, we need to integrate the areas of the circular discs formed by rotating the region bounded by the given curves around the x-axis. The differential volume element of each disc is a cylindrical shell with radius y and thickness dx.

Since we are rotating around the x-axis, the radius of each disc is given by y, which is the distance from the curve y = x - 1 to the x-axis. The area of each disc is given by [tex]π*(y^2).[/tex]

By integrating[tex]π*(y^2[/tex]) with respect to x over the interval [0, 5], we sum up the volumes of all the cylindrical shells to obtain the total volume of the solid. The integral calculates the volume slice by slice along the x-axis, adding up the contributions from each disc.

Learn more about volume  here:

https://brainly.com/question/28058531

#SPJ11

Suppose 3/₁ = t¹y₁ + 5y2 + sec(t), sin(t)y₁+ty2 - 2. Y₂ = This system of linear differential equations can be put in the form y' = P(t)y + g(t). Determine P(t) and g(t). P(t) = g(t) =

Answers

P(t) is the coefficient matrix A(t) and g(t) is the vector of additional terms G(t): P(t) = A(t) = [t⁴, 5; sin(t), t], and g(t) = G(t) = [sec(t), -2]. These expressions allow us to represent the system of differential equations in the desired form.

To determine P(t) and g(t) for the given system of linear differential equations, we need to express the system in the form y' = P(t)y + g(t).

Comparing the given system of equations:

y'₁ = t⁴y₁ + 5y₂ + sec(t),

y'₂ = sin(t)y₁ + ty₂ - 2.

We can write the system in matrix form as:

Y' = A(t)Y + G(t),

where Y = [y₁, y₂] is the column vector of the unknown functions, Y' = [y'₁, y'₂] is the derivative of Y, A(t) is the coefficient matrix, and G(t) is the vector of additional terms.

From the given equations, we can see that the coefficient matrix A(t) is:

A(t) = [t⁴, 5; sin(t), t].

And the vector of additional terms G(t) is:

G(t) = [sec(t), -2].

Therefore, P(t) is the coefficient matrix A(t) and g(t) is the vector of additional terms G(t):

P(t) = A(t) = [t⁴, 5; sin(t), t],

g(t) = G(t) = [sec(t), -2].

In conclusion, by comparing the given system of equations with the form y' = P(t)y + g(t), we can determine the coefficient matrix P(t) and the vector of additional terms g(t). These expressions allow us to represent the system of differential equations in the desired form.

To know more about vector refer here:

https://brainly.com/question/29740341#

#SPJ11

Complete Question:

Suppose y'₁ = t⁴y₁ + 5y₂ + sec(t), y'₂ = sin(t)y₁ + ty₂ - 2.

This system of linear differential equations can be put in the form y' = P(t)y + g(t). Determine P(t) and g(t).

find the area of the region covered by points on the lines, x/a + y/b =1
where the sum of any lines intercepts on the coordinate axes is fixed and equal to c

Answers

The area of the region covered by points on the lines x/a + y/b = 1, where the sum of intercepts on the coordinate axes is fixed at c, can be found by integrating a specific equation and considering all possible intercept values.

To find the area of the region covered by points on the lines x/a + y/b = 1, where the sum of any line's intercepts on the coordinate axes is fixed and equal to c, we can start by rewriting the equation in terms of the intercepts.

Let the x-intercept be denoted as x0 and the y-intercept as y0. The coordinates of the x-intercept are (x0, 0), and the coordinates of the y-intercept are (0, y0). Since the sum of these intercepts is fixed and equal to c, we have x0 + y0 = c.

Solving the equation x/a + y/b = 1 for y, we get y = b - (bx0)/a.

To find the area covered by the points on this line, we can integrate y with respect to x over the range from 0 to x0. Thus, the area A(x0) covered by this line is:

A(x0) = ∫[0, x0] (b - (bx)/a) dx.

Evaluating the integral, we have:

A(x0) = b * x0 - (b^2 * x0^2) / (2a).

To find the total area covered by all possible lines, we need to consider all possible x-intercepts (x0) that satisfy x0 + y0 = c. This means the range of x0 is from 0 to c, and for each x0, the corresponding y0 is c - x0.

The total area covered by the region is obtained by integrating A(x0) over the range from 0 to c:

Area = ∫[0, c] (b * x0 - (b^2 * x0^2) / (2a)) dx0.

Evaluating this integral will give you the area of the region covered by the points on the lines.

To know more about equation,

https://brainly.com/question/12837837

#SPJ11




335 200 For the demand function q = D(P) = find the following (p+3) a) The elasticity b) The elasticity at p= 8, stating whether the demand is elastic, inelastic or has unit elasticity c) The value(s)

Answers

a) The elasticity of demand function q = D(P + 3) is given by ε = D'(P) * (P / D(P)), where D'(P) denotes the derivative of D(P) with respect to P.

b) To calculate the elasticity at P = 8, substitute P = 8 into the elasticity formula and determine whether the demand is elastic, inelastic, or has unit elasticity based on the value of ε.

c) The specific value(s) of elasticity can be obtained by substituting P + 3 into the elasticity formula.

Determine the value of elasticity?

a) The elasticity of demand measures the responsiveness of the quantity demanded to changes in price. In this case, the demand function q = D(P + 3) suggests that the quantity demanded is a function of the price plus three.

The elasticity formula ε = D'(P) * (P / D(P)) calculates the elasticity by taking the derivative of D(P) with respect to P and multiplying it by the ratio of P to D(P).

b) To find the elasticity at P = 8, substitute P = 8 into the elasticity formula obtained in step a.

The resulting value of ε will indicate whether the demand is elastic (ε > 1), inelastic (ε < 1), or has unit elasticity (ε = 1).

This classification depends on the magnitude of the elasticity value.

c) The specific value(s) of elasticity can be determined by substituting P + 3 into the elasticity formula derived in step a.

This will yield the numerical value(s) that represent the elasticity of demand for the given demand function.

To know more about magnitude, refer here:

https://brainly.com/question/31022175#

#SPJ4


urgent!!!!
need help solving 20,21
thank you
20. Find a value for k so that (2,7) and (k, 4) will be orthogonal. 21. Find a value for k so that (-3,5) and (2,k) will be orthogonal. a

Answers

20. There is no value of k that makes the points (2,7) and (k,4) orthogonal.

21. The value of k that makes the points (-3,5) and (2,k) orthogonal is k = 5.

20. To find a value for k such that the given pairs of points are orthogonal, we need to determine if the dot product of the vectors formed by the pairs of points is equal to zero.

Given points (2,7) and (k,4):

The vector between the two points is v = (k - 2, 4 - 7) = (k - 2, -3).

For the vectors to be orthogonal, their dot product should be zero:

(v1) dot (v2) = (k - 2) × 0 + (-3) × 1 = -3.

Since the dot product is equal to -3, we need to find a value of k that satisfies this equation. Setting -3 equal to zero, we have:

-3 = 0.

There is no value of k that satisfies this equation, which means that there is no value for k that makes the points (2,7) and (k,4) orthogonal.

Given points (-3,5) and (2,k):

The vector between the two points is v = (2 - (-3), k - 5) = (5, k - 5).

21. For the vectors to be orthogonal, their dot product should be zero:

(v1) dot (v2) = 5 × 0 + (k - 5) × 1 = k - 5.

To make the vectors orthogonal, we need the dot product to be zero. Therefore, we set k - 5 equal to zero:

k - 5 = 0.

Solving for k, we have:

k = 5.

The value of k that makes the points (-3,5) and (2,k) orthogonal is k = 5.

Learn more about the orthogonal at

https://brainly.com/question/32196772

#SPJ4

Similiar shapes area


Answers

the sides of similar rectangle are proportional

5/8 = 15/A

A = 24

Area of K = 15×24 = 360cm²

H and K is similar. You can see that H has been enlarged to get K.

This one, you need to find the scale factor of the enlargement (how much its been enlarged by)

To find this all you need to do is find how much one of the sides have been enlarged by, in shape H the top angle 5cm turned into 15cm. This means the scale factor is 3, because 5 x 3 is 15.

Do this for 8 to find the side of shape K.

8 x 3 = 24

Now use the formula base x height to find the area of the rectangle K.

base = 15 (top and base of a rectangle are the same)

height = 24cm

area = 15 x 24 = 360cm²

Area = 360cm²

A land parcel has topographic contour of an area can be mathematically
represented by the following equation:
2 = 0.5x4 + xIny + 2cosx For earthwork purpose, the landowner needs to know the contour
slope with respect to each independent variables of the contour.
Determine the slope equations.
(if)
Compute the contour slopes in x and y at the point (2, 3).

Answers

The contour slopes in x and y at the point (2, 3) are -17.065 and -0.667, respectively.

Contour lines or contour isolines are points on a contour map that display the surface elevation relative to a reference level.

To identify the contour slopes with regard to the independent variables of the contour, we'll need to determine the partial derivatives with respect to x and y.

The slope of a function is its derivative, which provides a measure of how steep the function is at a particular point.

Here's how to compute the slope of each independent variable of the contour:  

Partial derivative with respect to x:  2 = 0.5x4 + xlny + 2cosx

∂/∂x(2) = ∂/∂x(0.5x4 + xlny + 2cosx)

0 = 2x3 + ln(y)(1) - 2sin(x)(1)

0 = 2x3 + ln(y) - 2sin(x)

Slope equation for x:  ∂z/∂x = - (2x3 + ln(y) - 2sin(x))

Partial derivative with respect to y:  2 = 0.5x4 + xlny + 2cosx

∂/∂y(2) = ∂/∂y(0.5x4 + xlny + 2cosx)

0 = x(1/y)(1)

0 = x/y

Slope equation for y:  ∂z/∂y = - (x/y)

Compute the contour slopes in x and y at the point (2, 3):

To determine the contour slopes in x and y at the point (2, 3), substitute the values of x and y into the slope equations we derived earlier.

Slope equation for x:  ∂z/∂x = - (2x3 + ln(y) - 2sin(x))  

∂z/∂x = - (2(23) + ln(3) - 2sin(2))  

∂z/∂x = - (16 + 1.099 - 0.034)  

∂z/∂x = - 17.065

Slope equation for y:  ∂z/∂y = - (x/y)  

∂z/∂y = - (2/3)  

∂z/∂y = - 0.667

To learn more about slope click here https://brainly.com/question/3605446

#SPJ11

Other Questions
Consider the function. f(x) = x2 - 9, x > 3 (a) Find the inverse function of f. f-1(x) =.... What are the horizontal shift and period for the function y=2sin(3x-/3). Determine the interval on x and y showing the complete graph for one period You roll a standard six-sided die.if e is the event that an even number is thrown, which of the following events is e's complement?A. Response {1,2,3,4,5,6} initial set 1 point 2 point 3 point 4 point 5 point 6 B. final set {1,3,5} initial set 1 point 3 point 5 C. setfinal {2,4, 6} initial set 2 point 4 point 6 D. final set {1,2,3,5 The administration of oxygen and the application of spinal immobilization is part of which of the following for the EMT? A) Duty to act B) Standard of care C) Scope of practice D) None of the above Below is a list of 32-bit memory address references, given as word addresses.2, 3, 11, 16, 21, 13, 64, 48, 19, 11, 3, 22, 4, 27, 6, and 11a. Show the hits and misses and final cache contents for a two-way set-associative cache with one-word blocks and a total size of 16 words. Assume LRU replacement.Please provide detailed EXPLANATIONS!!! Step by step explanations of the formulas used and how you arrived at the solution. I need to understand how to arrive to the solution, so when I am given a similar problem I am able to solve it! Thanks! Grainger W.W. Inc sells computer equipment to a firm in Japan. The total price of computer equipment is 172,650 in U.S. dollars. Approximately, how much the firm in Japan will pay to Grainger W.W. Inc in Japanese yens if one unit of Japanese yen is currently equal to $0.01 (expressed as $/Japanese yen)? A particle moves in a circle in such a way that the x- and y-coordinates of its motion, given in meters as functions of time r in seconds, are: x = 5 cos(3t) y=5 sin(3t)What is the radius of the circle? (A) 3/5m (B) 2/5 m(C) 5 m(D) 10 m (E) 15 m . In one area of the rainforest, there are 5 different species of bats. Bat 1 has extra large ears and excellent hearing, bat 2 has a long snout, bat 3 has fanglike sharp teeth, bat 4 has sharp claws and bat 5 has extra large eyes. Most likely, these bats once belonged to the same species. 4. The ratio of the length of the corresponding side of tworegular polygons is 3:4. The area of the larger polygon is320 m. What is the area of the smaller polygon?A-240 mB-427 mC-569 mD-180 m massive hemorrhage can cause what type of acute kidney injury. T/F Questions Evaluate the following integrals: cos dx Vxsin (2) a) 65 Ladx Find the intervals on which the function increases and the intervals on which it decreases. Then use the first-derivative test to determine the location of each local extremum (state whether it is a maximum or minimum) and the value of the function at this extremum. Label your answers clearly.For (a), find exact values. For (b), round all values to 3 decimal places.f(x) = (5-x)/(x^2-16) g(x) = -2 + x^2e^(-.3x) assume both players have the same discount factor d, which is between 0 and 1.(a) what is the total payoff (sum of discounted payoffs in each period) each player gets if both players choose the strategy always c? what is the total payoff (sum of discounted payoffs in every period) each player gets if both players choose the strategy always d?(b) describe what a grim-trigger strategy is.(c) for what values of discount factor d , will the pair of grim-trigger strategies be a subgame perfect equilibrium? You are about to receive personal information from client as part of project execution.which of the following is most appropriate about international data transfers? (1) Evaluate the following integrals. +1 dr ( (b) S. (a) * cos' (In x) dx (c) sin(2x)e" dx (a) S JAYA =dx H (e secx tan xdx useex insert a clustered column pivot chart in the current worksheet Your boss asks you to review an option to lease an equipment storage facility that the firm needs. You are to compare it with the purchase of the facility. The following information are pertinent to your decision: - The facility will be needed for twelve years - If the facility is leased, the lessor will conduct all maintenance: if purchased, your firm must conduct maintenance - Facility maintenance is expected to cost $85000 per year - The cost to lease the facility is $800000 per year at the beginning of each year - The purchase price of the facility is $6000000 and the market value at the end of twelve years is expected to be $3000000 - The before-tax cost of debt is 8%, and the tax rate is 30% - The company's current EBIT is $1800000 (before leasing or purchasing the facility). Assuming that the facility has a twelve-year depreciation life for tax purposes (i.e. it can be fully depreciated over twelve-years), compute the NPV for each option and based on the cost, indicate your decision (round to nearest $1.000). why do sociologists of physical activity not use laboratories NEED HELP ASAP WILL GIVE BRAINLIEST HELP! Consider the following. y = -x + 3x (a) Find the critical numbers. (Enter your answers from smallest to largest. Enter NONE in any unused answer blanks. (smallest) (largest) (b) Find the open intervals on which the function is increasing or decreasing. (If you need to use co or-co, enter INFIN Increasing 7 Band? 0 7 B 0 Decreasing Band ? 7 ? 0 (c) Graph the function., Graph Layers After you add an object to the graph y can use Graph Layers to view and ed properties. No Solution Help -10 3 74 $2 20 19 18 17 16 MAS 44 43 12 46 40 a 19 14 3 6 4 4 3 12 4 4 Fill 10 WebAssign. Graphing Tool Steam Workshop Downloader