The enzyme is made up of a protein structure and binds to its substrate, which is often a specific molecule that is necessary for the enzyme’s function. The insecticide molecule is similar in structure to the substrate, but is much more powerful.
The insecticide molecule is a competitive inhibitor, meaning that it binds to the same site on the enzyme as the substrate does, preventing the substrate from binding to the enzyme and, in turn, preventing the enzyme from catalyzing its reaction.
The structure of the enzyme-substrate complex and the insecticide-enzyme complex are similar, with the insecticide molecule fitting into the active site of the enzyme, forming a strong bond with the enzyme and preventing the substrate from binding to its active site. The insecticide molecule has a higher affinity for the enzyme than the substrate, which is why it is able to block the enzyme from catalyzing its reaction and, ultimately, cause the death of the farm worker.
To learn more about enzyme visit:
https://brainly.com/question/17320375
#SPJ4
Which of the following statements is correct?
F. Accessory pigments are not involved in photosynthesis.
G. Accessory pigments add color to plants but do not absorb light energy.
H. Accessory pigments absorb colors of light that chlorophyll a cannot absorb.
J. Accessory pigments receive electrons from the electron transport chain of photosystem I.
Answer:
G. Accessory pigment add color to plant but do not absorb light energy.
Answer:
G is the correct answer!!!
Explanation:
What are the 4 most important environmental factors that influence bacterial growth?
The 4 most important environmental factors that influence bacterial growth are oxygen, temperature, water and pH.
Bacteria are unicellular, prokaryotic microorganisms that are able to survive in a lot of different conditions. They have different shapes, different modes of nutrition and lack a nucleus and membrane bound cell organelles.
The four most important environmental factors that influence the growth of bacteria are oxygen, temperature, water and pH. Different types of bacteria types need different temperatures in order to grow. Some can survive in cold temperatures while some can even survive in very high temperatures.
Most of the bacteria survive in neutral or less acidic environments but also a lot of bacteria are able to survive in a very wide spectrum of pH. Some bacteria do not require oxygen and are hence called anaerobic while some type of bacteria need oxygen to grow and are called aerobic. Water is also required by bacteria and it boosts their growth.
To learn more about microorganisms here
https://brainly.com/question/9004624
#SPJ4
What happens when we increase the number of cells?
When we increase the number of cells, we are increasing the total number of individual organisms in a larger system. This can have a wide range of effects, depending on the type of organism and the environment that it is in.
In the case of a single-celled organism, such as a bacterium or a protozoan, an increase in cell numbers will likely result in an increase in population size. As the population size grows, the organism’s ability to access resources, such as food and shelter, may become limited. The organism may also become more prone to competition with other species in the same environment, which could result in a decrease in overall fitness of the population. The organism may also become more vulnerable to disease and predation, as the overall population becomes more concentrated.
In the case of a multicellular organism, such as a plant or an animal, an increase in cell numbers can have a variety of effects. This can include increased strength and size, as well as the ability to perform complex functions. For example, an increase in the number of cells in a muscle can lead to increased muscle strength and size, allowing for greater physical activity. Likewise, an increase in the number of neurons in the brain can lead to improved cognitive abilities, allowing for more complex problem solving and decision making.
For more information on cells, visit :
https://brainly.com/question/30046049
#SPJ4
Which anatomical feature would you expect to find in the fossil remains of a nocturnal species?
a. short fingers and toes
b. pointy teeth
c. long legs
d. large eye orbits
The anatomical feature would you expect to find in the fossil remains of a nocturnal species is large eye orbits.
What anatomical characteristics might you anticipate to see in the fossilized remains of a nocturnal species?Comparatively larger eyes and bony orbits are characteristics of nocturnal (active at night) species as opposed to diurnal species. The bony orbits of primate skulls exhibit significant structural variations in addition to size variations.
Nocturnals are animals that are active at night. These animals possess a unique trait called night vision that enables them to see in the dark! Animals use their night vision to locate food or elude predators. A few nocturnal animals also have keen hearing or smell senses.
To know more about anatomical feature visit:
https://brainly.com/question/26255137
#SPJ1
Your friend performed an experiment and reported that his hypothesis was proven by his dala,
this wrong? EXPLAIN!!!
Answer:
An expirement must have a variable! :) hope this help, have a good day!!
Explanation:
Based on the data in Table 1 and the biomass of the very large animals eaten by the lions, predict the likely effect on both the lions and leopards if the availability of the very large animals becomes limiting in the reserve. After analyzing the data, the scientists claim that the leopards and lions coexist in the reserve through the use of niche partitioning. Use evidence from the data provided to support the scientists’ claim.
Answer:
Explanation:
An ecological community can be described as all the different species of organisms i.e all the different plants and animals, living in a particular habitat at a specified time. An ecological community will consist of: Predators: Organisms which feed on other organisms.
There is a kind of snake that can be born with red, yellow, or green skin. Eagles hunt these snakes, but snakes that are the same color as their environment are harder for the eagles to see and catch.
Why are identical twins rare?
Word Bank:
gene, chromosome, reproductive cell, identical twin, fraternal twin, trait, protein, variation.
Mention:
Explain how genes are passed on normally in humans.
Explain how genes are passed on in identical twins.
Explain why identical twins are rare.
Identical twins are rare because they are generated when a fertilized egg is divided into two zygotes and thus generate two different organisms having genetically identical material. Genes are passed on normally in humans due to the inheritance from parents to offspring, they (genes) are passed on in identical twins as copies in the egg cell.
What is the proportion of identical twins in nature?The proportion of identical twins in nature is relatively low in the order of 1 to 250, which inherit the same genes contained in homologous pairs of chromosomes, while fraternal twins denote the process of fertilization of two separate eggs to form different organisms. These genes generate different proteins that will lead to different traits.
Therefore, with this data, we can see that the proportion of identical twins in nature is low because the division of the egg cell after fertilization cell is a rare process.
Learn more about identical twins in nature here:
https://brainly.com/question/5109778
#SPJ1
Alleles are different versions of:
Genotypes
Genes
Chromosomes
Phenotypes
Answer:
Genes
Explanation:
A student hypothesized that robins prefer large birdhouses to small ones. He build four birdhouses of different sizes to test his hypothesis. What was the independent variable in the students study?
Option a is Correct. According to a student's theory, robins choose large birdhouses over little ones. He constructed four birdhouses of various sizes to test his theory, and the student's study's independent variable (cause) is the size of the birdhouses.
The benefits of including a birdhouse in your garden or yard are endless. Of course, they're beautiful to look at, but they also have a ton of additional features and advantages. one of our preferred ones? Birdhouses give persons who have been uprooted by fast deforestation and urbanization a safe place to live.
Birdhouses help with insect control, weed control, flower pollination, and the upkeep of native flora since they are so enticing to neighborhood birds. In addition, painted birdhouses give outdoor areas personality and depth.
Learn more about birdhouses Visit: brainly.com/question/28605560
#SPJ4
Correct Question:
A student hypothesized that robins prefer large birdhouses to small ones. He built four birdhouses of different sizes to test his hypothesis. What is the independent variable (cause) in the student's study?
a. the size of the birdhouses
b. the location of the birdhouses
c. the number of birds in the house
d. the season of the year
Failure of the pituitary to stop producing growth hormone after body growth is completed results in
Answer:
acromegaly
Explanation:
provide 2 reasons that support a balance or homeostasis of nitrogen compounds in an ecosystem
Two reasons that support a balance or homeostasis of nitrogen compounds in an ecosystem are:1. Nitrogen is a key component of life: Nitrogen is an essential component of life, and it is the fourth most abundant element in the universe.
All living organisms, including plants, animals, and bacteria, require nitrogen to survive and thrive. Nitrogen is essential for the production of proteins and nucleic acids, which are the building blocks of life. Nitrogen compounds such as ammonia, nitrate, and nitrite are critical components of the nitrogen cycle.
Nitrogen is a limiting nutrient: Nitrogen is often a limiting nutrient in ecosystems. Nitrogen is essential for the growth and reproduction of plants, which are the foundation of most ecosystems.
Learn more about homeostasis:
https://brainly.com/question/28270473
#SPJ2
Which of the following types of mining is
MOST likely to cause habitat disruption?
A. long wall method
B. room and pillar method
C. strip mining
D. subsurface mining
Answer:
strip mining is most likely to caused habitat disruption
How wet land are formed?
On floodplains where recurrent flooding or high water tables supply enough moisture, wetland formation occurs.
As rivers and streams create new channels and when floods scour the floodplain or deposit new material, these "riparian" wetlands may experience continual change.
Wetlands are transitional regions between terrestrial and aquatic ecosystems when the water table is typically at or near the surface or the area is submerged in shallow water.
One or more of the following three characteristics are required for wetlands:
1) At least occasionally, the land supports primarily hydrophytes
2) the substrate is primarily undrained hydric soil
3) at some point during the growing season of each year, the substrate is saturated with water or covered by shallow water.
To look more about wetland click here
brainly.com/question/11438518
#SPJ4
Why is a decrease in genetic diversity bad?
A decrease in genetic diversity bad because it increases the risk of extinction of a population through inbreeding depression.
This is a result of despair brought on by inbreeding paired with a lack of ability to adjust to change. New alleles can be introduced in these situations to save the population. For a population to adapt to changing circumstances, genetic diversity is essential.
Genetic drift is a result of sampling error because individuals are randomly chosen when a population is sampled. A random selection is one in which each member of the population has an equal chance of being chosen.
The variety of various inherited features within a species is referred to as genetic diversity. There would be many people with a wide range of diverse traits in a species with significant genetic diversity. For a population to adapt to changing surroundings, genetic variety is essential.
To learn more about Genetic diversity :
brainly.com/question/14926046
#SPJ4
All of the following describe a role of a biochemical pump in active transport except for which of the following?
At what heart rate should you start compressions on a newborn?
The current neonatal resuscitation guidelines recommend to start chest compression in a newborn infant if the heart rate remains <60 beats per minute despite adequate ventilation for 60 s .
A small percentage (less than 10%) of newborn babies need active resuscitative measures in order to establish a loud cry or consistent breathing, keep their heart rates over 100 beats per minute (bpm), and acquire acceptable color and tone.
The establishment of proper ventilation has to be your top priority. If stimulation does not result in the prompt commencement of spontaneous respirations or the heart rate is below 100 bpm, give assisted ventilation while paying close attention to oxygen delivery, inspiratory time, and effectiveness as determined by chest rise.
To obtain roughly 90 compressions and 30 breaths per minute, time chest compressions with ventilations at a 3:1 ratio at a rate of 120 events per minute. If the heart rate is below 60 beats per minute after 30 seconds of efficient aided breathing and circulation, provide epinephrine (chest compressions).
To know more about chest compressions click here:
https://brainly.com/question/28097378
#SPJ4
Koalas are marsupials that are found in eastern Australia. Although their ancestors lived mostly on the ground,
modern koalas spend most of their time in eucalyptus trees. This is possible because their hands and feet have
strong claws and opposable digits.
What other adaptation could have helped koalas as they evolved from land dwellers to tree dwellers?
Answer:
Fur color that closely matches the eucalyptus bark color
Explanation:
In terms of evolving from land dwellers to tree dwellers, the number of offspring does not matter. Although the ability to run faster is a good evolution for escaping predators, it does not help the koalas evolve to be better tree dwellers (how would you run using only the trees?). Communicating with their peers would be convenient for survival, but it does not help koalas become better tree dwellers. What does help koalas survive better by traveling through the trees is camouflaging with the bark of the tree to hide from predators.
giving a large number of points to whoever answers this
31. The cell membrane is primarily made up of these - E. phospholipids
32. The hydrophilic part of a phospholipid - A. phospholipid head
33. The hydrophobic part of a phospholipid - H. phospholipid tail
34. Protein that facilitates passive transport - D. channel protein
35. Protein that facilitates active transport - J. carrier protein
36. Molecule that stabilizes the membrane - G. cholesterol
37. Molecule that aids in cell recognition and signaling - I. carbohydrate molecule
38. A substance that can undergo facilitated diffusion - C. negatively charged ions
39. A substance that undergoes active transport - F. positively charged ions
40. Cellular energy needed for active transport - B. ATP
What are phospholipids?Phospholipids are the main lipid that is found in the cell membrane.
The structure of phospholipids is that they have a hydrophilic head group and a hydrophobic tail.
They are arranged in the form of bilayers in cell membranes.
Learn more about phospholipids at: https://brainly.com/question/13990604
#SPJ1
Suppose that each fatty acid in a certain fat can make 9 molecules of acetyl CoA. Predict how many ATP can be made from the fatty acids in this fat
The number of ATP yielded through fat metabolism which makes 9 molecules of acetyl CoA is 108 ATP.
How many ATP produced on beta-oxidation?The process of metabolic reactions which convert fatty acids to acetyl CoA is called beta-oxidation. Through multiple steps in beta-oxidation, fatty acids are broken down to produce energy (ATP). Before producing the energy, fatty acids which are made up of carbons must be converted into acetyl CoA in advance.
If 9 molecules of acetyl CoA are produced, it indicates that the fatty acid has 18-Carbons. In other words, each acetyl CoA contains two carbon atoms.
Each acetyl CoA that has been produced, will enter into the citric acid cycle or known as Kreb’s cycle. This cycle yields 3 NADH (9 ATP), [tex]FADH_{2}[/tex] (2 ATP), and 1 ATP. The total ATP result is 12 ATP.
when there are 9 molecules of acetyl CoA, the ATP yielded is 9 x 12 ATP = 108 ATP.
Thus, if each fatty acid in a certain fat can make 9 molecules of acetyl CoA, the amount of ATP that can be made is 108 ATP.
Learn more about beta-oxidation by clicking this link :
https://brainly.com/question/14133986
#SPJ4
Which process is the main source of this movement?
Answer: hitting the energy from the sun
Explanation:
Answer:b
Explanation:movement ocean
How do meiosis 1 and meiosis 2 differ?
Answer:
During meiosis 1, the parent cell with double the normal amount of chromosomes, splits into two diploid cells (have enough chromosomes to survive). During meiosis 2, the two diploid cells each split into two haploid cells (have half the amount of chromosomes to survive). Meiosis ends with four haploid cells.
During cellular respiration which of the following is equal to the number of atoms in carbon and glucose
Answer:
Total number of oxygen atoms in carbon dioxide and water.
During cellular respiration, the total number of oxygen atoms in carbon dioxide and water is equal to the total number of oxygen atoms in glucose and oxygen gas.
Cellular respiration is the process by which food substances such as glucose are broken down to yield energy in the form of ATP. This energy is in turn stored or used by the cells to drive cellular process such as transport.
Cellular respiration occurs in three phases namely; glycolysis, kreb's cycle and electron transport chain.
The process uses glucose and oxygen as the reactants to yield energy, and carbon dioxide an water as byproducts.
The equation for the process is;
C6H12O6 + 6O2 --> 6CO2 + 6H2O + ATP
hope i helped
Explanation:
How did Mendel's pea plants help us understand genetics?
Mendel's pea plants gave us a clear and straightforward framework for analyzing the inheritance of traits, which improved our understanding of genetics. Pea plants are a good choice for Mendel's research because they can easily self- or cross-fertilize and have a short generation time.
Mendel exploited the distinct and readily observable traits of pea plants in his tests, including seed color, seed shape, and bloom color.
According to Mendel's research, traits are influenced by specific "factors" that are passed from parent to child. He discovered that the presence of two alleles, one inherited from each parent, determines the inheritance of each feature and that one allele can be dominant over the other.
He also discovered that different characteristics are inherited independently of one another and that the probability of an offspring inheriting a specific allele from a parent is 50%. These discoveries laid the foundation for the field of genetics and provided a framework for understanding how traits are passed down from one generation to the next.
To learn more about Mendel's pea plants
https://brainly.com/question/29684894
#SPJ4
An ice is put in a beaker and left in the sun for long
What with happen to the iceblock?
Answer:
it melts into a liquid form of the substance
Darron lost his sense of taste because a tumor caused damage to a structure located on top of his brainstem. This structure is known as the
The structure located on top of Darron's brainstem that caused him to lose his sense of taste is called the nucleus of the solitary tract (NTS).
The NTS is part of the autonomic nervous system and is responsible for relaying taste information from the tongue to the brain. The NTS is also involved in the control of breathing, blood pressure, and other bodily functions. In Darron’s case, a tumor in the vicinity of the NTS caused damage to the nerve cells in the area, resulting in a disruption of the signals that travel from the tongue to the brain. This has led to a complete loss of his sense of taste.
Although the tumor is the cause of Darron’s loss of taste, it is the damage to the NTS that is responsible for the symptom. The NTS is located in the medulla oblongata, which is a major part of the brainstem and is responsible for controlling many of the body’s involuntary functions.
The NTS is a cluster of neurons that receive taste information from the tongue, and then relay it to the brain. When the cells of the NTS are damaged, the signals that travel from the tongue to the brain are disrupted, resulting in a complete loss of taste.
To learn more about nervous system visit:
https://brainly.com/question/13487019
#SPJ4
How is it possible to take a cell with 46 chromosomes and create 4 cells with 23 chromosomes each?
Is the probability that a recessive allele gets lost during generations higher than the probability that a dominant allele gets lost?
Answer:
No. The probability of a dominant allele to be lost is less compared to the probability of the dominant allele.
Explanation:
The loss of alleles during the generations occurs during cases of natural selection, where individuals who have characteristics favored by the environment survive. However, natural selection acts on the phenotype of individuals and not on the genotype (where the alleles are). Thus, the probability that a phenotype caused by the recessive alleles will be lost over the generations may be greater than the probability that a phenotype caused by a dominant allele will be lost. However, the probability that this recessive allele will be lost is almost nil.
Let's look at an example: As we know, recessive alleles are only expressed in the phenotype if they are hom0zygous, that is, in pairs formed by two recessive alleles. However, heterozygous alleles (pairs formed by a recessive allele and a dominant allele) will express the phenotype determined only by the dominant allele. In this case, a population of lizards that have the dominant allele "A", for green lizards and recessive allele "b", for red lizards, will present individuals with the "AA" (green), "Ab" (green color) and "bb" (red color) allele pairs. If these lizards lived in the grass, natural selection would allow only green lizards to survive, as they would not be seen by predators. The red lizards would die and would not pass on the "bb" genotype for the next generations, but the recessive "b" allele would continue to be passed on to the next generations because it is part of the individuals with the "Ab" genotype that survived. If the grass were red, natural selection would allow the red lizards to survive, as they would not be seen by predators. Likewise, the recessive allele "b" would be passed on to the next generation, but the same would not happen with the dominate allele "A", which would be lost.
Which species does Lucy belong to ?
One of the most well-known fossilised human ancestor species is known as "Lucy," thus the nickname.
A "funny bone narrative" could be used to describe Lucy's discovery. Johanson found the first piece of Lucy's skeleton at the area of her ulna closest to the elbow when you bump your ulnar nerve in your elbow, it presses against your humerus and gives you that tingly, "funny bone" feeling. Johanson was able to determine from Lucy's shattered ulna's size and shape that it definitely belonged to a primate and might very well be the fossilised remains of a hominin. When Johanson and Gray carefully searched the earth, they were happy to find a great deal more fossilised bone fragments, including pieces of a skull, mandible, ribs, pelvis, thighs, and feet.
Learn more about species here:
https://brainly.com/question/9506161
#SPJ4
What is a meter stick used for in biology?
A meter stick is a basic tool used in biology that is used to measure length, width and/or depth of biological specimens.
The meter stick is usually made of wood, plastic, or metal and is marked in metric units, with each centimeter being equivalent to one millimeter. The meter stick is an important tool for a variety of biological applications, such as measuring the size of a cell, measuring the distance between two points on a slide, and measuring the size of a specimen.
The meter stick is also used to measure the length of a specimen, such as a plant or animal. This is done by measuring the entire length of the specimen from one end to the other. The meter stick can also be used to measure the width of a specimen, such as a leaf or a flower. In addition, the meter stick can be used to measure the depth of a specimen, such as a pond or a lake.
Learn more about meter stick at :https://brainly.com/question/17312676
#SPJ4