at 15 degress celcius, the water ionization constant, k2 is 4.5 * 10^-15. what is th h3o concentration in neutral water at this temperature

Answers

Answer 1

The H3O+ concentration of neutral water at 15 degrees Celsius is 10^-7 M.

As per the given information, the water ionization constant k2 is 4.5 × 10^-15 at 15 degrees Celsius. The H3O+ concentration of neutral water at this temperature can be determined using the formula:

Kw = [H3O+][OH-]Here, Kw represents the ionic product of water which is equal to 1.0 × 10^-14 at 15 degrees Celsius (which can be looked up in a table).

Since we know that pure or neutral water has an equal concentration of H3O+ and OH- ions, we can assume that the concentration of OH- ions is also 1.0 × 10^-7 M.

Therefore, we can substitute the values in the equation to obtain:

[H3O+][OH-] = 1.0 × 10^-14[H3O+] [1.0 × 10^-7]

= 1.0 × 10^-14[H3O+]

= 1.0 × 10^-7 ÷ 1.0 × 10^-14[H3O+]

= 10^7The H3O+ concentration of neutral water at 15 degrees Celsius is 10^-7 M (or 0.0000001 M).

To learn more about : water

https://brainly.com/question/19491767

#SPJ11


Related Questions

what is the ph of a solution made by mixing 10.00 ml of 0.10 m acetic acid with 10.00 ml of 0.10 m koh? assume that the volumes of the solutions are additive. ka

Answers

The pH of the solution made by mixing 10.00 mL of 0.10 M acetic acid with 10.00 mL of 0.10 M KOH is 4.74.

To calculate the pH of the solution, we need to first determine the concentration of the remaining species in solution after the neutralization reaction between acetic acid and KOH is complete.

The balanced chemical equation for the neutralization reaction is:

CH3COOH + KOH → CH3COOK + H2O

The concentration of the potassium acetate can be calculated from the stoichiometry of the reaction:

moles of potassium acetate = moles of acetic acid = moles of KOH

moles of acetic acid = 0.10 mol/L × 0.0100 L = 0.0010

mol

moles of KOH = 0.10 mol/L × 0.0100 L = 0.0010 mol

moles of potassium acetate = 0.0010 mol

The volume of the final solution is 20.00 mL, so the concentration of the potassium acetate is:

[CH3COOK] = moles of potassium acetate / volume of solution

= 0.0010 mol / 0.0200 L

= 0.050 mol/L

The dissociation of potassium acetate can be written as:

CH3COOK ⇌ CH3COO- + K+

The equilibrium constant for this reaction is given by the expression:

Ka = [CH3COO-][H+]/[CH3COOH

At equilibrium, the concentration of CH3COOH is zero, so we can simplify this expression to:

Ka = [CH3COO-][H+]/[CH3COOK]

We know the value of Ka for acetic acid, which is 1.8 x

[tex] {10}^{ - 5} [/tex]

We can use this value to solve for the concentration of H+ in the solution:

1.8 x

[tex] {10}^{ - 5} [/tex]

= [H+][CH3COO-] / [CH3COOK]

To convert the concentration of H+ to pH, we use the expression:

pH = -log[H+]

= 4.74

learn more about pH here:

https://brainly.com/question/26856926

#SPJ4

what is the lewis acid in the following reaction? nh3 bf3 <---> nh3bf3 group of answer choices bf3 because it receives a lone pair. bf3 because it donates a lone pair. nh3 because it receives a lone pair. nh3 because it donates a lone pair.

Answers

The correct answer is option A) BF3 because it receives a lone pair. In this reaction, a Lewis acid-base reaction is taking place, in which a Lewis acid (electron pair acceptor) and a Lewis base (electron pair donor) are reacting to form a coordinate covalent bond.

BF3 serves as an electron pair acceptor and is the Lewis acid. This is due to the fact that BF3 has an open p-orbital that can receive a Lewis base's sole pair of electrons, such as NH3. Here, NH3 serves as an electron pair donor and is a Lewis base.

This is due to the fact that NH3 has a single pair of electrons that can be transferred to the vacant p-orbital in BF3.

This is crucial for forming the coordinating covalent bond that gives rise to the compound NH3BF3 between BF3 and NH3.

Complete Answer:

What is the Lewis acid in the following reaction? NH3 + BF3 <----> NH3BF3

Group of answer choices

A) BF3 because it receives a lone pair

B) BF3 because it donates a lone pair

C) NH3 because it receives a lone pair

D) NH3 because it donates a lone pair

To learn more about Lewis acid-base visit:

https://brainly.com/question/23433599

#SPJ4

explain why molecules with larger mass (molecular weight) move faster in centrifugation but slower in electrophoresis.

Answers

In centrifugation and electrophoresis, molecules with larger mass behave differently due to the distinct principles behind these two techniques.

Centrifugation separates molecules based on their size, shape, and mass by applying a strong centrifugal force. Larger molecules with greater mass experience a higher centrifugal force, causing them to move toward the bottom of the tube at a faster rate. This is because the force acting on a molecule is proportional to its masses (Force = Mass × Acceleration). As a result, molecules with larger mass move faster in centrifugation.

On the other hand, electrophoresis separates molecules based on their size, shape, and charge in an electric field. In this technique, molecules move through a porous gel matrix. While smaller molecules can navigate through the pores more easily, larger molecules face greater resistance and move at a slower pace.

Additionally, the speed of a molecule in electrophoresis is also influenced by its charge-to-mass ratio. Molecules with a larger mass and the same charge as smaller molecules have a lower charge-to-mass ratio, making them move slower in the electric field.

In summary, molecules with larger mass move faster in centrifugation due to the greater centrifugal force they experience, while they move slower in electrophoresis because of the increased resistance and lower charge-to-mass ratio they possess.

Know more about electrophoresis here:

https://brainly.com/question/6885687

#SPJ11

As an object falls, how are kinetic and potential energy related? (1 point)
O Both potential energy and kinetic energy will increase equally as the object accelerates.
O The amount of potential energy and kinetic energy each will remain the same.
O These are different forms of energy that will increase or decrease independent of each othe
O Potential energy will decrease in an amount equal to the increase in kinetic energy.

Answers

As an object falls, its potential energy is converted into kinetic energy. This is because the object is being pulled down by gravity, which increases its velocity and therefore its kinetic energy.

At the same time, the object is losing height and therefore potential energy. The amount of potential energy lost will be equal to the amount of kinetic energy gained, so the sum of the two energies will remain constant.

In other words, the potential energy will decrease in an amount equal to the increase in kinetic energy. This is known as the conservation of energy principle, which states that energy cannot be created or destroyed, only converted from one form to another.

As the object falls, the potential energy it had due to its position in the Earth's gravitational field is transformed into kinetic energy due to its motion. This relationship between potential and kinetic energy is important in understanding the behavior of falling objects and other systems where energy is conserved.

To know more about kinetic energy, visit:

https://brainly.com/question/26472013

#SPJ1

if nacl is soluble in water to the extent 36.0 g nacl/100 g h2o at 20 oc, then a solution at 20 oc containing 45 g nacl/160 g h2o would be

Answers

Then the solution is supersaturated.

As per the question, if NaCl is soluble in water to the extent 36.0 g NaCl/100 g H2O at 20 °C, then a solution at 20°C containing 45 g NaCl/160 g H2O would be:

Supersaturated at 20°C

Explanation:

A solution is considered to be supersaturated if it contains more solute than what can dissolve in it at a particular temperature. It is, therefore, an unstable solution, and if any disturbance is provided, the excess solute starts to form crystals or precipitate. Thus, such a solution is capable of further dissolving the solute.

Suppose a solution of NaCl is considered, which is soluble in water to the extent of 36.0 g NaCl/100 g H2O at 20°C. This information helps in determining the solubility of NaCl at 20°C, which is 36.0 g NaCl/100 g H2O.Now, consider another solution that contains 45 g NaCl/160 g H2O at 20°C.

For determining whether the solution is saturated, unsaturated or supersaturated, compare the solubility of NaCl at 20°C to the given concentration of NaCl in the solution.The solubility of NaCl is 36.0 g NaCl/100 g H2O at 20°C, whereas the given concentration of NaCl in the solution is 45 g NaCl/160 g H2O. This concentration is higher than the solubility of NaCl.

for more questions on supersaturated :

https://brainly.com/question/24286391

#SPJ11

an acid ha has a ka value of 4.40 x 10-4. 25.0 ml of 0.100 m ha is titrated with 0.25 m naoh. after the equivalence point is reached, 3 ml of 0.25 m naoh are added. what is the ph of the solution at this point?

Answers

At the equivalence point and after the addition of 3 mL of 0.25 M NaOH, the pH of the solution is approximately 4.36.

The first step in solving this problem is to determine the moles of acid (HA) present in the initial solution.

moles of HA = concentration of HA x volume of HA

moles of HA = 0.100 M x 0.0250 L

moles of HA = 0.00250 mol

Next, we need to determine the amount of NaOH needed to reach the equivalence point. Since we have a 1:1 stoichiometric ratio between HA and NaOH, the moles of NaOH required to reach the equivalence point will be equal to the moles of HA present.

moles of NaOH = 0.00250 mol

To calculate the volume of NaOH required to reach the equivalence point, we can use the equation;

moles of NaOH =concentration of NaOH x volume of NaOH

0.00250 mol = 0.25 M x volume of NaOH

volume of NaOH = 0.0100 L = 10.0 mL

This means that 10.0 mL of 0.25 M NaOH will be required to reach the equivalence point.

At the equivalence point, all of the HA has reacted with the NaOH to form the salt, sodium salt (NaA), and water. This means that the moles of NaOH added to reach the equivalence point will be equal to the moles of HA that have reacted;

moles of NaOH = 0.0100 L x 0.25 M = 0.00250 mol

moles of HA reacted = 0.00250 mol

The total volume of the solution at the equivalence point is:

volume of solution = volume of HA + volume of NaOH

volume of solution = 0.0250 L + 0.0100 L

volume of solution = 0.0350 L

The concentration of the resulting solution after the addition of 10 mL of 0.25 M NaOH is;

moles of NaOH added = 0.0100 L x 0.25 M = 0.00250 mol

moles of NaA formed = 0.00250 mol

moles of HA remaining = moles of HA - moles of HA reacted = 0.00250 mol

concentration of NaA = moles of NaA / volume of solution = 0.00250 mol / 0.0350 L = 0.0714 M

concentration of HA = moles of HA / volume of solution = 0.00250 mol / 0.0350 L = 0.0714 M

Since NaA is the conjugate base of the weak acid HA, the solution is a buffer. To calculate the pH of the buffer solution, we can use the Henderson-Hasselbalch equation;

pH = pKa + log([A⁻]/[HA])

where pKa is the acid dissociation constant of HA, [A⁻] is the concentration of the conjugate base (NaA), and [HA] is the concentration of the weak acid (HA).

The pKa of HA is given as 4.40 x 10⁻⁴, so we can substitute this value along with the concentrations of NaA and HA to get:

pH = -log(4.40 x 10⁻⁴) + log(0.0714/0.0714)

pH = 4.36

To know more about equivalence point here

https://brainly.com/question/4518249

#SPJ4

If 17.88 g of nitrogen trihydride reacts with 11.9 g of diatomic oxygen, how many molecules of water may be produced?

Answers

The balanced chemical equation for the reaction between nitrogen trihydride (NH3) and diatomic oxygen (O2) to produce water (H2O) and nitrogen monoxide (NO) is:

4 NH3 + 3 O2 → 2 N2 + 6 H2O

We can use the given masses of NH3 and O2 to determine which is the limiting reactant, and then use the stoichiometry of the balanced equation to find the number of molecules of water produced.

First, we need to convert the masses of NH3 and O2 to moles using their respective molar masses:

NH3: 17.88 g / 17.03 g/mol = 1.050 mol
O2: 11.9 g / 32.00 g/mol = 0.372 mol
Next, we can use the stoichiometry of the balanced equation to determine which reactant is limiting. The balanced equation tells us that 4 moles of NH3 react with 3 moles of O2 to produce 6 moles of H2O. Therefore, the ratio of NH3 to O2 needed for complete reaction is:

4 mol NH3 / 3 mol O2 = 1.33 mol NH3 / mol O2

Since the actual ratio of NH3 to O2 is:

1.050 mol NH3 / 0.372 mol O2 = 2.82 mol NH3 / mol O2

We can see that NH3 is present in excess, and O2 is the limiting reactant.

Using the mole ratio from the balanced equation, we can now calculate the number of moles of H2O produced from the given amount of O2:

0.372 mol O2 × (6 mol H2O / 3 mol O2) = 0.744 mol H2O

Finally, we can use Avogadro's number to convert the number of moles of H2O to molecules:

0.744 mol H2O × (6.022 × 10^23 molecules/mol) = 4.47 × 10^23 molecules of H2O

Therefore, the number of molecules of water that may be produced is approximately 4.47 × 10^23.

some reactions can be performed without a solvent. what are the benefits of not needing a solvent in a reaction? select one or more: the reaction often costs less because solvents can be expensive. less chemical waste is generated because there are not solvents to remove. reaction progress is easy to monitor because the reagents are more concentrated. the reaction rate is smaller because the concentration of reagents is greater.

Answers

Less chemical waste is generated because there are no solvents to remove. The reaction often costs less because solvents can be expensive.

The reaction rate is greater because the concentration of reagents is greater. These options are correct.

A solvent is a substance that dissolves a solute, producing a solution. In addition to being a liquid, a supercritical fluid, a solid, or a gas can also be solvent. All the ions and proteins in a cell are dissolved in water, which is a solvent for polar molecules and the most frequent solvent employed by living things.

chemical reaction, the transformation of one or more chemicals (the reactants) into one or more distinct compounds (the products). Chemical elements or chemical compounds make up substances. In a chemical reaction, the atoms that make up the reactants are rearranged to produce various products.

Learn more about Solvent here: brainly.com/question/30885015

#SPJ4

how many ml of 2.11 m hcl are required to react with 2.99 g of calcium? enter only the numeric value for your answer (no units).

Answers

By balancing the chemical equation it is deduced that we need 70.8 mL of 2.11 M HCl reacted with 2.99 g of calcium.

To solve this problem, we need to use the balanced chemical equation between calcium (Ca) and hydrochloric acid (HCl):

Ca + 2HCl → CaCl2 + H2

From the equation, we can see that 1 mole of calcium reacts with 2 moles of hydrochloric acid. To determine the number of moles of calcium, we divide the given mass by its molar mass:

2.99 g Ca / 40.08 g/mol = 0.0747 mol Ca

Since 1 mole of Ca reacts with 2 moles of HCl, we need twice as many moles of HCl to react completely with the given amount of Ca:

2 × 0.0747 mol HCl = 0.1494 mol HCl

Finally, we can calculate the volume of 2.11 M HCl solution needed to provide this amount of moles:

The volume of HCl = moles of HCl / Molarity of HCl

Volume of HCl = 0.1494 mol / 2.11 mol/L = 0.0708 L

We convert the volume to milliliters by multiplying by 1000:

0.0708 L × 1000 mL/L = 70.8 mL

Learn more about balanced chemical equations at

https://brainly.com/question/28294176

#SPJ4

(d) The student repeated the experiment using hydrochloric acid with a higher concentration.
Which statement is correct? Tick (✓) one box.
The activation energy for the reaction
was higher.
The magnesium reacted more quickly.
The reaction finished at the same time.
The total volume of gas collected was
smaller.
las offects the rate of the reaction

Answers

When the student repeated the experiment using hydrochloric acid with a higher concentration, the rate of the reaction between magnesium and hydrochloric acid increased.

This is because the higher concentration of hydrochloric acid provided more H+ ions, which increased the frequency of collisions between magnesium and the acid molecules, resulting in more successful collisions and a faster reaction rate.

The correct statement would be "The magnesium reacted more quickly". This is because the increase in acid concentration increases the reaction rate by increasing the number of collisions between the reactants.

Activation energy is a measure of the minimum energy required for a reaction to occur, and it is not affected by changes in the concentration of the reactants. The total volume of gas collected would not be smaller, as the amount of hydrogen gas produced is directly proportional to the amount of magnesium consumed and the reaction rate.

Therefore, the concentration of hydrochloric acid affects the rate of the reaction by increasing the frequency of successful collisions between the reactants.

To know more about hydrochloric acid, visit:

https://brainly.com/question/15231576

#SPJ1

a 3.02 mol 3.02 mol sample of kr kr has a volume of 417 ml. 417 ml. how many moles of kr kr are in a 5.62 l 5.62 l sample at the same temperature and pressure?

Answers

Sample 1 has 0.00724 mol/L of Kr, while sample 2 has 0.0406 mol of Kr.Therefore, the 5.62 L sample contains 0.0406 moles of Kr.

The given data gives the molar grouping of krypton in the underlying example. The molarity can be determined utilizing the equation, Molarity = number of moles of solute/volume of arrangement in liters. Utilizing this recipe, we get the molarity of the underlying example as 7.24 M.

Presently, we can utilize the molarity and volume of the second example to ascertain the quantity of moles of krypton in it utilizing the equation, number of moles of solute = molarity x volume of arrangement in liters. Subbing the given qualities in the recipe, we get the quantity of moles of krypton in the second example as 36.2 mol.Subsequently, there are 36.2 moles of krypton in a 5.62 L example at a similar temperature and strain as the underlying example.

To learn more temperature and pressure, refer:

https://brainly.com/question/19524022

#SPJ4

how does gas exchange in a fetus differ from a baby's gas exchange after birth? (2 points) in a fetus, gases diffuse across the alveoli; after birth, gases diffuse across the chorion. in a fetus, gases diffuse through the ductus venosus; after birth, gases diffuse across the alveoli. in a fetus, gases diffuse across the alveoli; after birth, gases diffuse through the ductus venosus. in a fetus, gases diffuse across the chorion; after birth, gases diffuse across the alveoli.

Answers

Baby's gas exchange differs from fetus gas exchange because fetus gas exchange propagates through the chorion and after birth, the gases diffuse into the alveoli. Therefore, option (d) is the correct answer here.

Fetal gas exchange: The placenta is responsible for gas exchange between mother and fetus. During pregnancy, it plays the role of the lungs, intestines and kidneys. The placenta has a chorion extension called chorionic villi, which contains small capillaries and is part of the internal organs of the body. These villi are washed in the mother's blood and gas exchange takes place in the placental region. Thus, the gas here diffuses along the chorion.

Gas exchange in babies after birth: During gas exchange, oxygen passes from the lungs to the blood. At the same time, carbon dioxide moves from the blood to the lungs. This happens in the alveoli of the lungs and is due to diffusion.The alveoli are surrounded by blood vessels, so oxygen and carbon dioxide diffuse between the air in the alveoli and the blood in the blood vessels. From the above discussion, we can say that both are differ by each other through option(d).

For more information about gas exchange , refer:

https://brainly.com/question/28152525

#SPJ4

Complete question:

how does gas exchange in a fetus differ from a baby's gas exchange after birth? (2 points)

a) in a fetus, gases diffuse across the alveoli; after birth, gases diffuse across the chorion.

b) in a fetus, gases diffuse through the ductus venosus; after birth, gases diffuse across the alveoli.

c) in a fetus, gases diffuse across the alveoli; after birth, gases diffuse through the ductus venosus. d) in a fetus, gases diffuse across the chorion; after birth, gases diffuse across the alveoli.

why is it reasonable to set the chemical potential of a pure liquid or solid substance equal to its standard state chemical potential at that temperature independent of the pressure in considering chemical equilibrium

Answers

The chemical potential of a pure liquid or solid equal to its standard state chemical potential at a given temperature simplifies the analysis of chemical equilibrium and allows you to focus on temperature effects, as changes in pressure have minimal impact on the equilibrium position for these substances.

It is reasonable to set the chemical potential of a pure liquid or solid substance equal to its standard state chemical potential at a given temperature, independent of the pressure when considering chemical equilibrium for the following reasons:

1. Minimal volume change: In the case of pure liquids and solids, the volume change during a reaction is typically very small. As a result, changes in pressure have little effect on the equilibrium position.

2. Incompressibility: Both liquids and solids are relatively incompressible compared to gases. This means that their volumes do not change significantly with changes in pressure.

3. Constant chemical potential: When the volume change is negligible, the chemical potential of a pure liquid or solid substance can be considered constant and equal to its standard state chemical potential at that temperature. This simplifies calculations when analyzing chemical equilibrium.

4. Focus on temperature effects: By setting the chemical potential equal to its standard state chemical potential, you can more easily focus on the effect of temperature on the equilibrium position. The temperature often has a more significant impact on the position of equilibrium than pressure, especially for reactions involving liquids and solids.

to know more about chemical potential refer here:

https://brainly.com/question/31100203#

#SPJ11

what product is formed when the following compound is treated first with lda in thf solution at low temperature, followed by ch3ch2i?

Answers

The product formed when the given compound is treated with LDA in THF solution at low temperature followed by CH3CH2I is the corresponding alkene (an elimination product).

The given response includes two stages: first, treatment with LDA (lithium diisopropylamide) in THF (tetrahydrofuran) arrangement at low temperature, and second, response with CH3CH2I. LDA is areas of strength for an and is many times utilized in natural science as a reagent for deprotonation responses. For this situation, it will extract a proton from the carbon neighboring the nitrogen iota, bringing about the development of an enolate middle of the road. This halfway is then gone after by the electrophilic CH3CH2I, prompting the end of a leaving bunch (normally LDA or THF) and the development of the comparing alkene. Generally, this response is an illustration of an end response and is usually utilized in natural combination to shape alkenes from proper beginning materials.

To learn more about LDA in THF solution, refer:

https://brainly.com/question/31326875

#SPJ4

You add a Mg pellet weighing 0.085 g to 7.52 mL of 3 M HCl contained in a foam calorimeter and measure a temperature change of 41.5 oC. What is delta Hrxn in kJ/mol ?

Answers

Answer: A 0.86 mol sample of a substance is burned in a bomb calorimeter with a heat capacity of 11.23 kJ/C. The temperature increases by 14.93 C. What is ΔHrxn (in kJ/mol) for the combustion of the substance? Note: please record answer to two decimal places regardless of sig figs

which molecule, xanthophyll or beta-carotene, do you expect to move farther on the tlc plate using the conditions of this experiment?

Answers

Beta-carotene expects to move farther on the TLC plate than Xanthophyll because of their relative polarities. More polar molecules tend to have stronger interactions with the chromatography plate and move less far than less polar molecules.

In a plant pigment chromatography experiment, the movement of a molecule on the chromatography plate depends on several factors, including the polarity of the solvent, the polarity of the molecule, and the affinity of the molecule to the chromatography plate.

Both xanthophyll and beta-carotene are non-polar molecules that are insoluble in water but soluble in organic solvents such as acetone or petroleum ether. However, xanthophyll is generally more polar than beta-carotene due to the presence of polar hydroxyl (-OH) or carbonyl (C=O) functional groups.

Learn more about Beta-carotene, here:

https://brainly.com/question/29849994

#SPJ4

Which of the following is/are true about electrolytes?

Answers

I think it’s A

If right please give me a brainy list

besides increasing the temperature, how might the rate of an aromatic bromination reaction be increased? by adding a lewis acid catalyst by placing the reaction in the dark by adding naoh by constantly stirring to keep the reaction well mixed

Answers

The rate of an aromatic bromination reaction can be increased by adding a Lewis acid catalyst. The correct option is 1. "by adding a lewis acid catalyst."

A Lewis acid catalyst is a substance that can increase the rate of a reaction without being consumed in the reaction. A Lewis acid catalyst can act as an electron acceptor and facilitate the formation of the intermediate species, which leads to the product faster than the uncatalyzed reaction.

Placing the reaction in the dark may not necessarily increase the rate of an aromatic bromination reaction. Adding NaOH can actually decrease the rate of the reaction as it can neutralize the acid that forms during the reaction. Constantly stirring to keep the reaction well-mixed can also help increase the rate of the reaction by bringing the reactants into contact with each other more frequently.

The complete question is:

Besides increasing the temperature, how might the rate of an aromatic bromination reaction be increased?

by adding a lewis acid catalyst by placing the reaction in the dark by adding NaOH by constantly stirring to keep the reaction well mixed

Learn more about rate of the reaction here:

brainly.com/question/30546888

#SPJ11

true or false when solving for x in a ka or kb expression the change in concentration x or x can only be ignored if the error is less than 5 of the concentration of acid or base

Answers

The given statement {when solving for x in a Ka or Kb expression, the change in concentration (x) can be ignored if the error is less than 5% of the concentration of the acid or base.} is True.

The statement is true. When solving for x in a Ka or Kb expression, the change in concentration (x) can only be ignored if the error is less than 5% of the concentration of acid or base. This is because a change in concentration beyond 5% can lead to significant errors in the calculated pH value, which can lead to inaccurate results. Therefore, any changes in concentration (x) must be carefully considered and evaluated to ensure accurate results are obtained. So the answer is true.

For more questions on:  concentration

https://brainly.com/question/1062307

#SPJ11  

which of the following gives the definition of percent ionization of a weak acid? select the correct answer below: percent ionization is the equilibrium constant for the ionization of a weak acid. percent ionization is the ratio of the concentration of the undissociated acid at equilibrium to its initial concentration times 100%. percent ionization is the ratio of the concentration of the ionized acid at equilibrium to the initial acid concentration times 100%. none of the above

Answers

The correct answer is C, Percent ionization is the ratio of the concentration of the ionized acid at equilibrium to the initial acid concentration times 100%.

Ionization refers to the process by which an atom or molecule gains or loses one or more electrons, resulting in the formation of an ion. When an atom or molecule gains electrons, it becomes negatively charged and is called an anion, while losing electrons leads to a positively charged ion known as a cation.

Ionization can occur due to several reasons such as exposure to high-energy radiation or collision with other particles. It is a fundamental concept in understanding chemical reactions, particularly those involving acids and bases. For example, in an acid-base reaction, an acid donates a proton (H+) to a base, leading to the formation of a cation (H+) and an anion. Ionization also plays a critical role in numerous natural processes such as photosynthesis, atmospheric chemistry, and the behavior of metals in solution. I

To learn more about Ionization visit here:

brainly.com/question/28385102

#SPJ4

Complete Question:

which of the subsequent defines the percent ionization of a weak acid? pick the proper solution under:

A). percent ionization is the equilibrium regular for the ionization of a weak acid.

B). percent ionization is the ratio of the concentration of the undissociated acid at equilibrium to its initial awareness instances 100%.

C). percentage ionization is the ratio of the attention of the ionized acid at equilibrium to the initial acid attention times 100%.

D). not one of the above

The amount of energy needed to heat 4.3 g of a substance from 50.0°C to 80.0°C is 9.0 J. What is the specific heat capacity of this sample?

Answers

Answer:

c = 0.0635 J/g°C

Explanation:

We can use the formula for heat energy:

Q = m * c * ΔT

where Q is the heat energy absorbed by the substance, m is its mass, c is its specific heat capacity, and ΔT is the change in temperature. Rearranging the formula, we get:

c = Q / (m * ΔT)

Plugging in the given values, we get:

c = 9.0 J / (4.3 g * (80.0°C - 50.0°C))

c = 9.0 J / (4.3 g * 30.0°C)

c = 0.0635 J/g°C

Therefore, the specific heat capacity of the substance is 0.0635 J/g°C.

at a certain temperature, so2(g) and o2(g) react to produce so3(g) according to the chemical equation shown above. an evacuated rigid vessel is originally filled with so2(g) and o2(g) , each with a partial pressure of 1atm . which of the following is closest to the partial pressure of o2(g) after the system has reached equilibrium, and why? responses 0atm ; because kp is very large, nearly all the so2(g) and o2(g) are consumed before the system reaches equilibrium. 0 atmosphere ; because k sub p is very large, nearly all the s o 2 gas and o 2 gas are consumed before the system reaches equilibrium. 0.5atm ; because kp is very large, nearly all the so2(g) is consumed before the system reaches equilibrium, but an excess amount of o2(g) remains at equilibrium. 0.5 atmosphere ; because k sub p is very large, nearly all the s o 2 gas is consumed before the system reaches equilibrium, but an excess amount of o 2 gas remains at equilibrium. 1atm ; because kp is very large, the system is already near equilibrium, and there will be very little change to the partial pressure of o2(g) . 1 atmosphere ; because k sub p is very large, the system is already near equilibrium, and there will be very little change to the partial pressure of o 2 gas . 1.5atm ; because kp is very large, the decomposition of any so3(g) that forms increases the amount of o2(g) at equilibrium.

Answers

The response "0 atm; because kp is very large, nearly all the SO2(g) and O2(g) are consumed before the system reaches equilibrium" is the closest to the correct answer

The balanced chemical equation for the reaction between SO2(g) and O2(g) to produce SO3(g) is:

2SO2(g) + O2(g) ⇌ 2SO3(g)

At a certain temperature, the equilibrium constant for this reaction, Kp, is very large, which indicates that the reaction strongly favors the formation of products (SO3).

In an evacuated rigid vessel initially filled with SO2(g) and O2(g), each with a partial pressure of 1 atm, the reaction will proceed to reach equilibrium. At equilibrium, the partial pressures of SO2(g), O2(g), and SO3(g) will be related by the equilibrium constant Kp as follows:

Kp = (P(SO3))^2 / (P(SO2))^2 x P(O2)

where P(SO2), P(O2), and P(SO3) are the partial pressures of SO2(g), O2(g), and SO3(g) at equilibrium, respectively.

Since Kp is very large, we can assume that the reaction goes to completion and that all of the SO2(g) and O2(g) react to form SO3(g). Therefore, the partial pressure of O2(g) at equilibrium will be zero, and the correct answer is 0 atm.

So the response "0 atm; because kp is very large, nearly all the SO2(g) and O2(g) are consumed before the system reaches equilibrium" is the closest to the correct answer.

For more such questions on Equlibrium

https://brainly.com/question/13414142

#SPJ11

If a temperature system decreases in a chemical reaction, the resulting value for q from the specific heat equation is?
A. positive
B. negative
C. Constant
D. Not enough information to be determined

Answers

Answer:

If a temperature system decreases in a chemical reaction, the resulting value for q from the specific heat equation is negative.

Explanation:

The specific heat equation is:

q = m × C × ΔT

where q is the heat transferred, m is the mass of the system, C is the specific heat capacity of the substance, and ΔT is the change in temperature.

If the temperature of the system decreases, then ΔT will be negative, and therefore q will also be negative. This indicates that heat is being lost by the system to the surroundings, resulting in a decrease in temperature.

A ball is dropped from 22m above the ground. Assuming gravity is −9.8ms2, what is its final velocity?

Answers

Answer:

We can use the kinematic equation that relates initial velocity, final velocity, acceleration, and displacement:

v^2 = u^2 + 2as

where

u = initial velocity (which is 0 in this case, since the ball is dropped)

v = final velocity (what we're trying to find)

a = acceleration due to gravity (-9.8 m/s^2)

s = displacement (which is the distance the ball falls, or 22 m)

Plugging in the given values, we get:

v^2 = 0 + 2(-9.8)(22)

v^2 = -431.2

Since we can't have a negative final velocity, we need to take the square root of both sides and include a negative sign to indicate that the final velocity is in the opposite direction of the initial velocity:

v = -sqrt(-431.2)

v ≈ -20.8 m/s

So the final velocity of the ball is approximately -20.8 m/s.

Answer:

The final velocity is -20.8 m/s.

Explanation:

To solve this problem, we can use one of the kinematics equations. Let's first write out which variables we know and what we are trying to figure out. (Note that acceleration due to gravity and Δy must have the same sign).

a = -9.8 m/s²

Δy = -22 m

v1 = 0

v2 = ?

Given these variables, we should use the following equation:

v2² = v1² + 2aΔy

Our next step is to substitute in the given variables and simplify.

v2² = (0) + (2)(-9.8 m/s²)(-22m)

v2² = 431.2

Our final step is to take the square root of both sides to find v2.

v2 = √431.2

v2 = -20.8 m/s

Therefore, the final velocity is -20.8 m/s. The velocity must be in the same direction as the displacement and the acceleration, so its sign should be negative.

For more information about similar physics problems with falling objects, check out these other questions on Brainly:

https://brainly.com/question/14251349

https://brainly.com/question/17107662

a 25.0 ml sample of a saturated c a ( o h ) 2 solution is titrated with 0.028 m h c l , and the equivalence point is reached after 38.1 ml of titrant are dispensed. based on this data, what is the concentration (m) of the hydroxide ion? type answer:

Answers

The concentration (M) of the hydroxide ion when 25ml of saturated  Ca(OH)₂ is titrated with 0.028 ml of HCl is  0.054 M.

The concentration of the hydroxide ions can be calculated using the following formula:

[OH⁻] = ([tex]V_{B}[/tex] × [tex]M_{B}[/tex])/ ([tex]V_{S}[/tex] × n)

where [tex]V_{B}[/tex] is the volume of HCl used, [tex]M_{B}[/tex] is the molarity of HCl, [tex]V_{S}[/tex] is the volume of Ca(OH)₂ solution used and n is the number of OH⁻ ions per molecule of Ca(OH)₂ which is 2.

Here, [.] denotes the concentration of an entitled ion or molecule.

The concentration of a chemical species, specifically a solute in a solution, is measured by its molarity. It is described as the quantity of solute in one liter of solution, expressed in moles. The letter M stands for molarity.

After substituting the values provided in the question, we get:

[OH⁻] = (38.1 ml × 0.028 M) / (25 ml × 2)

[OH⁻] = 0.054 M

Therefore, the concentration of hydroxide ion in the saturated Ca(OH)2 solution is 0.054 M.

To know more about concentration of ions, refer:

https://brainly.com/question/21961599

#SPJ4

How many molecules of H2O can be produced from the reactants in the container below?

Answers

To determine the number of water molecules that can be produced from a given set of reactants, we need to know the chemical equation for the reaction and the amounts of each reactant present.

For example, if we have the reaction:

2H2 + O2 → 2H2O

This indicates that two molecules of the gas hydrogen (H2) and one molecule of the gas oxygen (O2) combine to form two molecules of water.

If we have 4 molecules of hydrogen gas and 2 molecules of oxygen gas present, then we have enough reactants to produce 4 molecules of water. However, if we have only 3 molecules of hydrogen gas and 2 molecules of oxygen gas present, then we have enough oxygen to react with only 2 molecules of hydrogen gas, producing 2 molecules of water and leaving one molecule of hydrogen gas unreacted.

So the number of water molecules that can be produced depends on the stoichiometry of the reaction and the amounts of reactants present.

For more questions on: produced

https://brainly.com/question/28807314

#SPJ11

you need to make a ph 6.5 buffer. which of the following reagents would you choose to make the buffer? explain. pka1, pka2, and pka3 of h3a are 2.44, 6.27, and 9.82, respectively. na3a na2ha nah2a h3a 6. a buffer is made by combining 20.0 ml 0.250 m nh4cl with 30.0 ml 0.250 m nh3. a. calculate the ph of the buffer.

Answers

To make a pH 6.5 buffer, we need to choose a weak acid and its conjugate base with a pKa value close to 6.5. Looking at the given pKa values of H3A, we see that pKa2 is the closest to 6.5. Therefore, we should choose the conjugate acid-base pair Na2HA/NaHA.

To prepare the buffer, we would add a solution of Na2HA and NaOH to water and adjust the pH to 6.5 using a pH meter or pH indicator. The resulting solution will be a buffer with a pH of 6.5.

Now, let's move on to the second part of the question:

We are given 20.0 mL of 0.250 M NH4Cl and 30.0 mL of 0.250 M NH3 to prepare a buffer. The relevant equilibrium involved in this buffer is:

NH4+ + NH3 ⇌ NH3 + H+

From the given information, we can find the initial concentrations of NH4+ and NH3 in the buffer solution as:

[NH4+] = (0.250 mol/L) x (20.0 mL/1000 mL) = 0.0050 M

[NH3] = (0.250 mol/L) x (30.0 mL/1000 mL) = 0.0075 M

The equilibrium concentration of NH3 and H+ can be calculated using the Henderson-Hasselbalch equation:

pH = pKa + log([NH3]/[NH4+])

Substituting the given values:

pH = 9.25 + log(0.0075/0.0050) = 9.25 + 0.18 = 9.43

Therefore, the pH of the buffer is approximately 9.43.

To learn more about conjugate base visit;

https://brainly.com/question/30225100

#SPJ4

lactic acid, hc3h5o3, has one acidic hydrogen. a 0.10m solution of lactic acid has a ph of 2.44. calculate ka

Answers

Given: The concentration of lactic acid: [C₃H₆O₃] = 0.1 M

           The pH value of the solution: pH = 2.44

To calculate: Kₐ for lactic acid

The concentration of hydronium ions can be calculated by using the pH value.

[H₃O⁺] = 10⁻[tex]^{pH}[/tex]

           = 10[tex]^{-2.44}[/tex]

           = 0.00363 M

The ICE table for the dissociation of lactic acid is given:

Initial (M):          C₃H₆O₃ + H₂O ⇄ C₃H₅O₃⁻ + H₃O⁺

Change (M):          -x                          +x            +x

Equilibrium (M):    0.1M - x                 x            0.00363 M

From the ICE table at the equilibrium condition

x = [H₃O⁺] = [C₃H₅O₃⁻] = 0.00363 M

[C₃H₅O₃⁻] = 0.1 M - x

                = 0.1 M - 0.00363 M

                0.09637 M

The expression for Kₐ = [H₃O⁺] [C₃H₅O₃⁻] / [C₃H₆O₃]

On substituting the corresponding values in the equation,

Kₐ = 0.00363 M × 0.00363 M / 0.09637 M

     = 1.37 × 10⁻⁴

Hence the Kₐ for lactic acid is 1.37 × 10⁻⁴.

Learn more about Lactic acid, here:

https://brainly.com/question/22060383

#SPJ4

 

if a titration of a different 10.0 ml sample requires 0.00500 moles of base, what mass of acetic acid is in the solution? (b) assuming the solution has a density of 1.0 g/ml, what is the mass % of acetic acid in the solution?

Answers

The mass of acetic acid in the solution is 0.30025 g. The mass percentage of acetic acid in the solution is 3.0025%.

(a) To find the mass of acetic acid in the solution, follow these steps:

Determine the moles of acetic acid:

Since 0.00500 moles of base were required for titration, it means that there are 0.00500 moles of acetic acid in the 10.0 ml sample (assuming a 1:1 reaction).

Calculate the mass of acetic acid:

Acetic acid (CH₃COOH) has a molecular weight of 12.01 (C) + 4.03 (4H) + 16.00 (2O) = 60.05 g/mol.

Multiply the moles of acetic acid by its molecular weight to find the mass is;

0.00500 moles × 60.05 g/mol = 0.30025 g.

So, the mass of acetic acid in the solution is 0.30025 g.



(b) To find the mass percentage of acetic acid in the solution, follow these steps:

Calculate the mass of the 10.0 ml solution:

Since the density is 1.0 g/ml, the mass of the solution is 10.0 ml × 1.0 g/ml = 10.0 g.

Calculate the mass percentage of acetic acid:

Divide the mass of acetic acid by the mass of the solution and multiply by 100:

(0.30025 g / 10.0 g) × 100 = 3.0025%.

So, the mass percentage of acetic acid in the solution is 3.0025%.

Learn more about  mass percentage here;

brainly.com/question/30313524

#SPJ11

the reaction between leadnitrate and aluminim chloride produces lead chloride and aluminim nitrate. find the mole ratios of lead nitrate to aluminim chloride and lead chloride to aluminum nitrate

Answers

The coefficients in the equation indicate that the mole ratio of lead chloride to aluminium nitrate is also 3:2.

The balanced chemical equation for the reaction between lead nitrate (Pb(NO3)2) and aluminium chloride (AlCl3) is:

3Pb(NO3)2 + 2AlCl3 → 3PbCl2 + 2Al(NO3)3
From the balanced equation, we can see that the mole ratio of lead nitrate to aluminium chloride is 3:2.
Similarly, the mole ratio of lead chloride to aluminium nitrate can be determined from the balanced equation. The coefficients in the equation indicate that the mole ratio of lead chloride to aluminium nitrate is also 3:2.
So, the mole ratio of lead nitrate to aluminium chloride is 3:2, which means that for every 3 moles of lead nitrate used in the reaction, 2 moles of aluminium chloride are required.
Likewise, the mole ratio of lead chloride to aluminium nitrate is also 3:2, which means that for every 3 moles of lead chloride produced in the reaction, 2 moles of aluminium nitrate are also produced.
It's worth noting that these mole ratios only apply to the specific reaction between lead nitrate and aluminium chloride, and may be different for other chemical reactions involving these compounds.

To know more about Mole ratio go through:-

https://brainly.com/question/19099163

#SPJ4

Other Questions
according to bygren and pembrey what enviornmental factor in a granfather could increase the likelihood of diabetes in a grandson. Find the area and perimeter which of the following gives the definition of ion-dipole attraction? select the correct answer below: ion-dipole attraction is attraction between an ion and the polar bond(s) in a nonpolar molecule. ion-dipole attraction is a physical process accompanying the dissolution of an ionic compound in which the compound's constituent ions are solvated and dispersed throughout the solution. ion-dipole attraction is the scattering of visible light by a solution. ion-dipole attraction is the electrostatic attraction between an ion and a polar molecule. At which point does puberty occur for the majority of people? the painting below uses similar lighting techniques to the last supper, and both were painted by which artist? Nikki used the calculations shown to determine whether a carton of 12 eggs or a carton of 18 eggs was the better buy.A carton of 12 eggs cost $2.39 , and a carton of 18 eggs cost $3.39 .Unit price of the 12 -egg carton = ($2.39)(12 eggs) = $28.68 per eggUnit price of the 18 -egg carton = ($3.39)(18 eggs) = $61.02 per eggThe 12 -egg carton has the lower unit cost, so it is the better buy.What was her first error? Identify the combination of angle measures that could form a triangle. (1 point)O 40,55", and 95O 25, 65, and 90O 30,75, and 85O 45,65", and 75" Please help I am so confused Read the last two lines of shakespeare's "sonnet 130.and yet by heaven, i think my love as rare, as any she belied with false compare. which context clue best supports the definition of belied as "contradicted or "disproved? a. by heavenb. i think my lovec. as rare, / as anyd. false compare the following set of newly issued debt instruments was purchased for a porfolio: trasury bond. zero-coupon bond. corporate bond. municipal bond. the respective maturities of these investments are approximately equivalent HELLLLPPPPPP will give brainliest!!!!!For each of the following, circle the correct pronoun.10) ( Whoever, Whomever ) is the best qualified should get the job.11) To ( who, whom ) should the letter be addressed?12) The jury was in full agreement with ( their, its ) verdict.13) You and ( me, I ) are in the same class.14) The cat and the kitten washed ( its, their ) paws.15) Nick helped Diane and ( she, her ) with the chemistry assignment.16) Everyone should try ( his or her , their ) best to make the world a better place. [BRUTUS.] If then that friend demand why Brutus rose against Caesar, this is my answer: not that I loved Caesar less, but that I loved Rome more. Had you rather Caesar were living, and die all slaves, than that Caesar were dead, to live all free men? As Caesar loved me, I weep for him. As he was fortunate, I rejoice at it. As he was valiant, I honour him. But as he was ambitious, I slew him. There is tears for his love, joy for his fortune, honour for his valour, and death for his ambition. Who is here so base that would be a bondman? [ANTONY.] Did this in Caesar seem ambitious? When that the poor have cried, Caesar hath wept. Ambition should be made of sterner stuff. Yet Brutus says he was ambitious, And Brutus is an honourable man. You all did see that on the Lupercal I thrice presented him a kingly crown, Which he did thrice refuse. Was this ambition? Yet Brutus says he was ambitious, And sure he is an honourable man. Which statement best compares the two monologues? Both Brutus and Antony ask rhetorical questions to make points. Brutus describes Caesars generosity and compassion, while Antony describes his heartless nature. Both Brutus and Antony describe Caesars weakness in battle. Neither Brutus or Antony addresses the crowd directly. how can you minimize bias in your communication 2. Interpret Reread lines 17-23 of "A Voice." How does the speaker's motherfeel about herself as a young girl? Explain how the simile in lines 22-23shows the connection the mother has to her family. One summer afternoon, Kim heard on the news that the humidity in Ocala, Florida was 80%. How would the air feel when Kim goes outside?Group of answer choicescold and drywarm and wetcold and wetwarm and dry 4. In China, speaking your mind on the InternetO A. might get you arrested.O B. is difficult to do in Chinese script.O C. is allowed by the government.O D. is protected as free speech. jolanta has been offered a promotion, and she will be leading the new product development team. before her new position starts, jolanta is being sent to training, and that training will concentrate in business. which aspect of the creative process is jolanta pursuing? which statement correctly analyzes the rebuttal?it is effective because it creates emphasis by restating the claim. it is effective because it uses a guy makes a drink by mixing apple juice and water in the ratio 1:4 kim makes a drink by mixing apple juice and water in the ratio 2:7 who has the drink with the higher proportion of apple juice? 3.a patient is being treated with methimazole (tapazole) for hyperthyroidism, pending thyroidectomy. while the patient is taking this drug, what symptoms will the nurse teach the patient to report to the healthcare provider the study of heat energy that is involved in chemical and physical changes is: group of answer choices equilibrium efficiency thermodynamics constant none of the above Steam Workshop Downloader