A heart defibrillator passes 12.1 A through a patient's torso for 5.00 ms in an attempt to restore normal beating. (a) How much charge passed? What voltage was applied if 468 ) of energy was dissipated? KV (c) What was the path's resistance? kn (d) Find the temperature increase caused in the 8.00 kg of affected tissue. The specific heat of tissue is 3500 J/(kg. "C). °C

Answers

Answer 1

(a) The amount of charge passed through the patient's torso is 0.0605 C, (b) The voltage applied during the procedure is 7711.57 V, (c) The resistance of the path is 636.78 Ω, (d) The temperature is 0.0168 °C.

The charge passed through the patient's torso can be calculated by multiplying the current and the time, the applied voltage can be determined by dividing the energy dissipated by the charge, the path's resistance can be found by dividing the voltage by the current, and the temperature increase in the affected tissue can be determined using the specific heat formula.

(a) To find the charge passed, we multiply the current (I) and the time (t): Charge = I * t = 12.1 A * 5.00 ms = 0.0605 C.

(b) The voltage applied can be determined by dividing the energy dissipated (E) by the charge (Q): Voltage = E / Q = 468 J / 0.0605 C = 7711.57 V.

(c) The path's resistance (R) can be found by dividing the voltage (V) by the current (I): Resistance = V / I = 7711.57 V / 12.1 A = 636.78 Ω.

(d) To calculate the temperature increase (ΔT) in the affected tissue, we can use the specific heat formula: ΔT = (Energy dissipated) / (mass * specific heat) = 468 J / (8.00 kg * 3500 J/(kg.°C)) = 0.0168 °C.

To learn more about patient's torso -

brainly.com/question/28978964

#SPJ11


Related Questions

4. ARL circuit as shown below has a battery with ε = 10 V, resistors R. = 1000 R2 = 200 n, and an inductor L = 500 mH. R w celell R₂ w A. Find the time constant for energizing this circuit (switch is in position a). B. Find the current through the inductor when the switch has been in position a for a long time. C. With the inductor initially energized (switch has been at a for a long time) find the time necessary when de-energizing (switch moved to b at time t=0) to reduce the current to half of its initial value.

Answers

we need to fine the de-energizing time needs to half the current to its initial value. The problem mentioned above is related to an ARL circuit with certain components and conditions. Here is the solution to the problem:

Given, ε = 10 V,
R1 = 1000 Ω,
R2 = 200 Ω,
L = 500 mH

The time constant for energizing this circuit (switch is in position a):The formula for time constant (τ) is given as:

τ = L/R1

The value of L is given as 500 mH or 0.5 H, and R1 is 1000 Ω.

τ = L/R1

τ = 0.5 H/1000 Ω

τ = 0.0005 sb

The current through the inductor when the switch has been in position a for a long time: For t = ∞, the switch is in position a, and the circuit is energized. Thus, the current through the inductor would be maximum. The current (I) through the inductor (L) is given as:

I = ε/R1I = 10/1000= 0.01 Ac

With the inductor initially energized (switch has been at a for a long time) find the time necessary when de-energizing (switch moved to b at time t = 0) to reduce the current to half of its initial value:
The formula for current is given as:

I = I0e-t/τ

At half of its initial value, I = I0/2
The formula for the time taken to reach half of the initial value of current is given as:

t = τln2

The value of τ is already calculated, which is 0.0005 s.
Substitute the value of τ in the above formula:
tau = 0.0005 s

Therefore,
t = τ ln2

t = 0.0005 × ln2

t = 0.00035 s (approximately).

Hence, the main answer to the problem is: A. The time constant for energizing this circuit (switch is in position a) is 0.0005 s. B. The current through the inductor when the switch has been in position a for a long time is 0.01 A.C. The time necessary when de-energizing (switch moved to b at time t = 0) to reduce the current to half of its initial value is 0.00035 s. Hence, the conclusion to the problem is that the inductor in the circuit has certain properties and conditions, as calculated through the above solution.

to know more about ARL circuit visit:

brainly.com/question/31478049

#SPJ11

A diver springs upward from a board that is 2.86 meters above the water. At the instant she contacts the water her speed is 8.86 m/s and her body makes an angle of 75.0° with respect to the horizontal surface of the water. Determine her initial velocity.

Answers

The diver's initial velocity is 7.49 m/s

* Height of the diving board: 2.86 meters

* Final speed: 8.86 m/s

* Angle of contact with the water: 75.0°

We need to determine the diver's initial velocity.

To do this, we can use the following equation:

v^2 = u^2 + 2as

where:

* v is the final velocity

* u is the initial velocity

* a is the acceleration due to gravity (9.8 m/s^2)

* s is the distance traveled (2.86 meters)

Plugging in the known values, we get:

8.86^2 = u^2 + 2 * 9.8 * 2.86

u^2 = 56.04

u = 7.49 m/s

Therefore, the diver's initial velocity is 7.49 m/s.

Learn more about initial velocity https://brainly.com/question/19365526

#SPJ11

Current Attempt in Progress Concept Simulation 26.3 reviews the concepts that play a role in this problem. A converging lens has a focal length of 8100 cm. A 13.0 cm-tall object is located 157.0 cm in front of this lens. (a) What is the image distance?(b) is the image real or virtual?te) What is the image height? Be sure to include the proper algebraic sign, (a) Number Units (b) The image is (c) Number 1 Units

Answers

(a) The image distance is -164.48 cm.

(b) The image is real.

(c) The image height is -1.046 cm (negative sign indicates an inverted image compared to the object)

Calculate the image distance:

Using the lens formula, 1/f = 1/v - 1/u, where f is the focal length, v is the image distance, and u is the object distance. Plugging in the given values, we have:

1/8100 = 1/v - 1/(-157)

Solving for v, we find v ≈ -164.48 cm.

Determine the nature of the image:

Since the image distance is negative, the image formed by the converging lens is real. A real image is formed when light rays actually converge at a point after passing through the lens.

Calculate the image height:

To find the image height, we can use the magnification formula, magnification (m) = -v/u, where u is the object height. Plugging in the values, we have:

m = -164.48/157

Calculating the magnification gives us m ≈ -1.046.

The negative sign indicates an inverted image compared to the object.

Learn more about  image distance

brainly.com/question/29659384

#SPJ11

Find the magnitude of the electric field where the vertical
distance measured from the filament length is 34 cm when there is a
long straight filament with a charge of -62 μC/m per unit
length.
E=___

Answers

The magnitude of the electric field where the vertical distance measured from the filament length is 34 cm when there is a long straight filament with a charge of -62 μC/m per unit length is 2.22x10^5 N/C. Therefore, E= 2.22 x 10^5 N/C. A charged particle placed in an electric field experiences an electric force.

The magnitude of the electric field where the vertical distance measured from the filament length is 34 cm when there is a long straight filament with a charge of -62 μC/m per unit length is 2.22x10^5 N/C. Therefore, E= 2.22 x 10^5 N/C. A charged particle placed in an electric field experiences an electric force. The magnitude of the electric field is defined as the force per unit charge that acts on a positive test charge placed in that field. The electric field is represented by E.

The electric field is a vector quantity, and the direction of the electric field is the direction of the electric force acting on the test charge. The electric field is a function of distance from the charged object and the amount of charge present on the object. The electric field can be represented using field lines. The electric field lines start from the positive charge and end at the negative charge. The electric field due to a long straight filament with a charge of -62 μC/m per unit length is given by, E = (kλ)/r

where, k is Coulomb's constant = 9 x 109 N m2/C2λ is the charge per unit length

r is the distance from the filament

E = (9 x 109 N m2/C2) (-62 x 10-6 C/m) / 0.34 m = 2.22 x 105 N/C

To know more about electric field visit:

https://brainly.com/question/30544719

#SPJ11

mc 2. (a) The Compton Scattering predicts a change in the wavelength of light of h Δλ = A1 = (1 - cos o), NO while Thomson Scattering, derived from classical mechanics, says the scattering of light is elastic, with no change in wavelength. Given this information: • Explain why Thomson scattering was sufficient to explain scattering of light at optical wavelength, and which of the two formulae is more fundamental. • Calculate in which wavelength range the change in wavelength predicted by Compton Scattering becomes important. (5)

Answers

Thomson scattering was sufficient to explain scattering of light at optical wavelengths because at these wavelengths, the energy of the photons involved is relatively low. As a result, the wavelength of the scattered light remains unchanged.

On the other hand, Compton scattering is more fundamental because it takes into account the wave-particle duality of light and incorporates quantum mechanics. In Compton scattering, the incident photons are treated as particles (photons) and are scattered by free electrons. This process involves an exchange of energy and momentum between the photons and electrons, resulting in a change in the wavelength of the scattered light.

To calculate the wavelength range where the change in wavelength predicted by Compton scattering becomes important, we can use the formula for the change in wavelength:

Δλ = λ' - λ = h(1 - cosθ) / (mec),

where Δλ is the change in wavelength, λ' is the wavelength of the scattered photon, λ is the wavelength of the incident photon, h is the Planck's constant, θ is the scattering angle, and me is the electron mass.

The formula tells us that the change in wavelength is proportional to the Compton wavelength, which is given by h / mec. The Compton wavelength is approximately 2.43 x 10^(-12) meters.

For the change in wavelength to become significant, we can consider a scattering angle of 180 degrees (maximum possible scattering angle) and calculate the corresponding change in wavelength:

Δλ = h(1 - cos180°) / (mec) = 2h / mec = 2(6.626 x 10^(-34) Js) / (9.109 x 10^(-31) kg)(2.998 x 10^8 m/s) ≈ 2.43 x 10^(-12) meters.

Therefore, the change in wavelength predicted by Compton scattering becomes important in the range of approximately 2.43 x 10^(-12) meters and beyond. This corresponds to the X-ray region of the electromagnetic spectrum, where the energy of the incident photons is higher, and the wave-particle duality of light becomes more pronounced.

learn more about scattering here:

brainly.com/question/13435570

#SPJ11

In a right angle traingle ABC, angle ABC is 90 Degree, AB = 2 m, and angle ACB is 41.81 Degree. A point charge of 5*29 nC is placed at point C, point charge 4* 29 nC is placed at point A and point charge 1 C is placed in point B. Calculate the force on charge at B due to others two. Your Answer:

Answers

The force on the charge at point B, due to the charges at points A and C, can be calculated using Coulomb's law. By determining the distances between the charges in the right-angled triangle and applying the formula, we can find the individual forces exerted by each charge and then sum them up to obtain the total force on the charge at point B.

To calculate the force on the charge at point B due to the other two charges, we can use Coulomb's law, which states that the force between two charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Let's denote the charge at point C as q1 = 5 * 29 nC, the charge at point A as q2 = 4 * 29 nC, and the charge at point B as q3 = 1 C.

First, we need to find the distances between the charges. Since we have a right-angled triangle ABC, we can use trigonometry to calculate the distances.

Using the given information, we can find that the length of BC (opposite side of angle ACB) is AB * tan(angle ACB).

BC = 2 m * tan(41.81°)

Once we have the distances, we can calculate the forces using Coulomb's law:

Force from q1 on q3: F1 = (k * |q1 * q3|) / [tex]r1^2[/tex]

Force from q2 on q3: F2 = (k * |q2 * q3|) /[tex]r2^2[/tex]

where k is the electrostatic constant, approximately equal to 9 × 10^9 N m^2/C^2.

Finally, we can sum up the forces to find the total force on the charge at point B:

Total force on charge at B: F = F1 + F2

Calculating the distances, forces, and summing them up will give us the final answer for the force on the charge at point B due to the other two charges.

To know more about Coulomb's law refer to-

https://brainly.com/question/506926

#SPJ11

Use the variational method to estimate the ground state energy of a one- dimensional harmonic oscillator making use of the following test functions: a. y0(x,a) = Ae^-a|x|
b. y0(x,a) = A / (x^2 + a) where a is a positive real number and A the normalization constant.

Answers

To estimate the ground-state energy of a one-dimensional harmonic-oscillator using the variational method, we can employ the given test functions and evaluate their expectation values of the Hamiltonian.

a. For the trial wavefunction y0(x, a) = Ae^(-a|x|), we calculate the expectation value of the Hamiltonian:

<|H|> = ∫ y0*(x, a) H y0(x, a) dx

We can then minimize this expectation value with respect to the parameters A and a to obtain an estimate of the ground state energy.

b. For the trial wavefunction y0(x, a) = A / (x^2 + a), we again calculate the expectation value of the Hamiltonian:

<|H|> = ∫ y0*(x, a) H y0(x, a) dx . Minimizing this expectation value with respect to the parameters A and a will provide us with another estimate of the ground state energy. By utilizing the variational method and evaluating the expectation values of the Hamiltonian for the given trial wavefunctions, we can estimate the ground state energy of the one-dimensional harmonic oscillator. It is important to note that these estimates serve as upper bounds on the true ground state energy, and more sophisticated trial functions or numerical techniques may be required for more accurate results.

To learn more about harmonic-oscillator , click here : https://brainly.com/question/31798306

#SPJ11

On a clear night during the winter months, if you are in the northern hemisphere and look up at the sky, you can see the constellation Orion.
northern hemisphere and look up at the sky, you can see the constellation Orion. One star in this constellation, Rigel
this constellation, Rigel, has a surface temperature of approximately
7,000 K and another star, Betelgeuse, has a surface temperature of about 4,000 K.
about 4,000 K
a) Estimate the maximum wavelength in nm of the two stars.

Answers

The maximum wavelength of Rigel is approximately 414 nm, while the maximum wavelength of Betelgeuse is around 725 nm.

To estimate the maximum wavelength, we can use Wien's displacement law, which states that the wavelength at which an object emits the most radiation is inversely proportional to its temperature. The formula for Wien's displacement law is λ_max = b/T, where λ_max is the maximum wavelength, b is Wien's constant (approximately 2.898 × 10^6 nm·K), and T is the temperature in Kelvin.

For Rigel, plugging in the temperature of 7,000 K into the formula, we have λ_max = 2.898 × 10^6 nm·K / 7,000 K ≈ 414 nm. This means that the maximum wavelength of Rigel is estimated to be around 414 nm.

For Betelgeuse, using the same formula with a temperature of 4,000 K, we have λ_max = 2.898 × 10^6 nm·K / 4,000 K ≈ 725 nm. This indicates that the maximum wavelength of Betelgeuse is estimated to be around 725 nm.

To learn more about Wien's displacement law click here:

brainly.com/question/13040863

#SPJ11

5. [-/2 Pointsj DETAILS SERFICI0 10.3.0 Vehn A disk 7.90 cm in radius rotates at a constant rate of 1 140 rev/min about its central axis. (a) Determine its angular speed. rad/s (b) Determine the tangential speed at a point 3.08 cm from its center. m/s (c) Determine the radial acceleration of a point on the rim. magnitude km/s2 direction -Select- (d) Determine the total distance a point on the rim moves in 1.92 s. m Need Help? Read It Master it

Answers

The question involves a disk with a radius of 7.90 cm rotating at a constant rate of 1,140 rev/min about its central axis. The task is to determine the angular speed, tangential speed at a specific point, radial acceleration at the rim, and the total distance traveled by a point on the rim in a given time.

(a) To find the angular speed, we need to convert the given rate from revolutions per minute (rev/min) to radians per second (rad/s). Since one revolution is equivalent to 2π radians, we can calculate the angular speed using the formula: angular speed = (2π * rev/min) / 60. Substituting the given value of 1,140 rev/min into the formula will yield the angular speed in rad/s.

(b) The tangential speed at a point on the disk can be calculated using the formula: tangential speed = radius * angular speed. Given that the radius is 3.08 cm, and we determined the angular speed in part (a), we can substitute these values into the formula to find the tangential speed in m/s.

(c) The radial acceleration of a point on the rim can be determined using the formula: radial acceleration = (tangential speed)^2 / radius. Substituting the tangential speed calculated in part (b) and the given radius, we can calculate the magnitude of the radial acceleration. However, the question does not provide the direction of the radial acceleration, so it remains unspecified.

(d) To determine the total distance a point on the rim moves in 1.92 s, we can use the formula: distance = tangential speed * time. Since we know the tangential speed from part (b) and the given time is 1.92 s, we can calculate the total distance traveled by the point on the rim.

Learn more about Angular speed:

https://brainly.com/question/29058152

#SPJ11

Ignoring air resistance, if a 10 kg ball and a 100 kg box were both dropped from the top of a building, the acceleration of the 10 kg ball would be ___ the acceleration of the 100 kg box. 10 times equal to 1/10th 1/100th 100 times

Answers

According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Both the ball and the box experience the same gravitational force acting on them due to their masses being pulled towards the Earth. Since the gravitational force is the same for both objects, the net force acting on each object is also the same. Therefore, according to Newton's second law, the ratio of force to mass (acceleration) will be the same for both objects. Hence, the acceleration of the 10 kg ball would be equal to the acceleration of the 100 kg box.

To learn more about acceleration , click here : https://brainly.com/question/30499732

#SPJ11

When performing Young's double slit experiment, at what angle
(in degrees) is the first-order maximum for 638 nm wavelength light
falling on double slits if the separation distance is 0.0560
mm?

Answers

When performing Young's double slit experiment, at 6132.64 angle

(in degrees) is the first-order maximum for 638 nm wavelength light

falling on double slits if the separation distance is 0.0560

mm.

In Young's double-slit experiment, the angle for the first-order maximum can be determined using the formula:

θ = λ / (d * sin(θ))

Where:

θ is the angle for the first-order maximum,

λ is the wavelength of light,

d is the separation distance between the slits.

Given:

λ = 638 nm = 638 × 10^(-9) meters

d = 0.0560 mm = 0.0560 × 10^(-3) meters

Let's calculate the angle θ:

θ = (638 × 10^(-9)) / (0.0560 × 10^(-3) * sin(θ))

To solve this equation, we can make an initial guess for θ and then iteratively refine it using numerical methods. For a rough estimate, we can assume that the angle is small, which allows us to approximate sin(θ) ≈ θ (in radians). Therefore:

θ ≈ (638 × 10^(-9)) / (0.0560 × 10^(-3) * θ)

Simplifying the equation:

θ^2 ≈ (638 × 10^(-9)) / (0.0560 × 10^(-3))

θ^2 ≈ (638 / 0.0560) × (10^(-9) / 10^(-3))

θ^2 ≈ 11428.6

Taking the square root of both sides:

θ ≈ √11428.6

θ ≈ 106.97 radians (approximately)

To convert this angle from radians to degrees, we multiply by the conversion factor:

θ ≈ 106.97 * (180 / π)

θ ≈ 6132.64 degrees

Therefore, the approximate angle for the first-order maximum in Young's double-slit experiment with 638 nm wavelength light falling on double slits with a separation distance of 0.0560 mm is approximately 6132.64 degrees.

To learn more about angle follow the given link below

https://brainly.com/question/25716982

#SPJ11

An ohmmeter must be inserted directly into the current path to
make a measurement.
True or False?

Answers

An ohmmeter must be inserted directly into the current path to make a measurement. This statement is FALSE.

Ohmmeter, also known as a volt-ohm meter (VOM), is an electronic device that measures resistance, current, and voltage. This instrument is used to measure the electrical resistance between two points in an electrical circuit or a device.

To measure the resistance of a component or circuit, the Ohmmeter is directly connected to the component leads without any voltage or current source in the circuit. However, it doesn't have to be connected directly to the current path. The voltage source is turned off, and the component is disconnected from the circuit before taking the measurement.

The ohmmeter is also used to measure current by connecting it in series with a resistor or component, and it measures voltage by connecting it in parallel with the component.

The ohmmeter can be used to measure resistance with an accuracy of up to 0.1% when used correctly. Therefore, it is an essential instrument in electrical and electronics laboratories and workshops, as well as for field maintenance.

The statement, "An ohmmeter must be inserted directly into the current path to make a measurement," is FALSE.

Learn more About ohmmeter from the given link

https://brainly.com/question/31392202

#SPJ11

A ball has kinetic energy of 8.20 kj. if the ball has a mass of 120.0g, how fast is the ball traveling?

Answers

The ball is traveling at a speed of approximately 4.05 m/s

To find the speed of the ball, we can use the formula for kinetic energy:

Kinetic Energy (KE) = 1/2 * mass * speed^2

Given that the kinetic energy of the ball is 8.20 kJ and the mass of the ball is 120.0 g, we can rearrange the formula to solve for speed.

First, convert the mass to kilograms by dividing it by 1000:

mass = 120.0 g / 1000 = 0.120 kg

Now, substitute the values into the formula:

8.20 kJ = 1/2 * 0.120 kg * speed^2

To isolate the speed, we need to divide both sides of the equation by 1/2 * 0.120 kg:

(8.20 kJ) / (1/2 * 0.120 kg) = speed^2

Simplifying the left side of the equation:

16.40 kJ/kg = speed^2

Now, take the square root of both sides of the equation to find the speed:

√(16.40 kJ/kg) = √(speed^2)

The square root of speed^2 is just the absolute value of speed, so:

speed = √(16.40 kJ/kg)

Using a calculator, the speed of the ball is approximately 4.05 m/s.

Therefore, the ball is traveling at a speed of approximately 4.05 m/s.

to know more about speed here:

brainly.com/question/17661499

#SPJ11

a nuclear reaction is given in 01​n+92235​U→3692​Kr+zA​X+201​n​ where 01​n indicates a neutron. You will need the following mass data: - mass of 235U=235.043924u mass of 92Kr=91.926165u mass of ZA6​X=141.916131u, and mass of 01​n=1.008665u.​ Part A - What is the number of protons Z in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1 Part B - What is the number of nucleons A in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1 ) What is the mass defect in atomic mass unit u? Report a positive value. Keep 6 digits after the decimal point. Δm Part D What is the energy (in MeV) corresponding to the mass defect? Keep 1 digit after the decimal point.

Answers

Part A: The number of protons (Z) in the nucleus labeled X is 53.

Part B: The number of nucleons (A) in the nucleus labeled X is 131.

In the given nuclear reaction, the reactant is a neutron (01​n) and the product includes a nucleus labeled X. We need to determine the number of protons (Z) and nucleons (A) in the nucleus labeled X.

To find the number of protons, we need to look at the product 3692​Kr+zA​X. From the given mass data, the mass of 92Kr is 91.926165u. Since the atomic number of Kr is 36, it means it has 36 protons. Therefore, the remaining protons (Z) in the nucleus labeled X would be 92 - 36 = 56.

To calculate the number of nucleons (A), we need to consider the conservation of mass in a nuclear reaction. The mass of the reactant 01​n (neutron) is 1.008665u, and the mass of 235U is 235.043924u. The mass of the product 3692​Kr+zA​X can be calculated by subtracting the mass of 01​n and 235U from the given mass data for Kr and X:

Mass of 3692​Kr+zA​X = Mass of 92Kr + Mass of ZA6​X - Mass of 01​n - Mass of 235U

Mass of 3692​Kr+zA​X = 91.926165u + 141.916131u - 1.008665u - 235.043924u

Mass of 3692​Kr+zA​X ≈ -1.210333u

Since the mass defect is positive, we take the absolute value:

Δm ≈ 1.210333u

Finally, to calculate the energy corresponding to the mass defect, we use Einstein's mass-energy equivalence formula E = Δmc^2. We convert the mass defect (Δm) to kilograms (1u = 1.66053906660 × 10^-27 kg) and use the speed of light (c = 2.998 × 10^8 m/s):

E = (1.210333u × 1.66053906660 × 10^-27 kg/u) × (2.998 × 10^8 m/s)^2

E ≈ 3.635 MeV

Therefore, the energy corresponding to the mass defect is approximately 3.635 MeV.

To learn more about protons click here brainly.com/question/12535409

#SPJ11

A woman exerts a constant horizontal force on a large box. As a result, the box moves across a horizontal floor at a constant speed "vo " The constant horizontal
force applied by the woman:

Answers

The constant horizontal force applied by the woman has the same magnitude as the total force which resists the motion of the box.

When an object moves at a constant speed across a horizontal surface, the net force acting on the object is indeed zero. This means that the sum of all the forces acting on the object must balance out to zero. In the case of the box being moved by the woman, the applied force by the woman must be equal in magnitude and opposite in direction to the total force of resistance acting on the box.

The total force of resistance includes various factors that oppose the motion of the box. These factors typically include friction between the box and the floor, air resistance (if applicable), and any other resistive forces present. The magnitude of the applied force exerted by the woman must match the total force of resistance to maintain a constant speed. If the applied force were smaller than the total force of resistance, the box would slow down and eventually come to a stop. If the applied force were greater than the total force of resistance, the box would accelerate.

Therefore, the correct statement is that the constant horizontal force applied by the woman has the same magnitude as the total force that resists the motion of the box when it moves at a constant speed across a horizontal surface.

Learn more about Force from the given link:

https://brainly.com/question/13191643

#SPJ11

An ice cube of volume 50 cm 3 is initially at the temperature 250 K. How much heat is required to convert this ice cube into room temperature (300 K)? Hint: Do not forget that the ice will be water at room temperature.

Answers

An ice cube of volume 50 cm³ is initially at the temperature of 250K. Let's find out how much heat is required to convert this ice cube into room temperature (300 K)

Solution:

It is given that the initial temperature of the ice cube is 250K and it has to be converted to room temperature (300K).

Now, we know that to convert ice at 0°C to water at 0°C, heat is required and the quantity of heat required is given byQ = mL

where, Q = Quantity of heat required, m = Mass of ice/water and L = Latent heat of fusion of ice at 0°C.

Now, to convert ice at 0°C to water at 0°C, heat is required.

The quantity of heat required is given by:

Q1 = mL1

Where, m = mass of ice

= Volume of ice × Density of ice

= (50/1000) × 917 = 45.85g(1 cm³ of ice weighs 0.917 g)

L1 = Latent heat of fusion of ice = 3.34 × 10⁵ J/kg (at 0°C)

Therefore,

Q1 = mL1 = (45.85/1000) × 3.34 × 10⁵

= 153.32 J

Now, the water formed at 0°C has to be heated to 300K (room temperature).

Heat required is given byQ2 = mCΔT

Where, m = mass of water

= 45.85 g (from above)

C = specific heat capacity of water = 4.2 J/gK (at room temperature)

ΔT = Change in temperature = (300 - 0) K

= 300 K

T = Temperature of water at room temperature = 300K

Therefore, Q2 = mCΔT= 45.85 × 4.2 × 300= 57834 J

Therefore, total heat required = Q1 + Q2= 153.32 J + 57834 J= 57987.32 J

Hence, the heat required to convert the ice cube of volume 50 cm³ at a temperature of 250K to water at a temperature of 300K is 57987.32 J.

To know more about temperature visit :

https://brainly.com/question/7510619

#SPJ11

If the net charge on the oil drop is negative, what should be
the direction of the electric field that helps it remain
stationary?

Answers

Millikan's experiment established the fundamental charge of the electron to be 1.592 x 10-19 coulombs, which is now defined as the elementary charge.

The direction of the electric field that helps an oil drop remain stationary when the net charge on it is negative is upwards. This occurs due to the interaction between the electric field and the negative charges on the oil droplet.

Millikan oil-drop experiment, which is a measurement of the elementary electric charge by American physicist Robert A. Millikan in 1909, was the first direct and reliable measurement of the electric charge of a single electron.

The following are some points to keep in mind during the Millikan Oil Drop Experiment:

Oil droplets are produced using an atomizer by spraying oil droplets into a container.

When oil droplets reach the top, they are visible through a microscope.

A uniform electric field is generated between two parallel metal plates using a battery.

The positively charged upper plate attracts negative oil droplets while the negatively charged lower plate attracts positive oil droplets. 

The oil droplet falls slowly due to air resistance through the electric field.

As a result of Coulomb's force, the oil droplet stops falling and remains stationary. The upward electric force balances the downward gravitational force. From this, the amount of electrical charge on the droplet can be calculated.

Millikan's experiment established the fundamental charge of the electron to be 1.592 x 10-19 coulombs, which is now defined as the elementary charge.

To know more about fundamental charge of the electron, visit:

https://brainly.com/question/32913598

#SPJ11

When an oil drop has a negative net charge, the electric field that helps it stay stationary is in the upward direction.

Thus, The interaction between the electric field and the oil droplet's negative charges causes this to happen.

The first direct and accurate measurement of the electric charge of a single electron was made in 1909 by American physicist Robert A. Millikan using his oil-drop experiment to detect the elementary electric charge.

When conducting the Millikan Oil Drop Experiment, bear the following in mind. Using an atomizer, oil droplets are sprayed into a container to create oil droplets. Oil droplets are visible under a microscope once they have risen to the top. Between two people, a consistent electric field is created.

Thus, When an oil drop has a negative net charge, the electric field that helps it stay stationary is in the upward direction.

Learn more about Electric field, refer to the link:

https://brainly.com/question/11482745

#SPJ4

An L-C circuit containing an 90.0 mH inductor and a 1.75 nF capacitor oscillates with a maximum current of 0.810 A. For related problemsolving tips and strategies, you may want to view a Video Tutor Solution of An oscillating circuit. Calculate the oscillation frequency of the circuit. Express your answer with the appropriate units.
Assuming the capacitor had its maximum charge at time t = 0, calculate the energy stored in the inductor after 2.60 ms of oscillation. Express your answer with the appropriate units.

Answers

The oscillation frequency of the circuit is approximately 3.189 × [tex]10^7[/tex] HzThe energy stored in the inductor after 2.60 ms of oscillation is approximately 0.0068 J.

To calculate the energy stored in the inductor after 2.60 ms of oscillation, we can use the formula:

f = 1 / (2π√(LC))

Given that the inductance (L) is 90.0 mH and the capacitance (C) is 1.75 nF, we need to convert them to their base units:

L = 90.0 × [tex]10^{(-3)[/tex] H

C = 1.75 × [tex]10^{(-9)[/tex] F

Now we can substitute these values into the formula to find the oscillation frequency:

f = 1 / (2π√(90.0 × [tex]10^{(-3)[/tex] × 1.75 × [tex]10^{(-9)[/tex]))

f ≈ 1 / (2π√(1.575 × [tex]10^{(-11)[/tex])) ≈ 3.189 × [tex]10^7[/tex]  Hz

Therefore, the oscillation frequency of the circuit is approximately 3.189 × [tex]10^7[/tex] Hz.

Inductance, L = 90.0 mH = 90.0 × [tex]10^{(-3)[/tex] H

Maximum current, [tex]I_{max[/tex] = 0.810 A

The energy stored in the inductor can be calculated using the formula:

E = 0.5 × L ×[tex]I_{max}^2[/tex]

Substituting the given values:

E = 0.5 × 90.0 × [tex]10^{(-3)[/tex] H × [tex](0.810 A)^2[/tex]

Calculating further:

E ≈ 0.0068 J

Thus, the energy stored in the inductor after 2.60 ms of oscillation is approximately 0.0068 J.

For more details regarding inductor, visit:

https://brainly.com/question/31865204

#SPJ12

A small rock is thrown vertically upward with a speed of 28.4 m/s from the edge of the roof of a 35.5 m tall building. The rock doesn't hit the building on its way back down and lands on the street below. Ignore air resistance. (a) What is the speed (in m/s ) of the rock just before it hits the street? (b) How much time (in sec) elapses from when the rock is thrown until it hits the street?

Answers

To determine the speed of the rock just before it hits the street, we need to apply the conservation of energy principle. The total energy of the rock is equal to the sum of its potential energy.

At the top of the building and its kinetic energy just before hitting the street. E_total = E_kinetic + E_potentialUsing the conservation of energy formula and the known values, E_total = E_kinetic + E_potential(1/2)mv² + mgh = mghence (1/2) v² = ghv = √2ghwhere m is the mass of the rock, v is its velocity, g is the acceleration due to gravity, and h is the height of the building.

The velocity of the rock just before hitting the street is 83.0 m/s. b) We can find the time taken by the rock to hit the street using the following kinematic equation, where is the displacement, Vi is the initial velocity, g is the acceleration due to gravity, and t is the time taken. From the equation, At the top of the building and g = 9.8 m/s². Solving the quadratic equation.

To know more about conservation visit:

https://brainly.com/question/9530080

#SPJ11

On either side of a pane of window glass, temperatures are 15°C and -2°C. How fast is heat conducted through such a pane of area 0.25 m2 if the thickness is 2 mm? (Conductivity of glass = 1.05 W/m.K)

Answers

The heat conducted through the glass is 11,812.5 W.

On either side of a pane of window glass, temperatures are 15°C and -2°C. How fast is heat conducted through such a pane of area 0.25 m2 if the thickness is 2 mm? (Conductivity of glass = 1.05 W/m.K)

The formula for calculating the heat conducted through a material is as follows:

Q = KAT ΔT/Δx Q is the amount of heat, A is the surface area of the material, ΔT is the temperature gradient across the material, Δx is the thickness of the material, and K is the material's conductivity.

ΔT = 15 - (-2) = 17 K Δx = 2 mm = 0.002 mA = 0.25 m²K = 1.05 W/m.K

Therefore,Q = KAT ΔT/Δx = 1.05 × 0.25 × 17/0.002 = 11,812.5 W

Hence the required answer is given as the heat conducted through the glass is 11,812.5 W.

Learn more about heat conducted here https://brainly.com/question/13253422

#SPJ11

(a) A question about the electrical action potential of the human nervous system.
(b) A question about the use of electromagnetic waves in medicine.
(c) A question about the physics of your eyesight.
(d) Write a question you have heard about physics

Answers

What is the role of the electrical action potential in the human nervous system and how does it facilitate communication between neurons? What are the fundamental principles behind Einstein's theory of relativity?

(b) How are electromagnetic waves used in medicine for diagnostic imaging techniques such as X-rays, MRI, and ultrasound?

(c) How does the physics of light, including refraction, lens accommodation, and photoreceptor cells, contribute to the process of human eyesight?

(d) What are the fundamental principles behind Einstein's theory of relativity and how do they challenge our understanding of space, time, and gravity?

To learn more about neurons click here

https://brainly.com/question/9401108

#SPJ11

Two vectors have magnitudes of 9.6 and 32. The angle between them when they are drawn with their tails at the same point is 61.7°. The component of the longer vector along the line of the shorter is: a. 32.0 b. 15.2 c. 4.6 d. 28.2 e. 8.5

Answers

The component of the longer vector along the line of the shorter vector is approximately 15.2 (option b). We can use the concept of vector projection.

To find the component of the longer vector along the line of the shorter vector, we can use the concept of vector projection.

Let's denote the longer vector as A (magnitude of 32) and the shorter vector as B (magnitude of 9.6). The angle between them is given as 61.7°.

The component of vector A along the line of vector B can be found using the formula:

Component of A along B = |A| * cos(theta)

where theta is the angle between vectors A and B.

Substituting the given values, we have:

Component of A along B = 32 * cos(61.7°)

Using a calculator, we can evaluate this expression:

Component of A along B ≈ 15.2

Therefore, the component of the longer vector along the line of the shorter vector is approximately 15.2 (option b).

To learn more about vector projection click here

https://brainly.com/question/30640982

#SPJ11

An ideal gas at temperature To is slowly compressed at constant pressure of 2 atm from a volume of 10 liters to a volume of 2 liters. Then the volume of the gas is held constant while heat is added, raising the gas temperature back to To. Calculate the work done ON the gas. 1 atm = 1.0x 105 Pascals and 1 liter = 0.001 m³.
1. -800 J
2. -400 J
3. +800 J
4. +400 J
5. +1600 J
6. -1600 J

Answers

The work done on the gas is -800 J. The correct answer is the first option.

To calculate the work done on the gas, we need to consider the two stages of the process separately.

Compression at constant pressure:

During this stage, the pressure (P) is constant at 2 atm, the initial volume (V₁) is 10 liters, and the final volume (V₂) is 2 liters.

The work done on the gas during compression can be calculated using the formula:

Work = -PΔV

Where ΔV is the change in volume (V₂ - V₁).

Plugging in the values:

Work = -2 atm * (2 liters - 10 liters)

= -2 atm * (-8 liters)

= 16 atm·liters

Since 1 atm = 1.0x10^5 Pascals and 1 liter = 0.001 m³, we can convert the units to joules:

Work = 16 atm·liters * (1.0x10^5 Pa/atm) * (0.001 m³/liter)

= 16 * 1.0x10^5 * 0.001 J

= 1600 J

Therefore, during the compression stage, the work done on the gas is -1600 J.

Heating at constant volume:

In this stage, the volume (V) is held constant at 2 liters, and the temperature (T) is raised back to the initial temperature (To).

Since the volume is constant, no work is done during this stage (work = 0 J).

Therefore, the total work done on the gas during the entire process is the sum of the work done in both stages:

Total Work = Work (Compression) + Work (Heating)

= -1600 J + 0 J

= -1600 J

So, the work done on the gas is -1600 J. However, since the question asks for the work done ON the gas (not BY the gas), we take the negative sign to indicate that work is done on the gas, resulting in the final answer of -800 J.

To learn more about volume  click here:

brainly.com/question/28058531

#SPJ11

Determine the values ​​of S, L, and J for the following states:
1S0, 2D5/2, and 3F4.

Answers

The values of S, L, and J for the given states are: 1S0 (S = 0, L = 0, J = 0), 2D5/2 (S = 1/2, L = 2, J = 5/2), and 3F4 (S = 3/2, L = 3, J = 4). In atomic and quantum physics, the values of S, L, and J correspond to the quantum numbers associated with specific electronic states.

These quantum numbers provide information about the electron's spin, orbital angular-momentum, and total angular momentum. In the given states, the first example 1S0 represents a singlet state with S = 0, L = 0, and J = 0. The second example 2D5/2 corresponds to a doublet state with S = 1/2, L = 2, and J = 5/2. Lastly, the third example 3F4 represents a triplet state with S = 3/2, L = 3, and J = 4. These quantum numbers play a crucial role in understanding the energy levels and spectral properties of atoms or ions. They arise from the solution of the Schrödinger equation and provide a way to categorize different electronic configurations. The S, L, and J values help in characterizing the behavior of electrons in specific states, aiding in the interpretation of spectroscopic data and the prediction of atomic properties.

To learn more about angular-momentum , click here : https://brainly.com/question/31626716

#SPJ11

Find the speed of 589-nm light in the following materials: v (m/s) (a) glycerin (b) ice (H₂O) (c) diamond -It

Answers

the speeds of 589-nm light in glycerin, ice, and diamond are approximately 2.04 x 10^8 m/s, 2.29 x 10^8 m/s, and 1.24 x 10^8 m/s, respectively.The speed of light in different materials can be calculated using the equation:
v = c / n

where v is the speed of light in the material, c is the speed of light in a vacuum (approximately 3 x 10^8 m/s), and n is the refractive index of the material.

(a) For glycerin:
The refractive index of glycerin at 589 nm is approximately 1.473.
Using the equation, v = (3 x 10^8 m/s) / 1.473 = 2.04 x 10^8 m/s.

(b) For ice (H₂O):
The refractive index of ice at 589 nm is approximately 1.31.
Using the equation, v = (3 x 10^8 m/s) / 1.31 = 2.29 x 10^8 m/s.

(c) For diamond:
The refractive index of diamond at 589 nm is approximately 2.42.
Using the equation, v = (3 x 10^8 m/s) / 2.42 = 1.24 x 10^8 m/s.

Therefore, the speeds of 589-nm light in glycerin, ice, and diamond are approximately 2.04 x 10^8 m/s, 2.29 x 10^8 m/s, and 1.24 x 10^8 m/s, respectively.

 To  learn  more  about speed click on:brainly.com/question/17661499

#SPJ11

In one type of fusion reaction a proton fuses with a neutron to form a deuterium nucleus: 1H + n H+Y The masses are H (1.0078 u), • n (1.0087 u), and H (2.0141u). The y-ray photon is massless. How much energy (in MeV) is released by this reaction? E = Number i Units

Answers

The fusion of a proton and a neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon.

In a fusion reaction, when a proton and a neutron fuse together to form a deuterium nucleus, a certain amount of energy is released. The energy released can be calculated by using the mass of the particles involved in the reaction.

To calculate the amount of energy released by the fusion of a proton and neutron, we need to calculate the difference in mass of the reactants and the product. We can use Einstein's famous equation E = mc2 to convert this mass difference into energy.

The mass of the proton is 1.0078 u, the mass of the neutron is 1.0087 u and the mass of the deuterium nucleus is 2.0141 u. Thus, the mass difference between the proton and neutron before the reaction and the deuterium nucleus after the reaction is:

(1.0078 u + 1.0087 u) - 2.0141 u = 0.0024 u

Now, we can use the conversion factor 1 u = 931.5 MeV/c² to convert the mass difference into energy:

E = (0.0024 u) x (931.5 MeV/c²) x c²

E = 2.22 MeV

Therefore, the fusion of a proton and neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon. This energy can be harnessed in nuclear fusion reactions to produce energy in a controlled manner.

To learn more about fusion reaction click brainly.com/question/1983482

#SPJ11

A leftward uniform magnetic field is perpendicular to a square conducting coil with 4 turns. The magnitude of the magnetic field is increased by 1 mT every second. Find the magnitude and direction of the average induced current if the resistance of the coil is R = 0.20 and the length of a side of the square is 10 cm.

Answers

The magnitude of the average induced current is 2 A and the direction of the average induced current is leftward.

Here are the given:

Number of turns: 4

Change in magnetic field magnitude: 1 mT/s

Resistance: 0.20 Ω

Length of a side of the square: 10 cm

To find the magnitude and direction of the average induced current, we can use the following formula:

I = N * (dΦ/dt) / R

where:

I is the average induced current

N is the number of turns

dΦ/dt is the rate of change of magnetic flux

R is the resistance

First, we need to find the rate of change of magnetic flux. Since the magnetic field is perpendicular to the coil, the magnetic flux through the coil is equal to the area of the coil multiplied by the magnetic field magnitude. The area of the coil is 10 cm * 10 cm = 0.1 m^2.

The rate of change of magnetic flux is then:

dΦ/dt = 1 mT/s * 0.1 m^2 = 0.1 m^2/s

Now that we know the rate of change of magnetic flux, we can find the average induced current.

I = 4 * (0.1 m^2/s) / 0.20 Ω = 2

The direction of the average induced current is determined by Lenz's law, which states that the induced current will flow in a direction that opposes the change in magnetic flux. Since the magnetic field is increasing, the induced current will flow in a direction that creates a leftward magnetic field.

Therefore, the magnitude of the average induced current is 2 A and the direction of the average induced current is leftward.

Learn more about average with the given link,

https://brainly.com/question/130657

#SPJ11

5 Potential Energy & Force Compute the force vector from the following potential energy; write it in terms of â, y, 2: U (r) = p² + p² (1) where r = x² + y² + z² (2)

Answers

The force vector can be computed from the given potential energy expression by taking the negative gradient of the potential energy function.

To compute the force vector from the potential energy function U(r) = p² + p², where r = x² + y² + z², we need to take the negative gradient of the potential energy function.

The negative gradient of a scalar function gives us the force vector. The gradient operator is denoted as ∇, and it acts on the scalar function U(r). The force vector F can be calculated as:

F = -∇U(r)

To compute the force vector, we need to take the partial derivatives of U(r) with respect to x, y, and z, and multiply them by (-1).

Taking the partial derivatives, we have:

∂U/∂x = -2px

∂U/∂y = -2py

∂U/∂z = -2pz

Therefore, the force vector F can be written as:

F = -(-2px)â - (-2py)ĵ - (-2pz)ƙ

Simplifying further:

F = 2pxâ + 2pyĵ + 2pzƙ

Hence, the force vector in terms of the unit vectors â, ĵ, and ƙ is given by 2pxâ + 2pyĵ + 2pzƙ.

To know more about vector, click here:

brainly.com/question/24256726

#SPJ11

The following two questions deal with a lens system comprised of a pair of diverging lenses. The first, labelled Ly has a focal length with magnitude Ifil = 3 cm. The second, 8 cm behind it, has a focal length with magnitude 1f2l = 7 cm. A 6 cm tall object sits 3 cm in front of the first lens (at its focal point). Place a marker at the tip of (each) intermediate images' arrow. Place the "Final image marker at the tip of the final image's arrow. Hint: You have a copy of the setup on paper. Draw your ray diagram on that first, and then put your markers on the screen. object * * * f1 f2 fi f2 rst L1 HH L2 1 cm Intermediate age Finale

Answers

In the lens system, an intermediate image is formed at a specific point behind the second lens, but there is no final image due to the divergence of light rays.

Here is the ray diagram for the lens system:

object * * * f1 f2 fi f2 rst L1 HH L2 1 cm Intermediate age Finale

The object is placed at the focal point of the first lens, so the light rays from the object are bent away from the principal axis after passing through the lens.

The light rays then converge at a point behind the second lens, which is the location of the intermediate image. The intermediate image is virtual and inverted.

The light rays from the intermediate image are then bent away from the principal axis again after passing through the second lens. The light rays diverge and do not converge to a point, so there is no final image.

The markers should be placed as follows:

The "Intermediate image" marker should be placed at the tip of the arrow for the intermediate image.The "Final image" marker should not be placed anywhere, because there is no final image.

Learn more about Lens below.

https://brainly.com/question/30995178

#SPJ4

A 200−m long stretch of copper wire (resistivity rho=1.78∗10−8Ω∗ m ) is used to make a coil of the radius Rcoil ​=25.0 cm. The cross-sectional area of the wire is Awire ​=2.75mm2. The coil is placed inside a constant, unform magnetic field of magnitude B=0.01 T. How fast should the coil be rotated in order to induce a current of peak magnitude Iθ​=150mA within the coil?

Answers

The required rotation speed is approximately 0.1909 rad/s in the opposite direction of the magnetic field to induce a peak current of 150 mA within the coil.

To calculate the required rotation speed of the coil to induce a peak current of a certain magnitude, we can use Faraday's law of electromagnetic induction. According to Faraday's law, the induced electromotive force (EMF) in a coil is equal to the rate of change of magnetic flux through the coil. We can then equate the induced EMF to the product of the peak current and the resistance of the coil to find the required rotation speed.

The formula for the induced EMF is given by:

EMF = -N × dΦ/dt

Where:

EMF is the electromotive force (in volts)

N is the number of turns in the coil

dΦ/dt is the rate of change of magnetic flux (in weber/second)

The magnetic flux through a coil in a uniform magnetic field is given by:

Φ = B × A

Where:

B is the magnetic field strength (in tesla)

A is the cross-sectional area of the coil (in square meters)

The resistance of the coil is given by:

R = ρ × (L / A)

Where:

ρ is the resistivity of the wire material (in ohm-meters)

L is the length of the wire (in meters)

A is the cross-sectional area of the wire (in square meters)

Now, let's substitute the given values into the formulas:

Given:

ρ = 1.78 × 10⁻⁸ Ω m

R(coil) = 25.0 cm = 0.25 m (radius)

A(wire) = 2.75 mm² = 2.75 × 10⁻⁶ m²

B = 0.01 T

Iθ = 150 mA = 0.15 A

Calculations:

N = 1 (assuming a single turn coil)

A(coil) = π × Rcoil² = π × (0.25)² = 0.1963495408 m² (cross-sectional area of the coil)

Φ = B × A(coil) = 0.01 × 0.1963495408 = 0.0019634954 Wb

Now, we need to find the length of the wire. Since it is a coil, the length can be calculated using the circumference formula:

Circumference = 2 × π × R(coil)

L = Circumference = 2 × π × 0.25 = 1.5707963268 m

Now we can calculate the resistance of the coil:

R = ρ × (L / A(wire)) = 1.78 × 10⁻⁸ × (1.5707963268 / 2.75 × 10⁻⁶) = 0.0000101899 Ω

Finally, we can find the required rotation speed by rearranging the formula for the induced EMF:

EMF = -N × dΦ/dt

dΦ/dt = EMF / (-N)

We know that EMF = Iθ ×R(coil), so:

dΦ/dt = (Iθ × R(coil)) / (-N)

Substituting the given values:

dΦ/dt = (0.15 × 0.25) / (-1) = -0.0375 Wb/s

The negative sign indicates that the induced EMF opposes the change in magnetic flux.

Since dΦ/dt is the angular velocity (ω) multiplied by the area (A(coil)), we can write:

dΦ/dt = ω × A(coil)

Therefore, we can solve for ω:

ω = (dΦ/dt) / A(coil) = -0.0375 / 0.1963495408 = -0.190885922 rad/s

The required rotation speed is approximately 0.1909 rad/s in the opposite direction of the magnitude to induce a peak current of 150 mA within the coil.

To know more about magnitude:

https://brainly.com/question/13241245

#SPJ4

he coil should be rotated at 98.14 rad/s in order to induce a current of peak magnitude Iθ​=150mA within the coil.

The induced current in a coil of wire is produced by changing the magnetic flux passing through the coil. The flux is changing due to the coil's rotation in a magnetic field. The magnitude of the induced current depends on the rate of change of the flux.The formula for induced current is given as,I = (BANω)/R, where, I is the induced current,B is the magnitude of the magnetic field,A is the cross-sectional area of the coil,N is the number of turns of wire in the coil,R is the resistance of the coil andω is the angular frequency of rotation.So,The peak magnitude of current induced in the coil is,Iθ​ = (BANωθ)/R.The resistance of the coil is given as,R = (ρL)/A = (1.78 × 10⁻⁸ × 200)/2.75 × 10⁻⁶ = 1.30 Ω.A = πR² = π(0.25)² = 0.196 m².N = L/Aw = 200/(2.75 × 10⁻⁶ × 0.150) = 48,148.15 turns.Substituting the values in the formula,Iθ​ = (0.01 × 0.196 × 48,148.15 × ωθ)/1.30 = 150 × 10⁻³ A.Simplifying,ωθ = 98.14 rad/s.

Therefore, the coil should be rotated at 98.14 rad/s in order to induce a current of peak magnitude Iθ​=150mA within the coil.

Learn more about coil

https://brainly.com/question/12000391

#SPJ11

Other Questions
9) Calculating with Faradays law and magnetic flux A flat circular coil of wire has a radius of 0.18 m and is made of 75 turns of wire. The coil is lying flat on a level surface and is entirely within a uniform magnetic field with a magnitude of 0.55 T, pointing straight into the paper. The magnetic field is then completely removed over a time duration of 0.050 s. Calculate the average magnitude of the induced EMF during this time duration. 10) Electron accelerated in an E field An electron passes between two charged metal plates that create a 100 N/C field in the vertical direction. The initial velocity is purely horizontal at 3.00106 m/s and the horizontal distance it travels within the uniform field is 0.040 m. What is the vertical component of its final velocity? 6. Explain how the level of expectation and attitudes of consumers and the business community are major determinants of the level of investment. (4) Effective gross income of a property is inversely related tovacancy rates.TrueFalse An electron has velocity - (30+42]) km's as it enters a uniform magnetic field 8 -57 Tut What are(a) the radius of the helical path taken by the electron and (b) the pitch of that path? (c) To an observer looking into the magnetic field region from the entrance point of the electron does the electron spiral clockwise or counterclockwise as it moves? -7 0 0 0 8 -3 4 0 X'(t) = 1 0 -5 0 X (t) 2 1 4 -1 4 X0 = 5 6 7 1. (67 points) Use Theorem 1 on page 350 to solve the above system of differential equations (see section 5.6 vidco).M2. (33points) Use your solution to show that your solution solves the original system of differential equations. 1. The refrigerant (R-134a) in a vapour compression refrigerant cycle enters the compressor as a dry saturated vapour at a pressure of 140kPa. It is compress to a pressure of 600kPa and a temperature of 60C. On leaving the condenser, the refrigerant has a dryness fraction of 0.1. The mass flow rate of the refrigerant is 11kg/min. State three (3) assumptions Draw the p-h and T-s diagram and determine: (i) Compressor power (ii) Refrigerant capacity (iii) Coefficient of performance Medavoy Company is considering a new project that complements its existing business. The machine required for the project costs $4.75 million. The marketing department predicts that sales related to the project will be $2.63 million per year for the next four years, after which the market will cease to exist. The machine will be depreciated to zero over its 4-year economic life using the straight-line method. Cost of goods sold and operating expenses related to the project are predicted to be 25 percent of sales. The company also needs to add net working capital of $215,000 immediately. The additional net working capital will be recovered in full at the end of the projects life. The corporate tax rate is 23 percent and the required return for the project is 10 percent. What is the value of the NPV for this project? (Do not round intermediate calculations and enter your answer in dollars, not millions of dollars, rounded to 2 decimal places, e.g., 1,234,567.89.) A ______________ breaks down a project into components, subcomponents, activities, and tasks. Consider a parallel-plate capacitor with empty space between its plates, which are separated by a distance of 2 mm. If the charge on the positive plate is 4 uC, and the electrical potential energy stored in this capacitor is 12 n), what is the magnitude of the electric field in the region between the plates? O 2 V/m O I V/m 04 V/m O 6 V/m O 3 V/m 6. How many ways can you order the letters of the word BREATHING so that all the vowels are grouped together? (You do not need simplify your answer). Consider a one-dimensional monatomic lattice. The interaction between nearest- neighbours is represented by a spring with a spring constant 3. Next-nearest neighbours are also connected with springs but with a spring constant {. Determine the dispersion relation w(k) for this lattice. ( The provider prescribed vancomycin 25 mg/kg/day PO for a child who weighs 54 lbs. What is the correct daily dosage for this child in milligrams? Enter your answer as a whole number. Enter only the number. Use Desired-Over-Have method to show work. Plot the electric potential (V) versus position for the following circuit on a graph that is to scale. Make sure to label the locations on your horizontal axis. Here V0=10 V and R=Ik What are the following values Vab,Vcd,Vef. ? If the profit function for a product is P(x)=6400x+80x^2x^3230, do0 doliars, selling how many items, x, will produce a maximum proft? x= items Find the maximum profit. $ 3. Define a deficient and abundant number. Prove that the product of two distinct odd primes is deficient. In an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 11.2C. The temperature at the inside surface of the wall is 19.4C. The wall is 0.20 m thick and has an area of 8.6 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall? A puck moves on a horizontal air table. It is attached to a string that passes through a hole in the center of the table. As the puck rotates about the hole, the string is pulled downward very slowly and shortens the radius of rotation, so the puck gradually spirals in towards the center. By what factor will the puck's angular speed have changed when the string's length has decreased to one-third of its original length? As the HIM director, you would like to migrate all or most of your in-house coding to remotely home-based. In anticipation of concerns that IT might raise about remote access, you have been evaluating best practices for remote security. Your recommendations would be to provide each coder with a laptop for remote access to your organizations information.Report why this is your choice in view of HIPAA security provisions. Be sure to research the security provisions so you are clear in your answer.Discover at least five other recommendations that you feel would control remote access and promote security. Why is Procurement Management important? Please provide with a practical example based on your personal experience. Why is it important to measure and monitor the supplier performance over time?Why is it important to include labor and human rights in supply management? Briefly discuss whehter it is easy or not to monitor supplier's violation of labor and human right, and why? Why are the impacts of increasing worldwide risks on supply management and the need to work closely with suppliers and other functions? Why? Select one of the five environmental forces (social, economic, technological, competitive, and regulatory), discuss an actual trend that fits into that particular environmental force, and describe the marketing opportunity it creates. Steam Workshop Downloader