• An evacuated long tube contains a coin and a feather. If both objects fall together starting from the top of the tube, it is expected that:
(a) the coin will reach the bottom first.
(b) the feather will reach the bottom first.
(c) both objects will reach the bottom at the same instant.

• If this experiment is repeated at a place 2000 kilometers above the sea-level, the acceleration due to gravity gexp is expected to :
(a) increase. (b) decrease. (c) remain constant.

Answers

Answer 1

Answer:

c-) both objects will reach the bottom at the same instant.

(b) decrease.

Explanation:

Although the feather is lighter than the coin, the tube where the experiment is performed is evacuated. Therefore there is no air that prevents the feather from falling freely with the same acceleration and speed as the coin.

In fact in the equations of kinematics proposed by Newton, the mass of the bodies is not taken into account, as we can see in the following equation:

[tex]v_{f}= v_{i} +g*t[/tex]

where:

Vf = final velocity [m/s]

Vi = initial velocity [m/s]

g = gravity acceleration [m/s^2]

t = time [s]

Therefore the answer is C.

Gravitational pull is a function of height, as the height of the body increases, the force of gravity decreases.


Related Questions

An equiconvex lens has power 4D. what will be the radius OF curvature of each
Surface ľf the lens is made of glass of RI 1.5.

Answers

So the people had to be. This equipment causes space

Write the equation for newtons third law

Answers

Answer:

Explanation:

Newtons third law says an applied force will produce an equal but opposite force.

[tex]F_A_B =-F_B_A[/tex]

I don't understand why will only the 12 ohms lamps turn on when the switch is in position 2. shouldn't the current flow like this (like I highlighted in the picture)?​

Answers

Current only flows from a higher voltage to a lower voltage. What you highlighted cannot happen because current cannot flow towards a lamp unless there is a lower voltage on the other side of it. The current will continue to the lower voltage of the battery instead.

What do the EM results indicate about what might is causing this disease?

Answers

Answer:

In the event of a disease caused by an unknown pathogen, it is hard to know which reagent to pick. ... EM, though it may not be able to identify a virus beyond the family level, at least ... Negative staining of stool specimens from these cattle demonstrated a ... This results in a fuzzy halo around the particles in negative stains.Explanation:

Atoms are ___because they have equal amounts of positive and negative charges?

Answers

I think the answer is neutral
Neutral because protons are positive and electrons are negative

A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters. What is the change in the potential energy (in Joules) of the mass as it goes up the incline?

Answers

Answer:

The change in potential energy of the mass as it goes up the incline is 0.343 joules.

Explanation:

We must remember in this case that change in the potential energy is entirely represented by the change in the gravitational potential energy. From Work-Energy Theorem and definition of work we get that:

[tex]U_{g}= m\cdot g\cdot \Delta y[/tex]

Where:

[tex]U_{g}[/tex] - Gravitational potential energy, measured in Joules.

[tex]m[/tex] - Mass, measured in kilograms.

[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.

[tex]\Delta y[/tex] - Change in vertical height, measured in meters.

This work is the energy needed to counteract effects of gravity at given vertical displacement.

If we know that [tex]m = 0.5\,kg[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex] and [tex]\Delta y = 0.07\,m[/tex], the change in the potential energy of the mass as it goes up the incline is:

[tex]U_{g} = (0.5\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.07\,m)[/tex]

[tex]U_{g} = 0.343\,J[/tex]

The change in potential energy of the mass as it goes up the incline is 0.343 joules.

The change in the potential energy (in Joules) of the mass as it goes up the incline is 0.343 J.

Calculation of the change in the potential energy:

We know that

Potential energy = m*g*h

Here m means the mass = 0.5 kg

g means the gravity = 9.8

And, the h means the height  = 7cm = 0.07m

So, the change in the potential energy should be

=0.5*9.8*0.07

=0.343 J

hence, we can conclude that the  change in the potential energy (in Joules) of the mass as it goes up the incline is 0.343 J.

Learn more about energy here: https://brainly.com/question/13203990

An airplane travels directly from Washington, D.C., to Atlanta, Georgia, a distance of 850 km at a velocity of 425 km/h southwest

How long does the trip take in hours?

1.0 h

2.0 h

0.5 h

4.0 h

Answers

Answer:

obviously 2 hours cuz 850/425

Explanation:

You throw a ball upwards at 22 m/s. How high will it go?

Answers

Answer:

24.69 meters

Explanation:

sorry if it's not right.

answer:

[tex]h=24.69m[/tex]

step-by-step explanation:

[tex]eg=mgh \\ek=\frac{1}{2} mv^2[/tex]

eg= gravitational energy

ek= kinetic energy

now, since no mass is given of the ball, both equations on their own do nothing for us, except leave us scratching our heads wondering how to figure out the problem. but, since the question states, “and no air resistance,” we now know, according to the law of conservation of energy, that the energy of the two equations will equal each other because none of the energy has dissipated or left the system.

the amount of energy present during the initial phase of the woman about to throw the ball will be present in the final phase, which will be at its highest point (according to this problem).

so now [tex]eg=ek[/tex]

knowing this, we can now set the equations equal

[tex]eg=ek\\mgh=\frac{1}{2} mv^2[/tex]

the two m’s cancel out, making the mass of the ball insignificant and not influential; next, substitute the values we are given in the problem

[tex](22m/s),(9.8m/s^2)\\m(9.8m/s^2)h=\frac{1}{2} m(22m/s)^2\\(9.8 m/s^2)h=\frac{1}{2} (22m/s)^2\\(9.8m/s^2)h=1/2 (484m^2/s^2)\\(9.8m/s^2)h=1/2 (242m^2/s^2)\\\\h= (242m^2/s^2)/(9.8m/s^2)[/tex]

as you can see, all units that need to be canceled out are indeed canceled, leaving us with just m, meters, which is what height is measured in

therefore, [tex]h=24.69m[/tex]

the law conservation of____ states that matter can not be created or destroyed on changed from one to another

Answers

Answer:

energy

Explanation:

Energy can't be destroyed or created, just transferred.

Determine the ratio β = v/c for each of the following.
(a) A car traveling 120 km/h.
(b) A commercial jet airliner traveling 270 m/s.
(c) A supersonic airplane traveling mach 2.7. (Mach number = v/vsound. Assume the speed of sound is 343 m/s.)
(d) The space shuttle, traveling 27,000 km/h.
(e) An electron traveling 30 cm in 2 ns.
(f) A proton traveling across a nucleus (10-14 m) in 0.38 ✕ 10-22 s.

Answers

Answer:

a) [tex]\beta = 1.111\times 10^{-7}[/tex], b) [tex]\beta = 9\times 10^{-7}[/tex], c) [tex]\beta = 3.087\times 10^{-6}[/tex], d) [tex]\beta = 2.5\times 10^{-5}[/tex], e) [tex]\beta = 0.5[/tex], f) [tex]\beta = 0.877[/tex]

Explanation:

From relativist physics we know that [tex]c[/tex] is the symbol for the speed of light, which equal to approximately 300000 kilometers per second. (300000000 meters per second).

a) A car traveling 120 kilometers per hour:

At first we convert the car speed into meters per second:

[tex]v = \left(120\,\frac{km}{h} \right)\times \left(1000\,\frac{m}{km} \right)\times \left(\frac{1}{3600}\,\frac{h}{s} \right)[/tex]

[tex]v = 33.333\,\frac{m}{s}[/tex]

The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 33.333\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])

[tex]\beta = \frac{33.333\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]

[tex]\beta = 1.111\times 10^{-7}[/tex]

b) A commercial jet airliner traveling 270 meters per second:

The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 270\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])

[tex]\beta = \frac{270\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]

[tex]\beta = 9\times 10^{-7}[/tex]

c) A supersonic airplane traveling Mach 2.7:

At first we get the speed of the supersonic airplane from Mach's formula:

[tex]v = Ma\cdot v_{s}[/tex]

Where:

[tex]Ma[/tex] - Mach number, dimensionless.

[tex]v_{s}[/tex] - Speed of sound in air, measured in meters per second.

If we know that [tex]Ma = 2.7[/tex] and [tex]v_{s} = 343\,\frac{m}{s}[/tex], then the speed of the supersonic airplane is:

[tex]v = 2.7\cdot \left(343\,\frac{m}{s} \right)[/tex]

[tex]v = 926.1\,\frac{m}{s}[/tex]

The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 926.1\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])

[tex]\beta = \frac{926.1\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]

[tex]\beta = 3.087\times 10^{-6}[/tex]

d) The space shuttle, travelling 27000 kilometers per hour:

At first we convert the space shuttle speed into meters per second:

[tex]v = \left(27000\,\frac{km}{h} \right)\times \left(1000\,\frac{m}{km} \right)\times \left(\frac{1}{3600}\,\frac{h}{s} \right)[/tex]

[tex]v = 7500\,\frac{m}{s}[/tex]

The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 7500\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])

[tex]\beta = \frac{7500\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]

[tex]\beta = 2.5\times 10^{-5}[/tex]

e) An electron traveling 30 centimeters in 2 nanoseconds:

If we assume that electron travels at constant velocity, then speed is obtained as follows:

[tex]v = \frac{d}{t}[/tex]

Where:

[tex]v[/tex] - Speed, measured in meters per second.

[tex]d[/tex] - Travelled distance, measured in meters.

[tex]t[/tex] - Time, measured in seconds.

If we know that [tex]d = 0.3\,m[/tex] and [tex]t = 2\times 10^{-9}\,s[/tex], then speed of the electron is:

[tex]v = \frac{0.3\,m}{2\times 10^{-9}\,s}[/tex]

[tex]v = 1.50\times 10^{8}\,\frac{m}{s}[/tex]

The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 1.5\times 10^{8}\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])

[tex]\beta = \frac{1.5\times 10^{8}\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]

[tex]\beta = 0.5[/tex]

f) A proton traveling across a nucleus (10⁻¹⁴ meters) in 0.38 × 10⁻²² seconds:

If we assume that proton travels at constant velocity, then speed is obtained as follows:

[tex]v = \frac{d}{t}[/tex]

Where:

[tex]v[/tex] - Speed, measured in meters per second.

[tex]d[/tex] - Travelled distance, measured in meters.

[tex]t[/tex] - Time, measured in seconds.

If we know that [tex]d = 10^{-14}\,m[/tex] and [tex]t = 0.38\times 10^{-22}\,s[/tex], then speed of the electron is:

[tex]v = \frac{10^{-14}\,m}{0.38\times 10^{-22}\,s}[/tex]

[tex]v = 2.632\times 10^{8}\,\frac{m}{s}[/tex]

The ratio [tex]\beta[/tex] is now calculated: ([tex]v = 2.632\times 10^{8}\,\frac{m}{s}[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex])

[tex]\beta = \frac{2.632\times 10^{8}\,\frac{m}{s} }{3\times 10^{8}\,\frac{m}{s} }[/tex]

[tex]\beta = 0.877[/tex]

I
An arrow fired horizontally at 41 m/s travels 23 m horizontally before it hits
the ground. From what height was it fired?

Answers

Answer:

Height = 1.54 m

Explanation:

Given:

Velocity = 41 m/s

Distance = 23 m

Find:

Height

Computation:

We know that

a = 9.8 m/s²

Time = Distance / Velocity

Time = 23 / 41

Time = 0.56 second

Height = (1/2)(9.8)(0.56)²

Height = 1.54 m

A hiker starts at point P and walks 2.0 km due east and then walks at an angle of 30 degrees north of east for 1.4 km.

Use the Pythagorean theorem to determine the resultant of the 2 vectors. This is the magnitude of the hiker’s displacement.

Answers

Answer:

The magnitude of the hiker’s displacement is 2.96 km

Explanation:

Let the initial displacement of the hiker, = x = 2km

the final displacement of the hiker, = y = 1.4 km

The resultant of the two vectors, According to Pythagorean theorem is the vector sum of the two vectors.

R' = x' + y'

Check the image uploaded for solution;

An intrepid treasure-salvage group has discovered a steel box, containing gold doubloons and other valuables, resting in 80 ft of seawater. They estimate the weight of the box and treasure (in air) at 7000 lbf. Their plan is to attach the box to a sturdy balloon, inflated with air to 3 atm pressure. The empty balloon weighs 250 lbf. The box is 2 ft wide, 5 ft long, and 18 in high. What is the proper diameter of the balloon to ensure an upward lift force on the box that is 20% more than required

Answers

Answer: the proper diameter is 6.137 ft

Explanation:

first we find the volume of box using the relation, which is;

V = 2 x 5 x 1.5 = 15 ft³

we  find the buoyant force on the box by calculating the weight of water displaced.

FB = V x y

where  y is the specific weight of sea water(62.4 lbf/ft³)

so we Substitute

FB = 15 x 62.4 = 936 lbf  

now we find the upward force required by the balloon

FR = (W - FB) x 120%

= 1.2 (W - FB)

where W is the weight of the box treasure(7000 lb)

so we  Substitute,

FB = 1.2( 7000 - 936 ) = 7276.8 lbf

Because the universal gas constant contains a Rankine in its units, we make use of Rankine for our temperature

so we find the density of air at 3 atm using ideal gas relation,

Pair = p/RT

Here, p is the pressure acting (3 atm), R is the universal gas constant (1716 ft²/S²-R), and T is the temperature (520°R),

Substitute so we substitute

Pair = (3 * 2116.22) / (1516 * 520)

= 0.007114  lbf.ft³

next we find the specific weight of air;

Yair = Pair * g

g is acceleration due to gravity(32.2 ft/s²)

Yair =  

0.007114 * 32.2

= 0.23 Ibf /ft³

Now we find diameter of the balloon by balancing the net force required

FR = (y - yair) * V - Wb

= (y - yair) x (π/6)d³ - Wb  

d is the diameter of the balloon.

so we Substitute, 7276.8 lbf for FR,

62.4 Ibf/ft³ for  y, 0.23 for lbf/ft³ for Yair, 350 lb for Wb

so

7276.8 = (62.4 - 0.23)πd³  - 250

d³ = 231.23 ft³

d = 6.137 ft   

Therefore, the proper diameter is 6.137 ft

3.An object that begins at rest has an acceleration of 2 m/s/s What is its instantaneous speed after 3 seconds?​ ​

Answers

The speed will be 6m/s i believe

What are some examples of magmatism?​

Answers

An example of magma is what comes out of a volcano. An example of magma is a mixture of water with salt particles hanging in it. A suspension of particles in a liquid, such as milk of magnesia. The molten rock material that originates under the Earth's crust and forms igneous rock when it has cooled.

Which of the the following distance vs time graphs represents an object the is moving at constant non zero velocity

Answers

A graph with a horizontal line

A torch is dropped down a large chasm. It takes 10 seconds to hit the ground. How deep is the chasm?

490m
49m
98m
980m

Answers

Answer: 490m

Explanation: 1/2 * 9.8m/s/s * 10s

Explain why a ping pong ball and bouncy ball of the same size have different weights

Answers

Answer:

the material

Explanation:

weight is defined as the amount of force on the object because of gravity. ping pong balls and bouncy balls are made out of different materials that are different weights. most bouncy balls are also not hollow, unlike ping pong balls. these factors affect the weight of these objects.

Ex 11 ) A salmon jumps vertically out of the water at an initial velocity of 6 m/s. What is
the height it will jump?​

Answers

Answer:

1.84m

Explanation:

Given parameters:

Initial velocity  = 6m/s

Unknown:

height of jump  = ?

Solution:

To solve this problem, we have to apply the right motion equation:

        V²  = U²  - 2gH

V is the final velocity

U is the initial velocity

g is the acceleration due to gravity  = 9.8m/s²

H is the height

   Final velocity is 0

  Solve;

           0² = 6² - 2x9.8xH

           -36  = -19.6H

               H = 1.84m

Determine the beginning and end of the solar maximum or minimum.

Please help will give brainliest

Answers

Answer:

5 billion years ago...ends 4.9 billion years later

Answer:

That's correct... you can mark them brainliest now. You have to have both slots answered before you can mark them. So, you're welcome :)

Explanation:

I will give you branilest


How do two interacting objects exert equal and opposite forces on each other when they collide, even though they have different masses?

Claim:


Evidence:


Reasoning:

Answers

Answer:

ok can u m a e the question make more sense like break ot down cs i wanna give u a answer but i dont really understand the question

D.
(S. 15
10. The average velocity of a car is 54km/h. What is
the distance covered if the time taken is 10s
A. 200m B. 150m C. 100m D. 50m E.​

Answers

Answer:

Option B 150 Metre

Hope this helps you

Answer:

B. 150 m

Explanation:

In order to answer the question, it is important to know the formula for "velocity."

velocity = [tex]\frac{distance}{time}[/tex]

What is being asked? The distance covered if the time taken is 10 sec.

So this means: velocity x  time = distance

Step 1: Convert 10 sec. to hour.

10 sec. x [tex]\frac{1 hour}{3,600 sec.}[/tex] = 0.00278 hr.

Step 2: Plug in the values to the formula.

distance = 54 [tex]\frac{km}{hr}[/tex] x 0.00278 hr.

distance = 0.150 km

Step 3: The choices are in meters (m), so let's convert 0.150 km to meter.

0.150 km x [tex]\frac{1,000 m}{1 km}[/tex] = 150 meters

The answer is: 150 m

why did Iran experience almost 80 times more deaths in the 20th Century than California, despite having the same seismicity?

Answers

Answer: poor construction of houses

Explanation:

Majority of the people that died in Iran were as a result of poor building methods coupled with the fact that there was lack of proper regulation.

California experienced a similar earthquake but due to safer construction methods, about three people died.

Due to population boom in Iran and house shortage, this resulted in builders building cheap houses which were not strong enough.

PLEASEEEEE THIS A TIMED TESTTTTTTTTT

Answers

Answer:

C

Explanation:

Answer:

that car got obliterated almost like the day my uncle said come with me

Explanation:

the outcome was not good

a car with a mass of 100 kg is stopped on the side of the road after getting a flat tire. the two people that were riding in the car get out and begin to push the car from rest to a nearby gas station. The car travels 50 meters in 40 seconds. Determine the speed of the car in these 40 seconds.

Answers

Answer:

Please mark me brainliest and thank me and rate me

how quickly a 0.4 ball.be accelerated if its struck by 12 N force?

Answers

Answer:

(assume moving in the positive direction, vi = + 20 m/s)

Explanation:

Which statement is true about the SI System?

A-Uses different base units than the English measurement system.

B-Is used in scientific
measurement.

C-Includes the meter as its base unit for length.

D-All of the above.

Answers

Answer:

maybe the answer is in is D part

A pendulum can be formed by tying a small object, like a tennis ball, to a string, and then connecting the other end of the string to the ceiling. Suppose the pendulum is pulled to one side and released at t1. At t^2, the pendulum has swung halfway back to a vertical position. At t^3, the pendulum has swung all the way back to a vertical position. Rank the three instants in time by the magnitude of the centripetal acceleration, from greatest to least. Most of the homework activities will be Context-rich Problems.

Answers

Answer:

1- t^3

2- t^2

3- t1

Explanation:

The acceleration produced in a body, while travelling in a circular motion, due to change in direction of motion is called centripetal acceleration. The formula of the centripetal acceleration is as follows:

ac = v²/r

where,

ac = centripetal acceleration

v = speed

r = radius

for a constant radius the centripetal acceleration will be directly proportional to the speed of object. The speed of pendulum will be lowest at t1 due to zero speed initially. Then the speed will increase gradually having greater speed at t^2 and the highest speed and centripetal acceleration at t^3. Therefore, the three instants in tie can be written in following order from greatest centripetal acceleration to lowest:

1- t^3

2- t^2

3- t1

Two asteroides crashed. The crash caused both asteroids to change speed.Scientist wants to use the change in speed and motion to figure out which asteroide has more mass.Based on the information in the diagram which statement is correct ? In your answer explain ,explain what the forces were like and why the asteroids changed in motion

Answers

Astroid one has less asked her to. Able to use enough force to not only change or keep it self go in the same direction.

(a) If the initial speed both asteroids before collision is the same, then the asteroid with greater mass will have more momentum before collision while the asteroid with lesser mass will have greater momentum after collision.

(b) The force of the impact depends of the velocity change and time of collision of the asteroids.

According to the principle of conservation of linear momentum, the sum of the momentum of each asteroid  before collision must equal the sum of their momentum after collision.

[tex]m_1 u_1 + m_2 u_2 = m_1v_1 + m_2 v_2[/tex]

where;

m is the mass of the asteroidsu is the initial speed of the asteroidsv is the final speed of the asteroids

If the initial speed both asteroids before collision is the same, then the asteroid with greater mass will have more momentum before collision while the asteroid with lesser mass will have greater momentum after collision to conserve the momentum.

The force of the impact depends of the velocity change and time of collision of the asteroids.

[tex]F = \frac{m\Delta v}{t}[/tex]

Learn more here:https://brainly.com/question/24424291

Proposed Exercise: Work-Energy Theorem
In the situation illustrated in the figure below, a 365 pile hammer is used to bury a beam. The hammer is raised to a height of 3.0 (point 1) above the beam (point 2) and released from rest, sinking the beam of 7.4 (point 3). The rails exert on the hammer a constant friction force equal to 54 . Using the work-energy theorem, calculate (a) the speed of the hammer at the exact instant it reaches point 2 and (b) the mean force exerted by the hammer on the beam when moving it from position 2 to 3.
Tip: the force requested in item (b) is equal to the normal force that the beam exerts on
the hammer.

Answers

Answer:

152,000 N

Explanation:

(a) Initial potential energy = final kinetic energy

mgh = ½ mv²

v = √(2gh)

v = √(2 × 10 m/s² × 3.00 m)

v = 7.75 m/s

(b) Work done on pile hammer = change in energy

FΔy = 0 − (mgh + ½ mv²)

F (-0.074 m) = -((365 kg) (10 m/s²) (0.074 m) + ½ (365 kg) (7.75 m/s)²)

F (-0.074 m) = -11220.1 J

F ≈ 152,000 N

Other Questions
How long does primary succession take? ty sm ily What is the mass of 4.02 mol Ba(NO2)2 How do you do this question? What advice should you give to a person exercising on a very hot day The result of one experiment carried out by a research team would be considered valid if . A) the experiment had no control setupB) all the members of the research team came the same conclusion C) the experiment had more than one variable D) the experiment was repeated and the same results were obtained each time Indianas population has increased by 9.5% since 2000, when it was about 6 million people. What is Indianas population now? 3/4-1/12 subtract and simplify A scientific calculator costs $3.50 today. I remember when they cost about $75. What is the percent decrease in the price of a scientific calculator?In other words: The decrease in price is what percent of the original price?% Decrease= (Decrease in price(New price-Old Price))/(Original Price(old price))100 what two european countries were at war? Saturated fats that are found in avocados are good and should not be limited.TrueFalse If Art weighs 200 pounds at sea level, how much will he weigh on Mt. Everest, which is 29,035 feet above sea level? _ pounds(Round answer to three decimal places. Do not round the numbers in your work. Only round the final answer)If an object weighs m pounds at sea level, then its weight W (in pounds) at a height of h miles above sea level is given by W(h) = m(4000/(4000 + h))2. (1 mile = 5280 feet)(W of h equals m times the quantity of (4000 over the quantity (4000 plus h)) squared)If Art weighs 200 pounds at sea level, how much will he weigh on Mt. Everest, which is 29,035 feet above sea level? Bacteria are the only organisms characterized as how does human resources affect the development process The distribution of durations for which apartments remain empty after the resident moves out for one property management company over the past 10 1010 years was approximately normal with mean = 85 =85mu, equals, 85 days and standard deviation = 29 =29sigma, equals, 29 days. The property management company tags the files of the apartments that were empty for the shortest 5 % 5%5, percent of durations to have priority cleaning the next time their residents move out Four movie tickets cost $40.00 dollars( look above for the rest of the question plss answer fast Select the word that is correct for formal usage.She borrowed moneyher father.fromoff the exact opposite 1 inexplicable2 celestial3 tangible4 antithesis Name two aspects of health products/services websites that every consumer should look for. (Site 2) needs to be a paragraph 9e^2x - 30e^x + 25 = 0Please I need a step by step solution urgently P -5, 1 R 4,4..find the slope