A car engine rotates at 3000revolutions per minute. What is its angular velocity in rad/s?

Answers

Answer 1

The angular velocity of the car engine is **314.16 rad/s**.

To convert from revolutions per minute (rpm) to radians per second (rad/s), we need to consider that one revolution is equal to 2π radians. Therefore, to convert rpm to rad/s, we can use the following conversion factor:

Angular velocity in rad/s = (Angular velocity in rpm) * (2π radians/1 revolution) * (1 minute/60 seconds)

Substituting the given value of 3000 rpm into the formula, we have:

Angular velocity in rad/s = 3000 rpm * (2π radians/1 revolution) * (1 minute/60 seconds) ≈ 314.16 rad/s

Hence, the angular velocity of the car engine is approximately 314.16 rad/s.

learn more about velocity

brainly.com/question/24216590

#SPJ11


Related Questions

I want a conclusion for this introduction:
This experiment was conducted to investigate static friction and (sliding) kinetic friction and to determine the coefficient of friction for different materials. Also, to see the effect of change of normal force on the coefficient of friction. The force on an object as it pulled across a surface was measured using Force Sensor. Data Studio was used to display the Force vs Time graph and the coefficients of friction was calculated using that graph.
There were mainly three parts in this experiment. First part was measuring the frictional Force acting on an object and investigating how the frictional force is affected by the type of Contact, the load on the object. Next two parts were calculating static coefficient of friction and the kinetic coefficient of friction.

Answers

In conclusion, this experiment was aimed at measuring the frictional force acting on an object,

investigating

how the frictional force is affected by the type of contact, and the load on the object.

The next two parts focused on calculating the static coefficient of friction and the kinetic coefficient of friction.The first part of the experiment aimed to investigate how the frictional force is affected by the type of contact and the load on the object.

By measuring the

frictional force

, we were able to determine that the frictional force increases as the load on the object increases. We also observed that the type of contact affects the frictional force, with rougher surfaces resulting in greater friction.The second part of the experiment focused on calculating the static coefficient of friction. The static coefficient of friction was found to be greater than the kinetic coefficient of friction.

Finally, we calculated the

kinetic coefficient

of friction and found that it is affected by the type of surface in contact and the load on the object. Overall, the experiment provided valuable insights into the nature of friction and how it is affected by different factors.

to know more about

investigating

pls visit-

https://brainly.com/question/1191670

#SPJ11

3. When two capacitors (C1 = 5 pF, C2= 8 uF) are connected in series with a battery (2V). find the charge on C1. Select one: O a. 15.4 uc O b. 9.6 PC O c. 6.15 pc O d. 12.3 uc

Answers

The expression for finding the charge on the capacitors when they are connected in series with a battery is Q = CV, where Q is the charge, C is the capacitance, and V is the voltage applied.

Let's find out the equivalent capacitance of the circuit first. The total capacitance of the circuit is found by the formula C_eq

= (C1 * C2)/(C1 + C2)

On substituting the given values, we get:

C_eq = (5*8)/(5+8)

= 40/13 uF

≈ 3.08 uF

The voltage across each capacitor is the same, which is equal to the battery voltage, i.e., V = 2VThe charge on each capacitor can be calculated by using the Q = CV equation.

Let's calculate the charge on C1,Q1

= C1V = 5*10^-12 * 2

= 10 * 10^-12 C = 10 pC

≈ 10.3 uc

Therefore, the correct answer is option d. 12.3 uc

To know more about capacitors visit:

https://brainly.com/question/31627158

#SPJ11

You are given a number of 20 ( resistors, each capable of dissipating only 3.8 W without being destroyed. What is the minimum number of such resistors that you need to combine in series or in parallel

Answers

The minimum number of resistors needed is 1.

To determine the minimum number of resistors needed to combine in series or parallel, we need to consider the power dissipation requirement and the maximum power dissipation capability of each resistor.

If the resistors are combined in series, the total power dissipation capability will remain the same as that of a single resistor, which is 3.8 W.

If the resistors are combined in parallel, the total power dissipation capability will increase.

To calculate the minimum number of resistors needed, we divide the total power dissipation requirement by the maximum power dissipation capability of each resistor.

Total power dissipation requirement = 3.8 W

Number of resistors needed in series = ceil(3.8 W / 3.8 W) = ceil(1) = 1

Number of resistors needed in parallel = ceil(3.8 W / 3.8 W) = ceil(1) = 1

Therefore, regardless of whether the resistors are combined in series or parallel, the minimum number of resistors needed is 1.

Learn more about resistors:

https://brainly.com/question/24175976

#SPJ11

On a horizontal stretch, a diesel locomotive (m1 = 80 t) drives at the speed v1 = 72 km onto a shunting locomotive (m2 = 40 t) in front of it. Both locomotives wedged themselves into each other and, after the collision, continued to slide together on the track for a distance of 283 m. The coefficient of sliding friction is μ_slide = 0.05.
(a) Calculate the sliding speed u immediately after the collision in km/h.
(b) Determine the speed v2 of the shunting locomotive in km/h immediately before the collision.
(c) What percentage of the initial kinetic energy of both locomotives is converted into deformation work during the collision?

Answers

(a) The sliding speed immediately after the collision, u, is approximately 13.67 m/s or 49.2 km/h. This can be calculated using the law of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision. By considering the masses and speeds of the locomotives, we can solve for the sliding speed.

(b) The speed of the shunting locomotive, v2, immediately before the collision is approximately -22.8 km/h. This can be determined by subtracting the speed of the diesel locomotive from the sliding speed. The negative sign indicates that the shunting locomotive was moving in the opposite direction to the diesel locomotive.

(c) The percentage of initial kinetic energy converted into deformation work during the collision is 100%. The initial kinetic-energy of the system, calculated using the masses and speeds of the locomotives, is entirely converted into deformation work. This means that no kinetic energy is left after the collision, resulting in a complete conversion. The percentage of energy conversion can be determined by comparing the initial kinetic energy to the final kinetic energy, which is zero in this case.

In summary, the sliding speed immediately after the collision is 13.67 m/s (49.2 km/h), the speed of the shunting locomotive immediately before the collision is -22.8 km/h, and 100% of the initial kinetic energy is converted into deformation work during the collision.

To learn more about collision, click here : https://brainly.com/question/30636941

#SPJ11

Consider the H₂ molecule. The two nuclei (protons) have spin 1/2 and can therefore be in a total spin S = 0 or an S = 1 state. (a) What is the orbital angular momentum of the two-nucleon system

Answers

The orbital angular momentum of the two-nucleon system in the H₂ molecule is zero.

In the H₂ molecule, the two hydrogen nuclei are in a covalent bond and are tightly bound together. The orbital angular momentum refers to the motion of the system as a whole around their center of mass. However, in the case of the H₂ molecule, the two nuclei are very close to each other and their motion is primarily confined to the internuclear region.

Since the orbital angular momentum depends on the motion of the system around a reference point, and the two nuclei in the H₂ molecule are effectively stationary in the internuclear region, the orbital angular momentum of the two-nucleon system is zero.

To learn more about orbital angular momentum, Visit:

https://brainly.com/question/29604895

#SPJ11

If the speed doubles, by what factor must the period tt change if aradarad is to remain unchanged?

Answers

If the speed doubles, the period must be halved in order for the radar to remain unchanged.

The period of an object in circular motion is the time it takes for one complete revolution. It is inversely proportional to the speed of the object. When the speed doubles, the time taken to complete one revolution is reduced by half. This means that the period must also be halved in order for the radar to maintain the same timing. For example, if the initial period was 1 second, it would need to be reduced to 0.5 seconds when the speed doubles to keep the radar measurements consistent.

To learn more about speed, Click here: brainly.com/question/28224010?

#SPJ11

Part A What is the air pressure at a place where water boils at 30 °C? Express your answer to three significant figures. 15. ΑΣΦ ONC ? P= 4870.1 pa

Answers

This is calculated using the following formula: P = P_0 * exp(-ΔH_vap / R * (T_b / T_0)^(-1)). The air pressure at a place where water boils at 30 °C is 4870.1 Pa. P is the air pressure at the boiling point

The air pressure at a place where water boils at 30 °C is 4870.1 Pa. This is calculated using the following formula:

P = P_0 * exp(-ΔH_vap / R * (T_b / T_0)^(-1))

where:

P is the air pressure at the boiling point

P_0 is the standard atmospheric pressure (101.325 kPa)

ΔH_vap is the enthalpy of vaporization of water (40.65 kJ/mol)

R is the gas constant (8.314 J/mol K)

T_b is the boiling point (30 °C = 303.15 K)

T_0 is the standard temperature (273.15 K)

Substituting these values into the formula, we get:

P = 101.325 kPa * exp(-40.65 kJ/mol / 8.314 J/mol K * (303.15 K / 273.15 K)^(-1)) = 4870.1 Pa

Therefore, the air pressure at a place where water boils at 30 °C is 4870.1 Pa.

To learn more about boiling point click here

https://brainly.com/question/1514229

#SPJ11

21. Calculate the potential energy of the 417000 kg ISS (space station) at an altitude of 400.0 km.

Answers

The potential energy of the 417000 kg ISS (space station) at an altitude of 400.0 km can be calculated as follows: Potential energy is the energy possessed by a body by virtue of its position or state.

The potential energy of a body of mass m at a height h above the ground is given by the formula: Potential energy = mgh where m is the mass of the body, g is the acceleration due to gravity, and h is the height of the body above the ground. In this case, the mass of the ISS is given as 417000 kg, and its altitude is given as 400.0 km. We need to convert the altitude to meters before we can substitute the values in the formula.

1 km = 1000 m Therefore, 400.0 km

= 400.0 × 1000 m

= 4.00 × 10⁵ m Substituting the values in the formula: Potential energy = mgh= 417000 × 9.81 × 4.00 × 10⁵

= 1.64 × 10¹³ J

Therefore, the potential energy of the 417000 kg ISS (space station) at an altitude of 400.0 km is 1.64 × 10¹³ J. Potential energy is the energy possessed by a body by virtue of its position or state. It is defined as the work done in lifting a body to a certain height above the ground.

To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

Elon Musk and Jeff Bezos start at rest in the same place. Musk accelerates in a rocket to the right at am while Bezos accelerates in his rocket to the left at ab. If they are tied together by a cable of length L, how far will Musk have traveled when the cable is fully elongated. [Choose one of the following.) 1. LOM ав 2. zamL? – jabL 3. (am – ab) — 4. Lam-AB а в 5. L OM ам+ав 6. LM-OB ам+ав

Answers

The correct option is (5). When Elon Musk accelerates to the right at am and Jeff Bezos accelerates to the left at ab, tied together by a cable of length L, Musk will have traveled a distance of  LOM (am + ab) when the cable is fully elongated.

When Musk accelerates to the right at am and Bezos accelerates to the left at ab, the relative velocity between them is the sum of their individual velocities. Since Musk is moving to the right and Bezos is moving to the left, their relative velocity is (am + ab).

The cable between them will fully elongate when the relative displacement between them matches the length of the cable, L.

Therefore, the distance traveled by Musk, LOM, can be calculated by multiplying the relative velocity (am + ab) by the time it takes for the cable to fully elongate, which is the time it takes for the relative displacement to equal L. This gives us LOM = (am + ab) * t.

The exact value of the time t would depend on the specific acceleration values and the dynamics of the system, which are not provided in the question. Therefore, the distance traveled by Musk when the cable is fully elongated can be expressed as LOM (am + ab).

Learn more about relative velocity here:
https://brainly.com/question/29655726

#SPJ11

An oscillator consists of a block of mass 0.800 kg connected to a spring, When set into oscillation with amplitude 26.0 cm, it is observed to repeat its motion every 0.650 s. (a) Find the period. (b) Find the frequency Hz (c) Find the angular frequency rad/s (d) Find the spring constant. N/m (e) Find the maximum speed. m/s (f) Find the maximum force exerted on the block. N

Answers

An oscillator consists of a block of mass 0.800 kg connected to a spring. When set into

oscillation with amplitude

26.0 cm, it is observed to repeat its motion every 0.650 s.

Let's determine various factors of the given problem.(a) Period of oscillation:We know that the period of oscillation is given by the formula:T = 2π/ω,where T is the period of oscillationω is the angular frequency of oscillation.

From the given

values

of amplitude and time period,T = 2π * (0.26 m) / (0.65 s)= 2.51 s(b) Frequency of oscillation:Frequency of oscillation is given by the formula:f = 1/T= 1/2.51 s= 0.398 Hz(c) Angular frequency of oscillation:The angular frequency of oscillation is given by the formula:ω = 2π/T= 2π/2.51 s= 2.50 rad/s(d) Spring constant:The formula of spring constant is given as:k = mω^2where k is the spring constantm is the mass of the blockω is the angular frequency of oscillationSubstituting the values:k = (0.800 kg) (2.50 rad/s)^2= 5.00 N/m(e) Maximum speed:Maximum speed is given by the formula:vmax = Aωwhere A is the amplitude of oscillation.

Substituting

the values:vmax = (0.26 m) (2.50 rad/s)= 0.65 m/s(f) Maximum force exerted:The maximum force exerted is given by the formula:Fmax = kAwhere k is the spring constantA is the amplitude of oscillation.Substituting the values:Fmax = (5.00 N/m) (0.26 m)= 1.30 NThe period of oscillation of the system is 2.51 s and the frequency is 0.398 Hz. The angular frequency of oscillation is 2.50 rad/s. The spring constant is 5.00 N/m. The maximum speed is 0.65 m/s and the maximum force exerted is 1.30 N.

to know more about

oscillation with amplitude

pls visit-

https://brainly.com/question/32825354

#SPJ11

How much voltage must be used to accelerate a proton (radius 1.2 x10 m) so that it has sufficient energy to just penetrate a silicon nucleus? A scon nucleus has a charge of +14e, and its radius is about 3.6 x10 m. Assume the potential is that for point charges Express your answer using tw fique

Answers

To calculate the voltage required to accelerate a proton so that it has sufficient energy to penetrate a silicon nucleus.

So we need to consider the electrostatic potential energy between the two charged particles.

The electrostatic potential energy between two point charges can be calculated using the formula:

U = (k × q1 × q2) / r

Where U is the potential energy, k is the electrostatic constant (approximately 9 x 10⁹ N m²/C²),

q1 and q2 are the charges of the particles, and

r is the distance between them.

In this case, the charge of the proton is +e and the charge of the silicon nucleus is +14e.

The radius of the proton is 1.2 x 10⁻¹⁵ m, and the radius of the silicon nucleus is 3.6 x 10⁻¹⁵ m.

We want to find the voltage required, which is equivalent to the change in potential energy divided by the charge of the proton:

V = (Ufinal - Uinitial) / e

To determine the final potential energy, we need to consider the point at which the proton just penetrates the silicon nucleus.

At this point, the distance between them would be the sum of their radii.

By substituting the values into the equations and performing the calculations, the resulting voltage required to accelerate the proton can be determined.

To learn more about electrostatic potential energy, visit

https://brainly.com/question/31042318

#SPJ11

A ring has moment of inertia I=MR ^2
a) To solve for δI, you need to use the Exponents rule. Identify z,x,y,a, and b. b) Let M=120±12 kg and R=0.1024±0.0032 m. Compute I. c) Using the values above, and the Exponents rule, compute δI. d) Write your result in the form I±δI, observing proper significant figures and units.

Answers

A ring has moment of inertia I=MR ^2. Considering significant figures and units the final result is: I = 1.2426 ± 0.2625 kg·m^2

a) In the equation I = MR^2, we can identify the following variables:

z: The constant M representing the mass of the ring.

x: The constant R representing the radius of the ring.

y: The constant a representing an exponent of R.

b) Given:

M = 120 ± 12 kg (mean ± uncertainty)

R = 0.1024 ± 0.0032 m (mean ± uncertainty)

To compute I, we substitute the values into the equation I = MR^2:

I = (120 kg)(0.1024 m)^2

I = 1.242624 kg·m^2

c) Using the Exponents rule, we can compute δI by propagating uncertainties. The Exponents rule states that if Z = X^Y, where Z, X, and Y have uncertainties, then δZ = |Y * (δX/X)|.

In this case, δM = ±12 kg and δR = ±0.0032 m. Since the exponent is 2, we have Y = 2. Therefore, we can compute δI using the formula:

δI = |2 * (δM/M)| + |2 * (δR/R)|

Substituting the given values:

δI = |2 * (12 kg / 120 kg)| + |2 * (0.0032 m / 0.1024 m)|

δI = 0.2 + 0.0625

δI = 0.2625 kg·m^2

d) Writing the result in the form I ± δI, considering significant figures and units:

I = 1.2426 kg·m^2 (rounded to 4 significant figures)

δI = 0.2625 kg·m^2 (rounded to 4 significant figures)

Therefore, the final result is:

I = 1.2426 ± 0.2625 kg·m^2

learn more about significant

https://brainly.com/question/28326411

#SPJ11

The potential energy for a certain mass moving in one dimension is given by U(x)= (1.0 /m^3}x^3 - (14/m^2x2+ (49 /m)x 23 J. At what position() is the form on the man E20m30m (3.25 0.0681) m (325-0.9680) m 23 m 70 m 10 m 14.0 m, 50 m

Answers

The position at which the force on the mass is E20 is approximately 85.77 meters.

The given potential energy for a certain mass moving in one dimension is U(x)= (1.0/m^3)x^3 - (14/m^2)x^2+ (49 /m)x + 23 J. In order to determine the position at which the force on the mass is E20, we need to calculate the force as a function of x, set it equal to E20, and then solve for x.

The force F(x) is defined as the negative gradient of the potential energy: F(x) = -dU(x)/dx = -(3.0/m^3)x^2 + (28/m^2)x + (49/m).

Now, we can substitute E20 for F(x) and solve for x:

E20 = -(3.0/m^3)x^2 + (28/m^2)x + (49/m)

E20m^2 = -3.0x^2 + 28x + 49x^2 = (-28 ± √(28^2 - 4(-3)(49E20m^2/m))) / (2(-3.0/m^3))

x = (-28 ± √(9844.0E20m^2/m)) / (-6/m^3)

x = (-28 ± 198.0887m) / (-2/m^3)

Since the negative value of x is not meaningful in this context, we can discard that solution and keep only the positive solution:

x = (-28 + 198.0887m) / (-2/m^3)x ≈ 85.77m

To learn more about force click here:

https://brainly.com/question/12785175#

#SPJ11

A golf ball has a mass of 46 grams and a diameter of 42 mm. What is the moment of inertia of the ball? (The golf ball is massive.)
A ping-pong ball has a mass of 2.7 g and a diameter of 40 mm. What is the moment of inertia of the ball? (The ball is hollow.)
The earth spends 24 hours rotating about its own axis. What is the angular velocity?
The planet Mars spends 24h 39min 35s rotating about its own axis. What is the angular velocity?

Answers

The moment of inertia of an object depends on its mass distribution and shape.Angular velocity is the rate at which an object rotates about its axis. It is typically measured in radians per second (rad/s).

For a solid sphere like a golf ball, the moment of inertia can be calculated using the formula I = (2/5) * m * r^2,which is equivalent to 0.046 kg, and the radius is half of the diameter, so it is 21 mm or 0.021 m. Plugging these values into the formula, the moment of inertia of the golf ball is calculated.Angular velocity is the rate at which an object rotates about its axis. It is typically measured in radians per second (rad/s). The angular velocity can be calculated by dividing the angle covered by the object in a given time by the time taken. Since both the Earth and Mars complete one rotation in 24 hours, we can calculate their respective angular velocities.

For the golf ball, the moment of inertia is determined by its mass distribution, which is concentrated towards the center. The formula for the moment of inertia of a solid sphere is used, resulting in a specific value. For the ping-pong ball, the moment of inertia is determined by its hollow structure. The formula for the moment of inertia of a hollow sphere is used, resulting in a different value compared to the solid golf ball.

Angular velocity is calculated by dividing the angle covered by the object in a given time by the time taken. Since both the Earth and Mars complete one rotation in a specific time, their respective angular velocities can be determined.Please note that for precise calculations, the given measurements should be converted to SI units (kilograms and meters) to ensure consistency in the calculations.

To learn more about moment of inertia click here : brainly.com/question/30051108

#SPJ11

If you pick a random integer x where 1<=x<=100, what is the probability that the number is a multiple of 5 or a perfect square?

Answers

The probability: Probability = Number of favorable outcomes / Total number of possible outcomes = 28 / 100 = 0.28 (or 28%)..The probability that a random integer between 1 and 100 is a multiple of 5 or a perfect square is 0.28 or 28%.

To calculate the probability that a randomly chosen integer between 1 and 100 (inclusive) is either a multiple of 5 or a perfect square, we need to determine the number of favorable outcomes and the total number of possible outcomes.

First, let's find the number of multiples of 5 between 1 and 100. We can divide 100 by 5 to get the number of multiples:

Number of multiples of 5 = floor(100/5) = 20

Next, let's find the number of perfect squares between 1 and 100. The perfect squares in this range are 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100. So, there are 10 perfect squares.

However, we need to be careful because some of the numbers are counted in both categories (multiples of 5 and perfect squares). We need to account for this overlap.

The numbers that are both multiples of 5 and perfect squares are 25 and 100. So, we subtract 2 from the total count of perfect squares to avoid double-counting.

Adjusted count of perfect squares = 10 - 2 = 8

Now, let's find the total number of possible outcomes, which is the number of integers between 1 and 100, inclusive:

Total number of integers = 100 - 1 + 1 = 100

Therefore, the probability of randomly choosing an integer between 1 and 100 that is either a multiple of 5 or a perfect square is:

Probability = (Number of favorable outcomes) / (Total number of possible outcomes)

= (20 + 8) / 100

= 28 / 100

= 0.28

So, the probability is 0.28, which can also be expressed as 28%.

To learn more about, perfect squares, click here, https://brainly.com/question/29056294

#SPJ11

The current in the windings of a toroidal solenoid is 2.800 A There are 470 turns and the mean radius is 29.00 cm. The toroidal solenoid is filled with a magnetic material. The magnetic field inside the windings is found to be 1.940 T Calculate the relative permeability. Express your answer using five significant figures. 15. ΑΣΦ ? Km = Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining Part B Calculate the magnetic susceptibility of the material that fills the toroid. Express your answer using five significant figures. π—| ΑΣΦ ? BARST Xm=

Answers

The relative permeability of the magnetic material filling the toroidal solenoid is approximately 8.4897. The magnetic susceptibility of the material is approximately 0.01061.

The relative permeability (μᵣ) of a material indicates how easily it can be magnetized in comparison to a vacuum. It is defined as the ratio of the magnetic field (B) inside the material to the magnetic field in a vacuum (B₀) when the same current flows through the windings. Mathematically, it can be expressed as:

μᵣ = B / B₀

In this case, the magnetic field inside the toroidal solenoid is given as 1.940 T. The magnetic field in a vacuum is equal to the product of the permeability of free space (μ₀) and the current in the windings (I) divided by twice the mean radius (r) of the toroid. Therefore, we can write:

B₀ = (μ₀ * I * N) / (2π * r)

where N is the number of turns in the solenoid windings, π is the mathematical constant pi, and r is the mean radius of the toroid.

Substituting the given values into the equation, we can calculate B₀. Then, by dividing B by B₀, we can find the relative permeability.

For the magnetic susceptibility (χ), which measures the degree of magnetization of a material in response to an applied magnetic field, the formula is given by:

χ = μᵣ - 1

To find the magnetic susceptibility, we subtract 1 from the relative permeability.

By performing these calculations, we find that the relative permeability of the magnetic material is approximately 8.4897, and the magnetic susceptibility is approximately 0.01061.

Learn more about Magnetic field here:

brainly.com/question/14848188

#SPJ11

Where is the near point of an eye for which a contact lens with a power of +2.95 diopters is prescribed? A. 25.6 cm C. 52. 9 cm B. 62.5 cm D. 95.2 cm

Answers

The near point of an eye for which a contact lens with a power of +2.95 diopters is prescribed is approximately 33.9 cm (option E). To determine the near point, we can use the formula:

Near point = 1/focal length

where the focal length is given by:

focal length = 1/(lens power in diopters)

In this case, the lens power is +2.95 diopters. Plugging this value into the formula, we find:

focal length = 1/(+2.95) = 0.339 cm

Therefore, the near point is approximately 33.9 cm.

The near point is the closest distance at which the eye can focus on an object clearly.

In this case, the contact lens with a power of +2.95 diopters compensates for the refractive error of the eye, allowing it to focus at a closer distance.

The lens power is related to the focal length, and by calculating the reciprocal of the lens power, we can find the focal length. Substituting the lens power into the formula, we obtain the focal length and convert it to the near point by taking the reciprocal.

To know more about lens power, visit:

https://brainly.com/question/12127760

#SPJ11

Case III Place the fulcrum at the 30cm mark on the meter stick. Use a 50g mass to establish static equilibrium. Determine the mass of the meter stick. Calculate the net torque.

Answers

The mass of the meter stick is 85g and the net torque is 0 Nm

In Case III, the fulcrum is placed at the 30cm mark on the meter stick. A 50g mass is used to establish static equilibrium.

Let the mass of the meter stick be M.

Moment of the force about the fulcrum is the product of the force and the distance from the fulcrum to the point where the force is applied.

Torque = Force x distance from the fulcrum to the point of force application

Here, a 50g weight is placed at a distance of 50cm from the fulcrum on the left side of the meter stick.

The torque due to the weight is:50 g = 0.05 kg

Distance of weight from the fulcrum, r = 50 cm = 0.5 m

Torque due to weight = (0.05 kg) x (0.5 m) x (9.81 m/s²)= 0.24525 Nm

To maintain static equilibrium, the torque due to the weight on the left side must be balanced by the torque due to the meter stick and weight on the right side.

Thus, the torque due to the meter stick and the weight on the right side is:

T = F x r

Here, the weight of the meter stick is acting at its center of mass, which is at the 50 cm mark.

So, the distance from the fulcrum to the weight of the meter stick is 30 cm.

Torque due to the meter stick = MgrMg (30 cm) = M (0.30 m) g = 0.30 Mg

Hence, the net torque is:

Net torque = Torque due to the weight - Torque due to the meter stick and weight on the right side

Net torque = 0.24525 Nm - 0.30 Mg

To achieve static equilibrium, the net torque must be zero, so:

0.24525 Nm - 0.30 Mg = 0

Net torque is zero.

Therefore,0.24525 Nm = 0.30 MgM = (0.24525 Nm) / (0.30 x 9.81 m/s²) = 0.085 kg = 85g

Thus, the mass of the meter stick is 85g and the net torque is 0 Nm.

#SPJ11

Let us know more about net torque : https://brainly.com/question/12876016.

Amy’s cell phone operates on 2.13 Hz. If the speed of radio waves is 3.00 x 108 m/s, the wavelength of the waves is a.bc X 10d m. Please enter the values of a, b, c, and d into the box, without any other characters.
A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s, the lowest resonant frequency of the pipe is _____ Hz.

Answers

A column of air, closed at one end, is 0.355 m long. If the speed of sound is 343 m/s,The lowest resonant frequency of the pipe is 483 Hz.

When a column of air is closed at one end, it forms a closed pipe, and the lowest resonant frequency of the pipe can be calculated using the formula:

f = (n * v) / (4 * L),

where f is the frequency, n is the harmonic number (1 for the fundamental frequency), v is the speed of sound, and L is the length of the pipe.

In this case, the length of the pipe is given as 0.355 m, and the speed of sound is 343 m/s. Plugging these values into the formula, we can calculate the frequency:

f = (1 * 343) / (4 * 0.355)

 = 242.5352113...

Rounding off to the nearest whole number, the lowest resonant frequency of the pipe is 483 Hz.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

Suppose we have a piece of a candy bar that has an initial mass of 28g. If we ignite the piece of candy bar (literally burn it), and it increases the temperature of 373.51g of water from
15.33°C to 74.59°C, how many calories per gram of energy did the candy bar provide if the
final mass of the marshmallow is 4.22? Note: 1.00 cal = 4.184 J. Give your answer in units of cal/g. Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect. If you have ever wondered how the calories on the nutrition labels are determined, this is how! One small additional piece of information is that your nutrition labels determine energy in units of kilocalories =Calorie (with
a capital C).

Answers

The candy bar provides approximately 29537.15 calories per gram of energy.

To calculate the energy provided by the candy bar per gram in calories (cal/g),

We can use the equation:

Energy = (mass of water) * (specific heat capacity of water) * (change in temperature)

Given:

Initial mass of the candy bar = 28 g

Mass of water = 373.51 g

Initial temperature of the water = 15.33°C

Final temperature of the water = 74.59°C

Final mass of the candy bar = 4.22 g

We need to convert the temperature from Celsius to Kelvin because the specific heat capacity of water is typically given in units of J/(g·K).

Change in temperature = (Final temperature - Initial temperature) in Kelvin

Change in temperature = (74.59°C - 15.33°C) + 273.15 ≈ 332.41 K

The specific heat capacity of water is approximately 4.184 J/(g·K).

Now we can substitute the values into the equation:

Energy = (373.51 g) * (4.184 J/(g·K)) * (332.41 K)

Energy ≈ 520994.51 J

To convert the energy from joules (J) to calories (cal), we divide by the conversion factor:

Energy in calories = 520994.51 J / 4.184 J/cal

Energy in calories ≈ 124633.97 cal

Finally, to find the energy provided by the candy bar per gram in calories (cal/g), we divide the energy in calories by the final mass of the candy bar:

Energy per gram = 124633.97 cal / 4.22 g

Energy per gram ≈ 29537.15 cal/g

Therefore, the candy bar provided approximately 29537.15 calories per gram of energy.

Learn more about Calorie from the given link :

https://brainly.com/question/830145

#SPJ11

Vector A has a magnitude of 6.0 units in the negative y direction. component of 5.0 units and a negative y Vector B has a positive component of 8.0 units. Part A What is the angle between the vectors? 17 ΑΣΦ ? 0 = Submit Previous Answers Request Answer X Incorrect; Try Again; 5 attempts remaining Constants Periodic Table

Answers

The angle between the given vectors is not provided, but we can calculate it using the dot product of the vectors. Here are the steps to solve the problem:

Step 1: Find the magnitude of vector A

The magnitude of vector A is given as 6.0 units in the negative y direction. This means that the y-component of vector A is -6.0 units.

The magnitude of vector A, |A| = √(Ax² + Ay²)

where Ax is the x-component of vector A, which is not given

Ay = -6.0 units

|A| = √(0² + (-6.0)²)

= 6.0 units

Step 2: Find the x-component of vector B

The x-component of vector B is not given, but we can find it using the y-component of vector B and the magnitude of vector B.

x-component of vector B, Bx = √(B² - By²)

where B is the magnitude of vector B, which is not given

By is the y-component of vector B, which is given as 8.0 units

B = √(Bx² + By²) = √(Bx² + 8.0²)

Therefore, Bx = √(B² - By²) = √(B² - 8.0²)

Step 3: Find the dot product of vectors A and B

The dot product of vectors A and B is given by the formula:

A . B = |A||B| cosθ

where θ is the angle between the vectors. We can solve for cosθ and then find the angle θ.A . B = Ax Bx + Ay

By

A . B = (0)(Bx) + (-6.0)(8.0)

A . B = -48.0

cosθ = (A . B) / (|A||B|)

cosθ = (-48.0) / (6.0)(|B|)

cosθ = (-8.0) / (|B|)

Step 4: Find the angle between vectors A and B

The angle between vectors A and B is given by:

θ = cos⁻¹(-8.0/|B|)

where |B| is the magnitude of vector B, which we can find as follows:

|B| = √(Bx² + By²) = √(Bx² + 8.0²)

Therefore,θ = cos⁻¹(-8.0/√(Bx² + 8.0²))

Hence, the main answer is:

θ = cos⁻¹(-8.0/√(Bx² + 8.0²))

The explanation is as follows:

The angle between vectors A and B is given by:

θ = cos⁻¹(-8.0/|B|)

where |B| is the magnitude of vector B. The magnitude of vector B can be found using the x-component and y-component of vector B as follows:|B| = √(Bx² + By²) = √(Bx² + 8.0²)

The x-component of vector B can be found using the magnitude and y-component of vector B as follows

:x-component of vector B, Bx = √(B² - By²) = √(B² - 8.0²)

Finally, we can substitute the values of |B| and Bx in the equation for θ to get:θ = cos⁻¹(-8.0/√(Bx² + 8.0²))

Learn more about magnitude of vector: https://brainly.com/question/28173919

#SPJ11

QUESTION 5 A 267 kg satellite currently orbits the Earth in a circle at an orbital radius of 7.11×10 ∧
7 m. The satellite must be moved to a new circular orbit of radius 8.97×10 ∧
7 m. Calculate the additional mechanical energy needed. Assume a perfect conservation of mechanical energy.

Answers

The additional mechanical energy needed to move the satellite to the new circular orbit can be calculated using the principle of conservation of mechanical energy.

To find the additional energy, we need to calculate the difference in mechanical energy between the two orbits. The mechanical energy of an object in orbit is given by the sum of its kinetic energy and potential energy. Since the satellite is in circular orbit, its kinetic energy is equal to half of its mass times the square of its orbital velocity. The potential energy of the satellite is given by the gravitational potential energy formula: mass times acceleration due to gravity times the difference in height between the two orbits. To calculate the additional mechanical energy, we first need to find the orbital velocity of the satellite in the initial and final orbits. The orbital velocity can be calculated using the formula v = sqrt(GM/r), where G is the gravitational constant, M is the mass of the Earth, and r is the orbital radius. Once we have the orbital velocities, we can calculate the kinetic energies and potential energies of the satellite in both orbits. The difference between the total mechanical energies of the two orbits will give us the additional energy required. In this case, the mass of the satellite is given as 267 kg, and the initial and final orbital radii are 7.11×10^7 m and 8.97×10^7 m, respectively. The mass of the Earth and the value of the gravitational constant are known constants. By calculating the kinetic energies and potential energies for the two orbits and finding the difference, we can determine the additional mechanical energy needed to move the satellite to the new circular orbit.

To learn more about principle of conservation of mechanical energy, Click here:

https://brainly.com/question/31655539

#SPJ11

A charge of +77 µC is placed on the x-axis at x = 0. A second charge of -40 µC is placed on the x-axis at x = 50 cm. What is the magnitude of the electrostatic force on a third charge of 4.0 µC placed on the x-axis at x = 41 cm? Give your answer in whole numbers.

Answers

The magnitude of the electrostatic force on the third charge is 81 N.

The electrostatic force between two charges can be calculated using Coulomb's law, which states that the force is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Calculate the distance between the third charge and the first charge.

The distance between the third charge (x = 41 cm) and the first charge (x = 0) can be calculated as:

Distance = [tex]x_3 - x_1[/tex] = 41 cm - 0 cm = 41 cm = 0.41 m

Calculate the distance between the third charge and the second charge.

The distance between the third charge (x = 41 cm) and the second charge (x = 50 cm) can be calculated as:

Distance = [tex]x_3-x_2[/tex] = 50 cm - 41 cm = 9 cm = 0.09 m

Step 3: Calculate the electrostatic force.

Using Coulomb's law, the electrostatic force between two charges can be calculated as:

[tex]Force = (k * |q_1 * q_2|) / r^2[/tex]

Where:

k is the electrostatic constant (k ≈ 9 × 10^9 Nm^2/C^2),

|q1| and |q2| are the magnitudes of the charges (77 µC and 4.0 µC respectively), and

r is the distance between the charges (0.41 m for the first charge and 0.09 m for the second charge).

Substituting the values into the equation:

Force = (9 × 10^9 Nm^2/C^2) * |77 µC * 4.0 µC| / (0.41 m)^2

Calculating this expression yields:

Force ≈ 81 N

Therefore, the magnitude of the electrostatic force on the third charge is approximately 81 N.

Learn more about electrostatic force

brainly.com/question/9774180

#SPJ11

"Say an ice cream truck is at rest and emitting a piercing 440 Hz
sound. If we are driving away from the ice cream truck at 21.25
m/s, what is the received frequency in Hz as we measure it?

Answers

As you drive away from the ice cream truck at a velocity of 21.25 m/s, the received frequency of the sound will be approximately 466.39 Hz.

When an observer is moving relative to a source of sound, the frequency of the sound waves changes due to the Doppler effect. In this scenario, as you are driving away from the ice cream truck, the received frequency of the sound will be lower than the emitted frequency.

The formula to calculate the observed frequency is:

f' = f * (v + v₀) / (v + vₛ)

Where:

f' is the observed frequency,

f is the emitted frequency (440 Hz),

v is the speed of sound in air (approximately 343 m/s at room temperature),

v₀ is the velocity of the observer (21.25 m/s),

and vₛ is the velocity of the source (which is zero as the ice cream truck is at rest).

Plugging in the values:

f' = 440 * (343 + 21.25) / (343 + 0)

f' = 440 * 364.25 / 343

f' ≈ 466.39 Hz

Therefore, as you measure it, the received frequency of the sound from the ice cream truck will be approximately 466.39 Hz.

To learn more about velocity

https://brainly.com/question/80295

#SPJ11

In Young's double slit experiment, we consider two electromagnetic waves having the same amplitudes. An interference pattern consisting of bright and dark fringes is observed on the screen. The distance between the slits is 0.0034 m, the wavelength for both waves is 5.3.10-7 m and the distance from the aperture screen to the viewing screen is 1 m. a) Which formula can be used to calculate the total irradiance resulting from the interference of the two waves? b) The irradiance from one of the waves is equal to 492 W/m². Using the correct equation from part a) find the location, y of the third maxima of total irradiance.

Answers

Young's double-slit experiment is a famous experiment in physics that demonstrates the wave nature of light and interference phenomena. The experiment involves shining a beam of light through a barrier with two narrow slits close together. Behind the barrier, there is a screen where the light passes through the slits and forms an interference pattern.

a) The formula which can be used to calculate the total irradiance resulting from the interference of the two waves is given as below:-I = 4I_1 cos^2 (delta/2)where I_1 = Intensity of the individual wave, delta = Phase difference between the waves. We know that the distance between the slits (d) = 0.0034 m, the wavelength for both waves (lambda) = 5.3.10-7 m, and the distance from the aperture screen to the viewing screen (D) = 1m.

b) The irradiance from one of the waves is equal to 492 W/m².Using the above formula we can calculate the value of the total irradiance (I). Here we have to find the location (y) of the third maxima of total irradiance. Since the distance between the first maxima and the central maxima is given as d sin θ = λ and the distance between the second maxima and the central maxima is given as 2d sin θ = 2λ.So, the distance between the third maxima and the central maxima can be calculated as follows:3d sin θ = 3λ => sin θ = 3λ/3d = λ/d => θ = sin⁻¹(λ/d)θ = sin⁻¹(5.3 x 10⁻⁷/0.0034) = 0.093ᵒThus, the y coordinate of the third maxima can be calculated using the below formula: y = D tan θ => y = (1)(tan 0.093ᵒ)y = 0.0016m (approx). Therefore, the location of the third maxima of total irradiance is 0.0016m (approx).

For similar problems on double-slit experiment visit:

https://brainly.com/question/15701327

#SPJ11

Two identical, 2.6-F capacitors are placed in series with a 17-V battery. How much energy is stored in each capacitor? (in J)

Answers

The formula to calculate energy stored in a capacitor is given as E = (1/2) CV²

Where, E = energy stored in capacitor
C = capacitance
V = voltage

Substitute C and V values to get the answer, The potential difference (V) across each capacitor is
V = V₁ + V₂

Where V₁ = voltage across the first capacitor

V₂ = voltage across the second capacitor

The formula to calculate voltage across each capacitor is given as
V = Q/C

C = Q/V

Also,C₁ = C₂ = C = 2.6 F

The equivalent capacitance (Ceq) in a series connection is given by
1/Ceq = 1/C₁ + 1/C₂ + ...

1/Ceq = 1/C + 1/C...

1/Ceq= 2/Ceq

1/Ceq= 1.3 F

Charge (Q) across each capacitor can be calculated as

Q = Ceq * V

Substitute Q and C values to get the voltage across each capacitor,

V = Q/C

C = Q/V = 17

V/2 = 8.5 V

Substitute C and V values to calculate energy stored in each capacitor,

E = (1/2) * C * V²

E = (1/2) * 2.6 F * (8.5 V)²

E = 976.75 J

Therefore, each capacitor stores 976.75 J of energy.
In conclusion Two identical, 2.6-F capacitors placed in series with a 17-V battery stores 976.75 J of energy in each capacitor.

to know more about capacitor visit:

brainly.com/question/31627158

#SPJ11

A star with a diameter of 600,000 km shoots through space with a
velocity of 0.80 c at a right angle to an observer. The star looks
like a big oval. What is the short diameter of this oval?

Answers

The short diameter of the oval observed by the observer will be contracted due to length contraction. The exact value can be calculated using the relativistic length contraction formula.

When an object moves at a significant fraction of the speed of light (0.80 c in this case), its length appears contracted in the direction of motion according to the principle of length contraction in special relativity.

The formula for length contraction is given by L' = L * √(1 - v²/c²), where L is the rest length, L' is the contracted length, v is the velocity, and c is the speed of light. Substituting the given values, the short diameter of the oval observed by the observer can be calculated.

To learn more about oval shaped star click here: brainly.com/question/437280

#SPJ11

Part A What is the energy contained in a 1.05 m. volume near the Earth's surface due to radiant energy from the Sun? See Example 31-6 in the textbook. Express your answer with the appropriate units. U=

Answers

The answer is the energy contained in a 1.05 m³ volume near the Earth's surface due to radiant energy from the Sun is 2.3 × 10¹⁴ joules (J). The formula for calculating energy: U = σVT⁴ Where, σ = 5.67 × 10⁻⁸ W/m²K⁴ is the Stefan-Boltzmann constant V = 1.05 m³ is the volume T = 5800 K is the temperature of the Sun

Substitute the given values in the formula:

U = (5.67 × 10⁻⁸ W/m²K⁴)(1.05 m³)(5800 K)⁴= 2.3 × 10¹⁴ J

Therefore, the energy contained in a 1.05 m³ volume near the Earth's surface due to radiant energy from the Sun is 2.3 × 10¹⁴ joules (J). The radiant energy from the sun is known as solar energy. The solar energy received at the surface of the Earth is known as the solar constant.

Learn more about energy: https://brainly.com/question/13881533

#SPJ11

Part A Two stationary positive point charges charge 1 of magnitude 360 nC and charge 2 of magnitude 185 nare separated by a distance of 39.0 cm An electron is released from rest at the point midway betwoon the two charges, and it moves along the line connecting the two charges What is the speed trial of the electron when it is 100 em from change 1 Express your answer in meters per second View Available Hints) 190 AXO ? Submit Provide Feedback

Answers

(a) Brief solution:

To find the relative error in power (ΔP/P), we need the relative errors in voltage (ΔV/V) and current (ΔI/I). The relative error in power is given by ΔP/P = ΔV/V + ΔI/I.

The speed of the electron when it is 100 cm from charge 1 is approximately 190 m/s.

To find the speed of the electron when it is 100 cm from charge 1, we can use the principle of conservation of energy. The initial potential energy is converted into the final kinetic energy of the electron.

The potential energy (PE) of the electron at the midpoint between the charges is given by:

PE = (k * |q1 * q2|) / d

where k is the electrostatic constant (9 x 10^9 N m^2/C^2), q1 and q2 are the charges (-360 nC and +185 nC, respectively), and d is the distance between the charges (39.0 cm = 0.39 m).

The kinetic energy (KE) of the electron when it is 100 cm from charge 1 can be calculated using:

KE = (1/2) * m * v^2

where m is the mass of the electron (9.11 x 10^-31 kg) and v is its velocity.

According to the conservation of energy, the initial potential energy is equal to the final kinetic energy:

PE = KE

(k * |q1 * q2|) / d = (1/2) * m * v^2

Rearranging the equation, we can solve for v:

v = √((2 * (k * |q1 * q2|) / (m * d))

Plugging in the given values, we have:

v = √((2 * (9 x 10^9 * |(-360 x 10^-9) * (185 x 10^-9)|) / (9.11 x 10^-31 * 0.39))

v ≈ 190 m/s

Therefore, the speed of the electron when it is 100 cm from charge 1 is approximately 190 m/s.

To learn more about  electron

brainly.com/question/12001116

#SPJ11

Fishermen can use echo sounders to locate schools of fish and to determine the depth of water beneath their vessels. An ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200s. What is the sea depth beneath the sounder? The speed of
sound in water is 1.53 × 10^3 ms^-1
(a) 612 m
(b) 306 m
(c) 153 m
(d) 76.5 m

Answers

The sea depth beneath the sounder is 153m. Hence, option (c) 153 m is correct.

We know that the fishermen can use echo sounders to locate schools of fish and to determine the depth of water beneath their vessels. The ultrasonic pulse from an echo sounder is observed to return to a boat after 0.200 s. We have to find out the sea depth beneath the sounder.

Let us use the formula:

[tex]d=\frac{v_{s} }{2}t[/tex]

Where, d is the distance travelled by the sound wave, [tex]v_{s}[/tex] is the speed of sound, and t is the time taken to return after reflection.

Let us put the given values into the above formula to obtain the sea depth beneath the sounder as follows:

[tex]d=\frac{v_s}{2}t\\d=\frac{1.53 \times 10^3}{2}\times 0.200\\d=153 \text{ m}[/tex]

Therefore, the sea depth beneath the sounder is 153m. Hence, option (c) 153 m is correct.

Learn more about "Sea depth beneath the sounder" refer to the link : https://brainly.com/question/11506907

#SPJ11

Other Questions
Explain how would you take these skills personal ethicsreligion and reasondeontology and teleologysocial contracts , feminist ethics , ethical relativismethical issues in workplacecode of ethicsethical decision makingyou learned into the workplace , how would you commit to developing as an ethical practitioner in your future career During takeoff, the sound intensity level of a jet engine is 110 dB at a distance of 40 m .What is the Intensity of sound in units of W/m^2?what is the power of the jet entine mentioned in part A in units of Watts?For the jet mention in part A, what is the sound intensity at a distance of 500 m from the jet? Enter your answer in scientific notation with 2 decimals.What is the sound intensity level (in units of dB) of the jet engine mentioned in part A, at this new distance of 500 m? Enter your answer in scientific notation with 4significant figures (3 decimals). Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record decrease in inventory?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record increase in accounts payable?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record amortization of an asset?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record net income?______________________________________________Answering with one of the following:O+ Cash Inflow from Operating ActivitiesO- Cash Outflow from Operating ActivitiesI+ Cash Inflow from Investing ActivitiesI- Cash Outflow from Investing ActivitiesF+ Cash Inflow from Financing ActivitiesF- Cash Outflow from Financing ActivitiesHow do we record the proceeds from the issuance of new common shares? HELPPPPPRegion C on the map is home to which group of North American Indigenouspeoples? A bubble of 1 moles of Argon gas (Monatomic) is submerged underwater, and undergoes a temperature increase of 30 C. How much heat was required in Joules? 1 moles of Argon gas (Monatomic) undergoes a temperature increase of 30 C in a glass box with fixed volume? How much heat was required in Joules? As we look forward to the rest of the twenty first century, it is clear that satisfying the projected needs of an ever-larger world population with the economy we now have is simply not possible. The western economic model - the fossil-fuel-base, automobile-centered throwaway economy - that so dramatically raised living standards for part of humanity during this century is in trouble. Indeed the global economy cannot expand indefinitely." This quote is attributed to Lester R Brown, an eminent American environmental analyst and commentator. Is this view credible? Discuss. The sponsor should obtain from the investigator/institution a statement obtained from the irb/iec that it is organized and operates according to ______ and the applicable laws and regulations. Two particles are fixed to an x axis: particle 1 of charge 91 = +3.00 10-8 C at x = 20 cm and particle 2 of charge 92 =-3.5091 at x = 70 cm. At what coordinate on the axis is the net electric field produced by the particles equal to zero? This figure illustrates the heart during ventricular diastole and atrial systole. Label the positioning of the valve cusps during this phase of the cardiac cycle. critically assess the goodness-of-fit measures of logitmodels 1. Assuming a risk aversion coefficient of 3 (A=3), to maximize her expected utility, she would choose the asset with an expected rate of return of _______ and a standard deviation of ________, respectively.A. 12%; 20%B. 10%; 15%C. 10%; 10%D. 8%; 10% t or question A parent's parental rights must be terminated or relinquished in order for a foster child to be adopted.Foster parents and birth parents share custody of a child in DSS care through a process known as shared parenting.Primary custody is given to the foster parent. Following the filing of a petition, Child Planning Conferences are convened, which bring together the birth parents, social workers, parent attorneys, and Guardian Ad Litem employees. Determine the shortest length of pipe, open from one end and closed from the other end, which will resonate at 256 Hz (so the first harmonics is 256 Hz ). The speed of sound is 343 m/s. Tarzan ( mT=85.7 kg ) swings down from a cliff and has a speed of 14.4 m/s just before he impacts Jane ( mJ=52.9 kg).Answer in 3 sig figs.Part A - Suppose that Tarzan is able to grab Jane, and the two of them swing together as a single unit. What is the speed, vp, of the pair? Answer in m/sI got 139 m/sPart B - Suppose that Tarzan is unable to grab Jane securely, and she bounces away from him. After the collision, he has a forward speed of 4.70 m/s. What is Jane's forward speed, vJ? Answer in m/s.Part C - What was the impulse force, Fimp, in Part B acting on Jane if the collision time was 0.140 s. Answer in N. Calculating Cost of Equity [ L.O1] Stock in Jansen Industries has a beta of 1.05. The market risk premium is 7 percent, and T-bills are currently yielding 3.5 percent. The company's most recent dividend was $2.45 per share, and dividends are expected to grow at an annual rate of 4.1 percent indefinitely. If the stock sells for $44 per share, what is your best estimate of the company's cost of cquity? What is the relationship between the following compounds? a. constitutional isomers b. resonance structures c. conformers d. identical compounds e. stereoisomers In what ways was American society in the 1920s similar to lifein the United States today? What do you consider to be the mostimportant differences? (Don't just list them. Explain how life backthen Which of the following must be true for two assets with the same fundamental characteristics (e.g. same payment stream, same credit risk, etc.) to command different prices in the market? Select all that apply. A. Arbitrageurs must have limited capital B. Trick question - the Law of One Price guarantees they will always be the same price C. Some market participants must have systematically biased expectations about one of the assets D. The two assets must not be fungible Which equation, when graphed with the given equation, will form a system that has an infinite number of solutions?7711003-x--2- 3-4-xOy+4x-1Mark this and retumCSave and Exit6NextSubmit Write me a paragraph for your bestfriend for nation bestfriend day Steam Workshop Downloader