a skydiver has bailed out of his airplane at a height of 3000 m. the mass of the skydiver and his parachute is 80 kg. what is the drag (force of air resistance) on the system (man plus parachute) when he reaches terminal speed?

Answers

Answer 1

The drag (force of air resistance) on the system (man plus parachute) when the skydiver reaches terminal speed is equal to the gravitational force acting on him, which is 80 kg × 9.8 m/s² = 784 N.

To calculate the drag force at terminal speed, we must first understand that at terminal speed, the net force acting on the system is zero. This is because the gravitational force (weight) acting downward on the skydiver is balanced by the upward air resistance (drag force).

The weight of the skydiver can be calculated by multiplying his mass (80 kg) by the acceleration due to gravity (9.8 m/s²), resulting in a gravitational force of 784 N. Since the net force is zero, the drag force must also be 784 N, meaning the force of air resistance on the system at terminal speed is 784 N.

Learn more about gravitational force here:

https://brainly.com/question/24783651

#SPJ11


Related Questions

According to Ohm's law, what would be the resistance of that one resistor in the circuit?

Answers

To determine the resistance of a resistor in a circuit using Ohm's law, we need to know the voltage across the resistor and the current flowing through it. Ohm's law states that the resistance (R) of a component is equal to the voltage (V) across it divided by the current (I) flowing through it:

R = V / I

Ohm's law is a fundamental principle in electrical engineering and physics that describes the relationship between voltage, current, and resistance in an electrical circuit. It states that the current flowing through a conductor between two points is directly proportional to the voltage across the two points, while inversely proportional to the resistance of the conductor. Mathematically, Ohm's law is expressed as:

V = I * R

Where:

V represents the voltage across the conductor (measured in volts, V)

I represents the current flowing through the conductor (measured in amperes, A)

R represents the resistance of the conductor (measured in ohms, Ω)

Learn more about ohm's law on:

https://brainly.com/question/1247379

#SPJ1

in this example, if the emf of the 4 v battery is increased to 19 v and the rest of the circuit remains the same, what is the potential difference vab ?

Answers

The potential difference Vab in the given circuit, with a 19V battery and the rest unchanged, will also be 19V.

In this circuit, if the EMF of the 4V battery is increased to 19V while the rest of the circuit remains the same, the potential difference Vab will be equal to the EMF of the battery. This is because, in a simple series circuit, the potential difference across the terminals of a battery is equal to its EMF.

As the battery EMF is increased to 19V, the potential difference Vab will also be 19V. The voltage is divided across the resistors in the circuit, but the sum of the voltage drops across the resistors will equal the total potential difference, which is the EMF of the battery, in this case, 19V.

Learn more about voltage here:

https://brainly.com/question/30033570

#SPJ11

Let the orbital radius of a planet be R and let the orbital period of the planet be T. What quantity is constant for all planets orbiting the sun, assuming circular orbits? What is this relation (law) called ? You will have to write complete calculations. a. T2/R b. T2 R3 c. T3/R2 d. T/R e. T/R2

Answers

The quantity that is constant for all planets orbiting the Sun, assuming circular orbits, is the ratio of the orbital period squared (T^2) to the orbital radius cubed (R^3). This relation is known as Kepler's Third Law or the Law of Harmonies.

Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of its average distance from the Sun. Mathematically, it can be expressed as:

T^2/R^3 = constant

To derive this relation, let's start with the basic equation for centripetal force:

F = (m*v^2) / R

where m is the mass of the planet, v is its orbital velocity, and R is the orbital radius.

The centripetal force is also given by the gravitational force between the planet and the Sun:

F = (G * M * m) / R^2

where G is the gravitational constant and M is the mass of the Sun.

Setting these two expressions for F equal to each other and rearranging, we have:

(m*v^2) / R = (G * M * m) / R^2

Canceling the mass of the planet (m) from both sides, we get:

v^2 / R = (G * M) / R^2

Rearranging the equation further, we have:

v^2 = (G * M) / R

We know that the orbital velocity of a planet is given by:

v = 2πR / T

Substituting this expression into the equation, we have:

(2πR / T)^2 = (G * M) / R

Simplifying, we get:

4π^2 * R^2 / T^2 = (G * M) / R

Multiplying both sides by T^2 and dividing by 4π^2, we obtain:

R^3 / T^2 = (G * M) / (4π^2)

Since (G * M) / (4π^2) is a constant, we can rewrite the equation as:

R^3 / T^2 = constant

Therefore, the correct answer is (b) T^2 R^3.

Learn more about Kepler's Third Law from

https://brainly.com/question/30404084

#SPJ11

Unreasonable Results What is wrong with the claim that a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment?

Answers

That a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment is that it violates the first law of thermodynamics, which states that energy cannot be created or destroyed, only transferred.

His discrepancy means that the claim is not reasonable and violates the first law of thermodynamics.
In the case of the claim that a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment, the numbers don't add up. If the engine is doing 4.00 kJ of work, and losing 16.0 kJ of heat to the environment, then it must be receiving 20.0 kJ of heat energy, not 24.0 kJ. T


The claim states that a cyclical heat engine does 4.00 kJ of work with an input of 24.0 kJ of heat transfer, while 16.0 kJ of heat transfers to the environment. According to the first law of thermodynamics, energy cannot be created or  destroyed, only converted from one form to another. In the case of a heat engine, this law can be expressed as results do not match, which means that the claim is unreasonable and violates the first law of thermodynamics. There must be an error in the values provided for the heat engine.

To know more about energy Visit;

https://brainly.com/question/30107920

#SPJ11

Other Questions
Unreasonable Results What is wrong with the claim that a cyclical heat engine does 4.00 kJ of work on an input of 24.0 kJ of heat transfer while 16.0 kJ of heat transfers to the environment? _________ theories view development as an incremental and cumulative process.A.StageB.BiologicalC.ContinuousD.Outdated The common stock of Kansas City Power and Light has a beta of 0.80. The Treasury bill rate is 4 percent and the market risk premium is 8 percent. What is their cost of equity capital?Multiple Choice12.0 percent10.4 percent7.20 percent6.4 percent (PLEASE HELP 30 POINTS ROMEO AND JULIET) write text messages or other social media posts the characters from romeo and juliet might have written Find f. USN Top Defensive Sto... UC f(t) = 91Vt, f(4) = 27, f'(4) = 16 - f(t) = Business Calculus Spring 2022 MW 5.30-7:35 pm FC Jocelyn Gomes 05/15/2262 Homework: 9.2 Question 7,9.2.41 Part 1 of 4 HW SCOON. O ponta O Point 0011 Find t. y.x). WXYyx), and Gy.x) for Consider the differential equation y' + p(x)y = g(x) and assume that this equation has the following two particular solutions y() = 621 cos(2x) + sin(2x), y(x) = 2 cos(2x) + sin(2x) 2e24. Which of the following is the general solution to the same differential equation: COS (a) y(x) = C1[e22 - cos(2x) + sin(2.c)] + c2[2 cos(2x) + sin(2x) - 2e2 (b) y(x) = C1621 cos(2x) + sin(2x) (c) y(x) = Ci [e2x cos(2x)] + sin(2x) (d) y(1) = e21 cos(2x) + C2 sin(2x), where C1 and C2 are arbitrary constants. A bearing with an inside diameter of 1/14 inches is found to be 0. 008 inch oversize for the armature shaft. What should the diameter of the bearing be to fit the shaft? Allow 0. 002-inch clearance for lubrication. ________________ Consider the vector v=(2 -1 -3) in Rz. v belongs to Sp n{( 2 -10), (1 2 -3)}. - Select one: True False One of the sales managers has approached the development team to ask for some changes to one of the web applications that his team uses. He made some great suggestions, but the development team manager told him they can't just make those changes without going through the formalized process. Which of the following should the development manager ask the sales manager for?a. Business justificationb. ROIc. Change requestd. CAB winnie corporation is expected to pay the following dividends over the next four years: $9, $10, $11, and $12. afterward, the company pledges to maintain a constant 3.5 percent growth rate in dividends forever. if the required return on the stock is 9 percent, what is the current share price? Under which of the following conditions will an overcurrentcondition develop in the inverter section of an AC drive?A. The inertia of the load is excessively small.B. Overvoltage occurs at the inverter's output terminals.C. The incoming line voltage falls below a certain level.D. A component inside the inverter section shorts. The wrongdoers cannot escape from the __________________ on the Day of Judgment which sentence is preferable?select an answer:solvent use will not exceed 5,000 gallons per month.solvents should be limited in use to 5,000 gallons per month.solvent usage should be optimized at 5,000 gallons per month.solvent usage will be restricted if 5,000 gallons are needed in any given month. Use the divergence theorem to find the outward flux of xa F(x, y, z) = x^2i - 2xy +3 xz the closed surface enclosing the portion of the sphere x + y + z = 4 (in first octant) The Cold War saw three major conflicts in Asia the Korean War [early 1950s], the Vietnam War [1960s and 1970s] and a Soviet war in Afghanistan [1979-1989] Before her death in 2009, Lucy entered into the following transactions:a. In 2000, Lucy borrowed $600,000 from her brother, Irwin, so that Lucy could start a business. The loan was on open account, and no interest or due date was provided for. Under applicable state law, collection on the loan was barred by the statute of limitations before Lucy died. Because the family thought that Irwin should recover his funds, the executor of Lucy's estate paid him $600,000.b. In 2007, she borrowed $300,000 from a bank and promptly loaned that sum to her controlled corporation. The executor of Lucy's estate prepaid the bank loan, but never attempted to collect the amount due Lucy from the corporation.c. In 2008, Lucy promised her sister, Ida, a bequest of $500,000 if Ida would move in with her and care for her during an illness (which eventually proved to be terminal). Lucy never kept her promise, as her will was silent on any bequest to Ida. After Lucy's death, Ida sued the estate and eventually recovered $600,000 for breach of contract.d. One of the assets in Lucy's estate was a palatial residence that passed to George under a specific provision of the will. George did not want the residence, preferring cash instead. Per George's instructions, the residence was sold. Expenses incurred in connection with the sale were claimed as section 2053 expenses on Form 706 filed by Lucy's estate.e. Before her death, Lucy incurred and paid certain medical expenses but did not have the opportunity to file a claim for partial reimbursement from her insurance company. After her death, the claim was filed by Lucy's executor, and the reimbursement was paid to the estate.Disucss the estate and income tax ramifications of each of these transactions. 12 - 3t t2 -10872t 9t t>2 where t is measured in seconds. 0 6 Let s(t) be the position (in meters) at time t (seconds). Assume s(0) = 0. The goal is to determine the **exact** value of s(t) for In exactly one year, Tiger Inc stock will pay its next dividend of $6.16. For the two subsequent years, dividends will grow at -1% and then 4% per year every year thereafter. If investors require a return of of 12.7%, what is a fair price for Tiger stock today? Round your answer to the nearest penny. In exactly one year, Tiger Inc stock will pay its next dividend of $6.16. For the two subsequent years, dividends will grow at -1% and then 4% per year every year thereafter. If investors require a return of of 12.7%, what is a fair price for Tiger stock today? Round your answer to the nearest penny. In Feudalist Japan, who would have said, "Each sunrise I am greeted by my ancestor."?