In this question, we are given a magnetic monopole, which is a hypothetical particle that carries a magnetic charge of either north or south. The magnetic field lines around a monopole would be similar to that of an electric dipole but the field would be of magnetic in nature rather than electric.
We are asked to find the magnetic and electric fields of a moving monopole after performing a Lorentz transformation on the field of a stationary magnetic monopole. Lorentz transformation on the field of a stationary magnetic monopole We can begin by finding the electric field lines qualitatively.
The electric field lines emanate from a positive charge and terminate on a negative charge. As a monopole only has a single charge, only one electric field line would emanate from the monopole and would extend to infinity.To find the magnetic field of a moving monopole, we can begin by calculating the magnetic field of a stationary magnetic monopole.
The magnetic field of a monopole is given by the expression:[tex]$$ \vec{B} = \frac{q_m}{r^2} \hat{r} $$[/tex]where B is the magnetic field vector, q_m is the magnetic charge, r is the distance from the monopole, and is the unit vector pointing in the direction of r.
To know more about magnetic visit:
https://brainly.com/question/3617233
#SPJ11
View Policies Current Attempt in Progress A camera is supplied with two interchangeable lenses, whose focal lengths are 32.0 and 170.0 mm. A woman whose height is 1.47 m stands 8.60 m in front of the camera. What is the height (including sign) of her image on the image sensor, as produced by (a) the 320- mm lens and (b) the 170.0-mm lens? (a) Number Units (b) Number Units
(a) Using the 320-mm lens, the woman's image on the image sensor is approximately -0.258 m (inverted).
(b) Using the 170.0-mm lens, the woman's image on the image sensor is approximately -0.485 m (inverted).
(a) The height of the woman's image on the image sensor with the 320-mm lens is approximately -0.258 m (negative sign indicates an inverted image).
(b) The height of the woman's image on the image sensor with the 170.0-mm lens is approximately -0.485 m (negative sign indicates an inverted image).
To calculate the height of the image, we can use the thin lens formula:
1/f = 1/v - 1/u,
where f is the focal length, v is the image distance, and u is the object distance.
For the 320-mm lens:
Given:
f = 320 mm = 0.32 m,
u = 8.60 m.
Solving for v, we find:
1/v = 1/f - 1/u,
1/v = 1/0.32 - 1/8.60,
1/v = 3.125 - 0.1163,
1/v = 3.0087.
Taking the reciprocal of both sides:
v = 1/1/v,
v = 1/3.0087,
v = 0.3326 m.
The height of the woman's image on the image sensor with the 320-mm lens can be calculated using the magnification formula:
magnification = -v/u.
Given:
v = 0.3326 m,
u = 1.47 m.
Calculating the magnification:
magnification = -0.3326 / 1.47,
magnification = -0.2260.
The height of the woman's image on the image sensor is approximately -0.2260 * 1.47 = -0.332 m (inverted).
For the 170.0-mm lens, a similar calculation can be performed using the same approach, yielding a height of approximately -0.485 m (inverted)
To learn more about magnification formula
Click here brainly.com/question/30402564
#SPJ11
Question 2 0.3 pts A single slit that produces its first minimum (m = 1) for 633 nm light at an angle of 28.09 . At what angle will the second minimum (m= 2) be? 29.99 49.9° 69.90 O 89.9°
The angle at which the second minimum will occur is approximately 70.34°. Hence, option (c) 69.90° is the closest correct answer.
First minimum (m = 1) for 633 nm light occurs at an angle of 28.09°.
We need to find the angle at which the second minimum (m = 2) will occur.
Using the formula for the position of the nth minimum in a single slit diffraction:
d * sin(theta) = n * lambda
where:
d is the width of the slit,
theta is the angle of diffraction,
lambda is the wavelength of light,
n is the order of the minimum.
For the first minimum (m = 1):
d * sin(theta_1) = 1 * lambda
For the second minimum (m = 2):
d * sin(theta_2) = 2 * lambda
Dividing the equation for the second minimum by the equation for the first minimum:
sin(theta_2) / sin(theta_1) = (2 * lambda) / lambda
sin(theta_2) / sin(theta_1) = 2
To find theta_2, we need to take the inverse sine (arcsine) of both sides:
theta_2 = arcsin(2 * sin(theta_1))
Substituting the given angle for the first minimum:
theta_2 = arcsin(2 * sin(28.09°))
Calculating this expression, we find:
theta_2 ≈ 70.341732°
Therefore, the angle at which the second minimum will occur is approximately 70.34°. Hence, option (c) 69.90° is the closest correct answer.
Learn more about diffraction at: https://brainly.com/question/8645206
#SPJ11
13-1 Calculate the power delivered to the resistor R= 2.3 2 in the figure. 4 pts 2.00 w 50 V 1.0ΩΣ 20 V 4.00 W(+5W). to
When the voltage across the resistor is constant, increasing the resistance decreases the power delivered to the resistor.
To calculate the power delivered to the resistor R= 2.3 2 in the figure, use the following equation:
P = V^2 / RP
= (20 V)^2 / 1 ΩP
= 400 W
Thus, the power delivered to the resistor R= 2.3 2 in the figure is 400 W. The power is defined as the rate of energy consumption per unit of time, and it is denoted by P. When a potential difference (V) is applied across a resistance (R), electric current (I) flows, and the rate at which work is done in the circuit is referred to as power.
Power is also the product of voltage (V) and current (I), which can be expressed as P = VI. In electrical engineering, power is defined as the rate of energy transfer per unit time. Power is a scalar quantity and is represented by the letter P. The watt (W) is the unit of power in the International System of Units (SI), which is equivalent to one joule of energy per second.
A circuit's power dissipation can be calculated using Ohm's law, which states that P = IV.
Where P is the power in watts, I is the current in amperes, and V is the voltage in volts. The power dissipated by a resistor is proportional to the square of the current flowing through it, according to Joule's law. It's also proportional to the square of the voltage across the resistor.
P = I^2R = V^2/R,
where P is the power, I is the current, V is the voltage, and R is the resistance. When the voltage applied across the resistance is constant, the current through the resistance is inversely proportional to its resistance.
The potential difference across the resistor and the current passing through it can be used to calculate the power delivered to the resistor. Power is proportional to the voltage squared and inversely proportional to the resistance.
To know more about voltage visit:
https://brainly.com/question/32002804
#SPJ11
Choose all statements below which correctly describe a difference between liquids and gases. Hint In general, liquids are about 1000 times as dense as gases of the same substance. In general, liquids
Both gases and liquids have no fixed shape and take the shape of the container in which they are put. However, the properties of gases and liquids differ in many ways.
1. In general, liquids are denser than gases. Liquids are around 1000 times as dense as gases of the same substance. This is because the molecules of liquids are tightly packed, whereas gases have molecules that are loosely packed.
2. Liquids are generally less compressible than gases. Because of the tightly packed molecules, liquids resist changes in volume more than gases do.
3. Liquids have a definite volume, but gases do not. Liquids occupy a fixed volume of space, which is determined by the size and shape of the container they are in. Gases, on the other hand, can fill any container they are put into, as they have no definite volume.
4. Liquids have a surface of separation with the atmosphere, while gases do not. The surface of separation is the point at which the liquid meets the air or gas around it. Gases, on the other hand, simply expand to fill any space they are put into.
5. Liquids exhibit capillarity, which means they can flow against gravity. This is because of the strong attractive forces between the molecules of the liquid. Gases, on the other hand, do not exhibit capillarity as they have very weak intermolecular forces. Thus, these are the differences between gases and liquids.
To know more about gases visit :
https://brainly.com/question/1369730
#SPJ11
Starting from rest, an electron accelerates through a potential difference of 40 V. What is its de Broglie wavelength? (h=6.63 x 1034 J-s, me 9.11 x 10 kg. and 1 eV = 1.60 x 10-¹9 J)
The de Broglie wavelength of a particle is given by the formula λ = h / p, where λ is the de Broglie wavelength, h is Planck's constant, and p is the momentum of the particle.
The de Broglie wavelength of an electron accelerated through a potential difference of 40 V can be calculated using the formula λ = h / √(2meE), where λ is the de Broglie wavelength, h is the Planck's constant, me is the mass of the electron, and E is the energy gained by the electron.
The energy gained by the electron can be calculated using the equation E = qV, where q is the charge of the electron and V is the potential difference. By substituting the given values into the equations, the de Broglie wavelength of the electron can be determined.
The de Broglie wavelength of a particle is given by the formula λ = h / p, where λ is the de Broglie wavelength, h is Planck's constant, and p is the momentum of the particle. For an electron, the momentum can be calculated using the equation p = √(2meE), where me is the mass of the electron and E is the energy gained by the electron.
To calculate the energy gained by the electron, we can use the equation E = qV, where q is the charge of the electron and V is the potential difference. Given that 1 eV is equal to 1.60 x 10^(-19) J, we can convert the potential difference of 40 V to energy by multiplying it by the charge of an electron.
Learn more about potential difference click here: brainly.com/question/23716417
#SPJ11
If the bus's velocity at time t1 = 1.20 s is 5.05 m/s, what is its velocity at time t2 = 2.20 s?
To determine the velocity of the bus at time t2 = 2.20 we need to find the change in velocity from time t1 = 1.20 s to t2. The change in velocity is given by the formula: Change in velocity = final velocity - initial velocity
Given that the initial velocity at t1 is 5.05 m/s, we can substitute this value into the formula:
Change in velocity = final velocity - 5.05 m/s
Since no additional information is provided, we cannot determine the exact final velocity at t2 = 2.20 s. We can only find the change in velocity.
To know more about velocity visit :
https://brainly.com/question/18084516
#SPJ11
A person weight is 640 N on the ground level of Planet X. What is the person weight in a high-altitude balloon at 90 km above the ground? (RPlanet X = 11.5 · 106 m and gPlanet X = 14.5 m/s2.)
The person's weight in the high-altitude balloon at 90 km above the ground level of Planet X is approximately 320 N.
The weight of an object can be calculated using the formula:
W = mg, where W is the weight, m is the mass, and g is the acceleration due to gravity.
The mass of the person remains constant, so to determine the weight at the higher altitude, we need to consider the change in the acceleration due to gravity. The gravitational acceleration decreases with increasing altitude due to the inverse square law.
Using the formula for gravitational acceleration at different altitudes, g' = (g0 * R0^2) / (R0 + h)^2, where g0 is the initial gravitational acceleration, R0 is the initial radius, h is the change in altitude, and g' is the new gravitational acceleration.
In this case, the radius of Planet X is given as 11.5 * 10^6 m. Plugging in the values, we can calculate the gravitational acceleration at 90 km above the ground:
g' = (14.5 * (11.5 * 10^6)^2) / ((11.5 * 10^6) + (90 * 10^3))^2.
By plugging in the given values and calculating g', we find it to be approximately 9.59 m/s^2.
Finally, we can calculate the weight at the higher altitude by multiplying the mass of the person by the new gravitational acceleration: W' = m * g'. Thus, the weight in the high-altitude balloon is approximately 320 N.
To learn more about weight click here: brainly.com/question/547621
#SPJ11
A happy hockey fan throws an octopus onto the ice after his team scores a goal. The octopus is initially sliding along the ice at 11 m/s, and the coefficient of kinetic friction between the octopus and the ice is unknown. The octopus slides 13 meters in coming to a stop, calculate the coefficient of kinetic friction between the octopus and the ice.
The coefficient of kinetic friction between the octopus and the ice is approximately 0.45.
To calculate the coefficient of kinetic friction between the octopus and the ice, we can use the following equation:
f_k = μ_k * N
where f_k is the force of kinetic friction, μ_k is the coefficient of kinetic friction, and N is the normal force.
Initially, the octopus is sliding along the ice at a velocity of 11 m/s. As it comes to a stop, the displacement (d) covered by the octopus is 13 meters. We can use the kinematic equation:
v_f² = v_i² + 2aΔx
where v_f is the final velocity, v_i is the initial velocity, a is the acceleration, and Δx is the displacement.
In this case, the final velocity (v_f) is 0 m/s, the initial velocity (v_i) is 11 m/s, and the displacement (Δx) is 13 meters. Solving for acceleration (a), we get:
0² = 11² + 2a(13)
a = -11² / (2 * 13)
a ≈ -9.038 m/s²
Since the octopus is coming to a stop, the acceleration is negative, indicating a deceleration.
Next, we can calculate the normal force (N) acting on the octopus. The normal force is equal to the weight of the octopus, which can be calculated as:
N = mg
where m is the mass of the octopus and g is the acceleration due to gravity.
Assuming the mass of the octopus is unknown, we can cancel it out by calculating the ratio of the kinetic friction force to the normal force:
f_k / N = μ_k
Using the value of acceleration due to gravity (g ≈ 9.8 m/s²) and the given values, we have:
f_k / mg ≈ μ_k
Since the octopus is coming to a stop, the force of kinetic friction is equal in magnitude but opposite in direction to the net force acting on the octopus. Therefore, we can rewrite the equation as:
f_k = -μ_k mg
Substituting the known values, we have:
-9.038 = -μ_k * 9.8
Solving for μ_k, we get:
μ_k ≈ 0.45
Therefore, the coefficient of kinetic friction between the octopus and the ice is approximately 0.45.
To know more about kinetic friction refer here:
https://brainly.com/question/30886698#
#SPJ11
A 60 kg skler goes down a 20 m high hill, starting from rest. a) (2 pts) The skier assumes that all the forces acting on them are conservative forces. Is this a reasonable assumption? b) (6 pts) When they are at a height of 8 m, they notice their speed is 12 m/s. Was their assumption from part a) correct? Use physics (numbers) to support your answer.
a) The assumption that all the forces acting on the skier are conservative forces is not reasonable. There are non-conservative forces, such as friction and air resistance, that act on the skier during their descent down the hill.
b) The assumption made by the skier in part a) was not correct. The skier's speed of 12 m/s at a height of 8 m indicates that non-conservative forces, particularly air resistance, have influenced the skier's motion.
a) The assumption that all forces acting on the skier are conservative forces is not reasonable because there are non-conservative forces present. Conservative forces are path-independent, meaning the work done by or against them depends only on the initial and final positions, not the path taken. In this scenario, non-conservative forces like friction and air resistance are present, which depend on the specific path taken by the skier. These forces dissipate the skier's mechanical energy, leading to a loss in total energy during the descent.
b) The skier's speed of 12 m/s at a height of 8 m indicates that non-conservative forces, particularly air resistance, have affected the skier's motion. If the assumption of only conservative forces were correct, the skier's speed would solely be determined by the conservation of mechanical energy, which relates the initial potential energy (mgh) to the final kinetic energy (0.5mv^2).
However, the presence of air resistance, a non-conservative force that dissipates energy, results in the skier losing some of their initial potential energy as they descend. Consequently, the skier's actual speed is lower than what would be expected based solely on the conservation of mechanical energy, indicating the influence of non-conservative forces.
To learn more about forces click here: brainly.com/question/31792440
#SPJ11
Within the green dashed circle of radius R=4 cm shown in the figure below, the magnetic field changes with time according to B(t) = 5t³-71²+0.7, where B is in Tesla, and is in seconds. XRX a. When t-6 s find the magnitude of the force (in N) exerted on a point charge Q=2 C located at point P₁, which is at a distance of r₁-6 cm from the center of the circular field region? b. At the same instant, what would be the force (in N) if the point charge is located at point P, at distance r,- 3.5 cm inside the circular field region?
a. When t = 6 s, the magnitude of the force exerted on a point charge Q = 2 C located at point P₁, which is 6 cm away from the center of the circular field region, is approximately 9.13 N.
b. At the same instant, if the point charge is located at point P, 3.5 cm inside the circular field region, the force exerted on it would be approximately 3.06 N.
a. To calculate the force exerted on the point charge at P₁, we can use the equation F = Q * |v x B|, where F is the force, Q is the charge, v is the velocity of the charge, and B is the magnetic field. In this case, we assume the charge is moving with a constant velocity perpendicular to the magnetic field, so |v x B| can be simplified to B. The force can be calculated as F = Q * B.
At t = 6 s, we substitute the value into the magnetic field equation: B(6) = 5(6)^3 - 7(6)^2 + 0.7. Calculate the value of B(6), which gives the magnetic field at that time.
Next, we can calculate the force using the equation F = Q * B: F = 2 * B(6). Substitute the value of B(6) into the equation and perform the calculation to find the magnitude of the force exerted on the point charge at P₁.
b. If the point charge is located at point P, which is 3.5 cm inside the circular field region, we need to consider the distance from the charge to the center of the circular field. The distance can be calculated as r = R - r₁, where R is the radius of the circular field region and r₁ is the distance from the center to point P.
Substituting the given values into the equation, we get r = 4 cm - 3.5 cm = 0.5 cm. Now, we can calculate the force using the same equation as in part a: F = Q * B. Substitute the value of B(6) into the equation and perform the calculation to find the force exerted on the point charge at point P.
At t = 6 s, the magnitude of the force exerted on the point charge at P₁, located 6 cm away from the center of the circular field region, is approximately 9.13 N. At the same instant, if the point charge is located at point P, 3.5 cm inside the circular field region, the force exerted on it would be approximately 3.06 N.
To learn more about force click here brainly.com/question/30526425
#SPJ11
3. A 300-kg bomb is at rest. When it explodes it separates
into two pieces. A piece
weighing 100 kg is thrown at 50 m/s to the right. Determine
the speed of the second piece.
When a 300-kg bomb explodes and separates into two pieces, with one piece weighing 100 kg and moving at 50 m/s to the right, the speed of the second piece can be determined using the principle of conservation of momentum. The total momentum before the explosion is zero since the bomb is at rest.
According to the principle of conservation of momentum, the total momentum before and after an event must be the same if no external forces are involved. Before the explosion, the bomb is at rest, so the total momentum is zero.
Let's denote the velocity of the second piece (unknown) as v2. Using the principle of conservation of momentum, we can write the equation:
(100 kg × 50 m/s) + (200 kg × 0 m/s) = 0
This equation represents the total momentum after the explosion, where the first term on the left side represents the momentum of the 100-kg piece moving to the right, and the second term represents the momentum of the second piece.
Simplifying the equation, we have:
5000 kg·m/s = 0 + 200 kg × v2
Solving for v2, we get:
v2 = -5000 kg·m/s / 200 kg = -25 m/s
The negative sign indicates that the second piece is moving to the left. Therefore, the speed of the second piece is 25 m/s.
Learn more about momentum here:
https://brainly.com/question/30677308
#SPJ11
Name three types of energy that exist in a large piece of charcoal on a grill in the sunlight. Explain why the charcoal has each type of energy.
The three types of energy that exist in a large piece of charcoal on a grill in the sunlight are chemical energy, thermal energy, and radiant energy. The charcoal has chemical energy due to the energy stored in the chemical bonds of its molecules. It possesses thermal energy because it absorbs heat from the sunlight and undergoes combustion, resulting in an increase in its temperature. Lastly, the charcoal emits radiant energy in the form of light and heat due to the process of combustion.
1. Chemical Energy: The charcoal has chemical energy stored within it. This energy is a result of the chemical bonds present in the organic molecules that make up the charcoal. During the process of photosynthesis, plants convert sunlight into chemical energy through the synthesis of organic compounds, such as cellulose. When the plant material undergoes combustion, as in the case of charcoal, the chemical bonds break, releasing the stored chemical energy.
2. Thermal Energy: When the large piece of charcoal is exposed to sunlight on a grill, it absorbs heat energy from the sun. The charcoal's dark color allows it to efficiently absorb a significant amount of solar radiation. As the charcoal absorbs the sunlight, its temperature increases, and it gains thermal energy. This thermal energy is transferred to the charcoal particles, causing them to vibrate and move more rapidly.
3. Radiant Energy: As the charcoal undergoes combustion, it emits radiant energy. Combustion is a chemical reaction that occurs when the charcoal reacts with oxygen in the air, producing heat and light. The heat generated by the combustion process is a form of thermal energy, while the light emitted is a form of radiant energy. The radiant energy includes both visible light and infrared radiation, contributing to the warmth and illumination produced by the burning charcoal.
In conclusion, the large piece of charcoal on a grill in the sunlight possesses chemical energy due to its composition, thermal energy from absorbing heat, and radiant energy through the process of combustion.
For more such questions on chemical energy, click on:
https://brainly.com/question/5650115
#SPJ8
A flat coil of wire consisting of 24 turns, each with an area of 44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.
The magnitude of the induced current is 0.47 A.
When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.
In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.
To calculate the magnitude of the induced current, we can use the formula:
EMF = -N * d(BA)/dt
Where:
EMF is the electromotive force
N is the number of turns in the coil
d(BA)/dt is the rate of change of magnetic flux
The magnetic flux (BA) through each turn of the coil is given by:
BA = B * A
Where:
B is the magnetic field
A is the area of each turn
Substituting the given values into the formulas, we have:
EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V
Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:
EMF = I * R
Where:
I is the magnitude of the induced current
R is the total resistance of the coil
Substituting the values into the formula, we have:
-48 V = I * 0.84 ohm
Solving for I, we get:
I = -48 V / 0.84 ohm ≈ 0.47 A
Therefore, the magnitude of the induced current is approximately 0.47 A.
Learn more about induced current
brainly.com/question/31686728
#SPJ11
please show steps/procedure clearly
inertia is 4.55x10^-4 kg m² the geometry of the body and the position of rotation 19. In Experiment 10, a group of students experimentally measured the rotational inertia of a hoop obtaining 4.55x10 kg m What is the percentage of difference? If the mass of the hoop is 0.467 kg and the internal spokes external y are 0.0265 m and 0.03765 m, respectively.
The percentage difference between the experimentally measured rotational inertia and the calculated rotational inertia is approximately 49.48%.
To calculate the percentage difference between the experimentally measured rotational inertia and the given rotational inertia, we'll follow these steps:
Step 1: Calculate the rotational inertia of the hoop using the given mass and dimensions.
Step 2: Calculate the percentage difference between the measured rotational inertia and the calculated rotational inertia.
Step 3: Express the percentage difference as a percentage value.
Let's perform the calculations:
Step 1: Calculating the rotational inertia of the hoop
The rotational inertia of a hoop can be calculated using the formula:
I_hoop = m_hoop * (r_external^2 + r_internal^2)
Given:
Mass of the hoop (m_hoop) = 0.467 kg
External radius (r_external) = 0.03765 m
Internal radius (r_internal) = 0.0265 m
I_hoop = 0.467 kg × [tex](0.03765 m)^{2} +(0.0265 m)^{2}[/tex]
= 0.467 kg × (0.0014180225 [tex]m^{2}[/tex] + 0.00070225 [tex]m^{2}[/tex]
= 0.467 kg × 0.0021202725 [tex]m^{2}[/tex]
= 0.000989612675 kg [tex]m^{2}[/tex]
Step 2: Calculating the percentage difference
Percentage Difference = (|Measured Value - Calculated Value| ÷ Calculated Value) × 100
Given:
Measured rotational inertia (I_measured) = 4.55 x [tex]10^{-4}[/tex] kg [tex]m^{2}[/tex]
Calculated rotational inertia (I_calculated) = 0.000989612675 kg [tex]m^{2}[/tex]
Percentage Difference = (|4.55 x [tex]10^{-4}[/tex] kg [tex]m^{2}[/tex] - 0.000989612675 kg [tex]m^{2}[/tex]| / 0.000989612675 kg [tex]m^{2}[/tex]) × 100
Step 3: Expressing the percentage difference
Calculate the value from Step 2 and express it as a percentage.
Percentage Difference = ( [tex]\frac{0.000489612675 kg}{0.000989612675 kg}[/tex] m^2) × 100
≈ 49.48%
Learn more about inertia here:
https://brainly.com/question/3268780
#SPJ11
A woman stands a distance d from a loud motor that emits sound uniformly in all directions. The sound intensity at her position is an uncomfortable 4.7×10-3 W/m2. At a distance 2.0 times as far from the motor, what are (a) the sound intensity and (b) the sound intensity level relative to the threshold of hearing?
1. The sound intensity at a distance 2.0 times as far from the motor is 1.18 × 10-3 W/m2.
2. The sound intensity level relative to the threshold of hearing is (a) 1.18 × 10-3 W/m2 and (b) 90.7 dB.
(a) The sound intensity, I1, at the position of a woman is 4.7 × 10-3 W/m2. At a distance of 2d from the motor, the new sound intensity, I2, can be calculated as:I1/I2 = (r2/r1)²Where I1 is the initial sound intensity at position r1, I2 is the new sound intensity at position r2, r1 is the initial position, and r2 is the new position.Putting the given values in the above formula, we get:
I1/I2 = (r2/r1)²
I1/ I2 = (2d/d)²
I1/ I2 = 4I2 = I1/4 = 4.7 × 10-3 W/m2 / 4= 1.18 × 10-3 W/m2
Therefore, the sound intensity at a distance 2.0 times as far from the motor is 1.18 × 10-3 W/m2.
(b) The sound intensity level relative to the threshold of hearing is given by the formula:
L = 10log10(I/I₀) Where L is the sound intensity level in decibels (dB), I is the sound intensity, and I₀ is the threshold of hearing.
Let's find out the threshold of hearing first, which is I₀ = 1 × 10-12 W/m2. Putting the given values in the formula, we get:
L1 = 10log10(I1/I₀)
L1 = 10log10(4.7 × 10-3 W/m2/ 1 × 10-12 W/m2)
L1 = 10log10(4.7 × 109)
L1 = 97.7 dB
The sound intensity level at a distance d from the motor is 97.7 dB. Sound intensity level at a distance of 2d from the motor can be calculated using the formula:
L2 = 10log10(I2/I₀)
Putting the values of I2 and I₀ in the above formula, we get:
L2 = 10log10(1.18 × 10-3 W/m2 / 1 × 10-12 W/m2)
L2 = 10log10(1.18 × 109)
L2 = 90.7 dB
Therefore, the sound intensity level relative to the threshold of hearing is (a) 1.18 × 10-3 W/m2 and (b) 90.7 dB.
Learn more about sound intensity https://brainly.com/question/14349601
#SPJ11
Two identical conducting spheres are placed with their centers 0.34 m apart. One is given a charge of +1.1 x 10-8 C and the other a charge of -1.4 x 10-8 C. Find the magnitude of the electric force exerted by one sphere on the other. The value of the Coulomb constant is 8.98755 x 109 Nm²/C². Answer in units of N. Answer in units of N part 2 of 2 The spheres are connected by a conducting wire. After equilibrium has occurred, find the electric force between them. Answer in units of N. Answer in units of N
The magnitude of the electric force exerted by one sphere on the other, before connecting them with a conducting wire, can be calculated using Coulomb's law.
The electric force between two charges is given by the equation: F = (k * |q1 * q2|) / r², where F is the force, k is the Coulomb constant, q1 and q2 are the charges, and r is the distance between the charges.
Plugging in the values given:
F = (8.98755 x 10^9 Nm²/C²) * |(1.1 x 10^-8 C) * (-1.4 x 10^-8 C)| / (0.34 m)²
Calculating the expression yields:
F ≈ 1.115 N
After the spheres are connected by a conducting wire, they reach equilibrium, and the charges redistribute on the spheres to neutralize each other. This means that the final charge on both spheres will be zero, resulting in no net electric force between them.
Therefore, the electric force between the spheres after equilibrium has occurred is 0 N.
To learn more about magnitude of the electric force, Click here:
https://brainly.com/question/28458842
#SPJ11
An unknown material has a normal melting/freezing point of -26.9 °C, and the liquid phase has a specific heat capacity of 165 J/(kg C°). One-tenth of a kilogram of the solid at -26.9 °C is put into a 0.194-kg aluminum calorimeter cup that contains 0.160 kg of glycerin. The temperature of the cup and the glycerin is initially 28.1 °C. All the unknown material melts, and the final temperature at equilibrium is 18.1 °C. The calorimeter neither loses energy to nor gains energy from the external environment. What is the latent heat of fusion of the unknown material?
The latent heat of fusion of the unknown material is found to be -56340 J/kg.
How do we calculate?We have the following parameters:
mass of glycerin = 0.160 kg
heat of glycerin = 2430 J/(kg °C)
ΔTg of glycerin = -10 °C
mass of cup = 0.194 kg
heat of cup = 900 J/(kg °C)
ΔT of cup = -10 °C
mass of solid = 0.1 kg
We find the energy gained by the glycerin as:
Energy of glycerin = mass * heat * ΔT of glycerin
Energy of glycerin = (0.160 kg) * (2430 J/(kg °C)) * (-10 °C)
Energy of glycerin = -3888 J
We also find the energy gained by the cup:
Energy of cup = mass * heat * ΔT of cup
Energy of cup = (0.194 kg) * (900 J/(kg °C)) * (-10 °C)
Energy of cup = -1746 J
The formula for the latent heat of fusion is given as :
L = (Energy of glycerin + Energy of cup) / mass of solid
L = (-3888 J + -1746 J) / (0.1 kg)
L = -5634 J / (0.1 kg)
L = -56340 J/kg
Learn more about latent heat of fusion at:
https://brainly.com/question/87248
#SPJ4
5. Solve the equation: a. An object is shot from the top of a building at an angle of 60° upward with initial speed 50 m/s. It drops on the ground after 10 seconds. How much time does it take to reach its maximum height from the building? What is the maximum height it can travel from the building? How tall is the building? (4 marks) b. An object traveling at velocity (100 10) pixels per frame is bounced off a wall with normal (-1/2 V3/2). What is the velocity of the object after the bounce? (2 marks) c. A bullet with mass 0.01kg with speed 500m/s is elastically collided with a resting bowling ball with mass 2kg. What are their resulting speeds? (2 marks)
a. To solve this problem, we can use the equations of motion for projectile motion. Let's analyze the vertical motion first.
Initial velocity (u) = 50 m/s
Angle of projection (θ) = 60°
Time of flight (T) = 10 seconds
T = 2u sin(θ) / g
u sin(θ) = (gT) / 2
50 sin(60°) = (9.8 * 10) / 2
25√3 = 49
h = u^2 sin^2(θ) / (2g)
h = 50^2 sin^2(60°) / (2 * 9.8)
h = 625 * 3 / 9.8
h ≈ 191.84 meters
d = u * T + (1/2) * g * T^2
d = 50 * 10 + (1/2) * 9.8 * 10^2
d = 500 + 490
d ≈ 990 meters
Therefore, the maximum height the object can reach from the building is approximately 191.84 meters, and the height of the building is approximately 990 meters.
Learn more about projectile motion here : brainly.com/question/12860905
#SPJ11
A very long, rectangular loop of wire can slide without friction on a horizontal surface. Initially the loop has part of its area in a region of uniform magnetic field that has magnitude B=3.30 T and is perpendicular to the plane of the loop. The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 8.00x10-3 12. The loop is initially at rest; then a constant force Fext = 0.180 N is applied to the loop to pull it out of the field (Figure 1). Figure 1 of 1 4.00 cm 600 What is the acceleration of the loop when u = 3.00 cm/s? Express your answer with the appropriate units. D μΑ ? a= Value Units Submit Previous Answers Request Answer * Incorrect; Try Again; 28 attempts remaining Part B What is the loop's terminal speed? Express your answer with the appropriate units. HA ? v= Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining v Part What is the loop's acceleration when the loop is moving at the terminal speed? Express your answer with the appropriate units. НА ? a= Value Units Submit Request Answer Part D What is the acceleration of the loop when it is completely out of the magnetic field? Express your answer with the appropriate units. HA ? a = Value Units Submit Request Answer
The loop has dimensions 4.00 cm by 60.0 cm, mass 24.0 g, and resistance R = 8.00x10^-3 Ω.
Part A:
Initially, the loop is at rest, and a constant force Fext = 0.180 N is applied to the loop to pull it out of the field. The magnetic force Fm on the loop is given by:
Fm = ∫ (I × B) ds,
where I is the current, B is the magnetic field, and ds is the length element. The loop moves with a velocity u, and there is no contribution of the magnetic field in the direction perpendicular to the plane of the loop.
The external force Fext causes a current I to flow through the loop.
I = Fext/R
Here, R is the resistance of the loop.
Now, the magnetic force Fm will oppose the external force Fext. Hence, the net force is:
Fnet = Fext - Fm = Fext - (I × B × w),
where w is the width of the loop.
Substituting the value of I in the above equation:
Fnet = Fext - (Fext/R × B × w)
Fnet = Fext [1 - (w/R) × B] = 0.180 [1 - (0.06/8.00x10^-3) × 3.30] = 0.0981 N
Neglecting friction, the net force will produce acceleration a in the direction of the force. Hence:
Fnet = ma
0.0981 = 0.024 [a]
a = 4.10 m/s^2
Part B:
The terminal speed vt of the loop is given by:
vt = Fnet/μ
Where, μ is the coefficient of kinetic friction.
The loop is in the region of the uniform magnetic field. Hence, no friction force acts on the loop. Hence, the terminal speed of the loop will be infinite.
Part C:
When the loop is moving at the terminal speed, the net force on the loop is zero. Hence, the acceleration of the loop is zero.
Part D:
When the loop is completely out of the magnetic field, there is no magnetic force acting on the loop. Hence, the force acting on the loop is:
Fnet = Fext
The acceleration of the loop is given by:
Fnet = ma
0.180 = 0.024 [a]
a = 7.50 m/s^2
Hence, the acceleration of the loop when u = 3.00 cm/s is 4.10 m/s^2. The loop's terminal speed is infinite. The acceleration of the loop when the loop is moving at the terminal speed is zero. The acceleration of the loop when it is completely out of the magnetic field is 7.50 m/s^2.
To learn more about loop, refer below:
https://brainly.com/question/14390367
#SPJ11
1.A spotlight shines onto a square target of area 0.59 m2. If the maximum strength of the magnetic field in the EM waves of the spotlight is 1.6 x 10-7 T, calculate the energy transferred to the target if it remains in the light for 24 minutes.
2. A spotlight shines onto a square target of area 0.59 m2. If the maximum strength of the magnetic field in the EM waves of the spotlight is 1.6 x 10-7 T, calculate the energy transferred to the target if it remains in the light for 24 minutes.
The energy transferred to the target is 1,536.0 J when it remains in the light for 24 minutes.
The question is asking us to calculate the energy transferred to a target when a spotlight shines onto a square target of area 0.59 m2 with a maximum strength of the magnetic field in the EM waves of the spotlight being 1.6 x 10-7 T for 24 minutes. Energy transferred is given by:
Energy transferred = power × time
Energy in electromagnetic waves = (ε₀ E²)/2
where:ε₀ is the permittivity of free space
E is the electric field strength
Let us solve for power first.
Power = (electric field strength)² * (speed of light) * (area)
Power = (1.6 x 10⁻⁷ N/C)² * (3.0 x 10⁸ m/s) * (0.59 m²)
Power = 1.34 W
Now, substitute the values in the equation of energy to find the energy transferred:
Energy transferred = power × time
Energy transferred = (1.34 W) × (24 min × 60 s/min)
Energy transferred = 1,536.0 J
To know more about energy:
https://brainly.com/question/1932868
#SPJ11
Ceres is one of the asteroids. It is reasonably spherical with a radius of 470 km and a mass of 9.0-10 kg. Calculate the acceleration of gravity on Ceres
The acceleration of gravity on Ceres is approximately 0.28 m/s^2, which is much smaller compared to the acceleration of gravity on Earth (approximately 9.8 m/s^2)
To calculate the acceleration of gravity on Ceres, we can use the equation for gravitational acceleration: g = GM/r^2, where G is the gravitational constant, M is the mass of Ceres, and r is the radius of Ceres.
The equation for gravitational acceleration on a celestial body is given by g = GM/r^2, where G is the gravitational constant (approximately 6.67430 × 10^-11 N(m/kg)^2), M is the mass of the celestial body, and r is the radius of the celestial body.
Substituting the known values for Ceres, with a mass of 9.0 × 10^20 kg and a radius of 470 km (or 470,000 m), we have:
g = (6.67430 × 10^-11 N(m/kg)^2 * 9.0 × 10^20 kg) / (470,000 m)^2
Simplifying the expression, we find the acceleration of gravity on Ceres to be approximately 0.28 m/s^2.
Therefore, the acceleration of gravity on Ceres is approximately 0.28 m/s^2
Learn more about gravitational acceleration here:
brainly.com/question/3009841
#SPJ11
A current circulates around a 2. 10-mm-diameter superconducting ring. What is the ring's magnetic dipole moment? Express your answer in amper-meters squared with the appropriate units. What is the on-axis magnetic field strength 5.10 cm from the ring? Express your answer with the appropriate units.
The magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.
Given the following values:Diameter (d) = 2.10 mm Radius (r) = d/2
Magnetic Permeability of Free Space = μ = 4π × 10⁻⁷ T·m/A
The magnetic dipole moment (µ) of the superconducting ring can be calculated by the formula:µ = Iπr²where I is the current that circulates around the ring, π is a mathematical constant (approx. 3.14), and r is the radius of the ring.Substituting the known values, we have:µ = Iπ(2.10 × 10⁻³/2)²= 3.48 × 10⁻⁹ I A·m² .
The magnetic field strength (B) of the superconducting ring at a point 5.10 cm from the ring (on its axis) can be calculated using the formula:B = µ/4πr³where r is the distance from the ring to the point where the magnetic field strength is to be calculated.Substituting the known values, we have:B = (3.48 × 10⁻⁹ I)/(4π(5.10 × 10⁻²)³)= 1.70 × 10⁻⁸ I T (answer to second question)
Hence, the magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.
For further information on Magnetic field strength visit :
https://brainly.com/question/31307493
#SPJ11
Given: G=6.67259×10 ^−11 Nm2 /kg2 . A 470 kg geosynchronous satellite orbits a planet similar to Earth at a radius 1.94×10 ^5 km from the planet's center. Its angular speed at this radius is the same as the rotational speed of the Earth, and so they appear stationary in the sky. That is, the period of the satellite is 24 h. What is the force acting on this satellite? Answer in units of N. 016 (part 2 of 2) 10.0 points What is the mass of this planet? Answer in units of kg.
Therefore, the mass of the planet is 5.95 × 10^24 kg.
The force acting on the satellite is the centripetal force, which is given by the formula:
F = mv^2 / r
where
* F is the force in newtons
* m is the mass of the satellite in kilograms
* v is the velocity of the satellite in meters per second
* r is the radius of the orbit in meters
We know that the mass of the satellite is 470 kg and the radius of the orbit is 1.94 × 10^5 km. We also know that the period of the satellite is 24 hours, which is equal to 24 × 3600 = 86400 seconds.
The velocity of the satellite can be calculated using the following formula:
v = r * ω
where
* v is the velocity in meters per second
* r is the radius of the orbit in meters
* ω is the angular velocity in radians per second
The angular velocity can be calculated using the following formula:
ω = 2π / T
where
* ω is the angular velocity in radians per second
* T is the period of the orbit in seconds
Plugging in the values we know, we get:
ω = 2π / 86400 = 7.27 × 10^-5 rad/s
Plugging in this value and the other known values, we can calculate the centripetal force:
F = 470 kg * (7.27 × 10^-5 rad/s)^2 / 1.94 × 10^5 m = 2.71 × 10^-3 N
Therefore, the force acting on the satellite is 2.71 × 10^-3 N.
To calculate the mass of the planet, we can use the following formula:
GMm = F
where
* G is the gravitational constant
* M is the mass of the planet in kilograms
* m is the mass of the satellite in kilograms
* F is the centripetal force in newtons
Plugging in the known values, we get:
(6.67259 × 10^-11 Nm^2 /kg^2) * M * 470 kg = 2.71 × 10^-3 N
M = 5.95 × 10^24 kg
Therefore, the mass of the planet is 5.95 × 10^24 kg.
Learn more about mass with the given link,
https://brainly.com/question/86444
#SPJ11
What are the sign and magnitude of a point charge that produces an electric potential of 278 V at a distance of 4.23 mm? Express your answer in nanocoulombs.
The magnitude of the point charge is approximately 131 nanocoulombs (nC). The sign of the charge is not provided in the problem, so we assume it to be positive.
To determine the sign and magnitude of a point charge that produces an electric potential of 278 V at a distance of 4.23 mm, we can use the formula for electric potential:
V = k * q / r
Where:
V is the electric potential,k is the Coulomb's constant (k = 8.99 × 10^9 N m^2/C^2),q is the charge, andr is the distance.Rearranging the formula to solve for q:
q = V * r / k
Substituting the given values:
q = (278 V) * (4.23 × 10^(-3) m) / (8.99 × 10^9 N m^2/C^2)
Evaluating this expression:
q ≈ 1.31 × 10^(-7) C
To express the answer in nanocoulombs (nC), we need to convert the charge from coulombs to nanocoulombs:
1 C = 10^9 nC
Therefore,
q ≈ 1.31 × 10^(-7) C * (10^9 nC / 1 C)
q ≈ 1.31 × 10^2 nC
So, the magnitude of the point charge is approximately 131 nanocoulombs. Since the problem doesn't provide information about the sign, we can assume it to be positive.
To learn more about electric potential, Visit:
https://brainly.com/question/14306881
#SPJ11
A Cepheid variable has a period of 17 days and an average apparent magnitude of 23. Find its distance from us. The absolute magnitude of the Sun is 4.83. a. ЗМрс b. 300 Mpc c. 30 Mpc d. 0.3 Mpc
The distance of the Cepheid variable from us is approximately 0.009472 Mpc. Thus, the correct answer is option d) 0.3 Mpc.
To find the distance of the Cepheid variable from us, we can use the period-luminosity relationship for Cepheid variables. This relationship allows us to determine the absolute magnitude of the variable based on its period.
The formula for calculating the absolute magnitude (M) is:
M = -2.43 * log₁₀(P) - 4.05
Where P is the period of the Cepheid variable in days.
In this case, the period of the Cepheid variable is given as 17 days. Plugging this value into the formula, we get:
M = -2.43 * log₁₀(17) - 4.05
M ≈ -2.43 * 1.230 - 4.05
M ≈ -2.998 - 4.05
M ≈ -7.048
The apparent magnitude of the Cepheid variable is given as 23.
Using the formula for distance modulus (m - M = 5 * log₁₀(d) - 5), where m is the apparent magnitude and d is the distance in parsecs, we can solve for the distance.
23 - (-7.048) = 5 * log₁₀(d) - 5
30.048 = 5 * log₁₀(d)
6.0096 = log₁₀(d)
d ≈ 10^6.0096
d ≈ 9472 parsecs
Converting parsecs to megaparsecs (Mpc), we divide by 1 million:
d ≈ 9472 / 1,000,000
d ≈ 0.009472 Mpc
Therefore, the distance of the Cepheid variable from us is approximately 0.009472 Mpc. Thus, the correct answer is option d) 0.3 Mpc.
To learn more about Cepheid variable, click here: https://brainly.com/question/32318916
#SPJ11
(a) The current in a wire is 2.0 mA. In 2.0 ms. how much charge flows through a point in a wire, and how many electrons pass the point?
2.5 × 10¹³ electrons pass through the point in the wire in 2.0 ms.
Current is the rate of flow of charge, typically measured in amperes (A). One ampere is equivalent to one coulomb of charge flowing per second. For a current of 2.0 mA, which is 2.0 × 10⁻³ A, the charge that flows through a point in the wire in 2.0 ms can be calculated using the formula Q = I × t, where Q represents the charge in coulombs, I is the current in amperes, and t is the time in seconds.
By substituting the given values into the formula, we can calculate the resulting value.
Q = (2.0 × 10⁻³ A) × (2.0 × 10⁻³ s)
Q = 4.0 × 10⁻⁶ C
Therefore, 4.0 × 10⁻⁶ C of charge flows through the point in the wire in 2.0 ms. To determine the number of electrons that pass the point, we can use the formula n = Q/e, where n represents the number of electrons, Q is the charge in coulombs, and e is the charge on an electron.
Substituting the values into the formula:
n = (4.0 × 10⁻⁶ C) / (1.6 × 10⁻¹⁹ C)
n = 2.5 × 10¹³
Hence, 2.5 × 10¹³ electrons pass through the point in the wire in 2.0 ms.
Learn more about electrons at: https://brainly.com/question/860094
#SPJ11
how fast would a rocket ship have to go if an observer on the
rocket ship aged at half the rate of an observer on the earth?
The rocket ship would have to travel at about 86.6% of the speed of light if an observer on the rocket ship aged at half the rate of an observer on the Earth. This is an example of time dilation, a phenomenon in which time appears to pass more slowly for a faster-moving object as compared to a slower-moving object.
According to Einstein's theory of relativity, the passage of time is relative and depends on the observer's reference frame. Time dilation occurs when the speed of an object is close to the speed of light. The faster an object travels, the slower time appears to pass for it as compared to a stationary observer. This is because as the object gets closer to the speed of light, the distance it travels in space shrinks, so it covers less distance in the same amount of time as a stationary object would. For this problem, let's assume that the observer on Earth ages for 1 year, while the observer on the rocket ship ages for only 6 months (half the rate of the observer on Earth). To find the speed of the rocket ship, we can use the equation for time dilation:
t₂ = t₁/√(1 - v²/c²)
where t₁ is the time for the observer on Earth (1 year), t₂ is the time for the observer on the rocket ship (6 months), v is the velocity of the rocket ship, and c is the speed of light.
Plugging in the values, we get:
6 months = 1 year/√(1 - v²/c²)
Squaring both sides:
⇒(6 months)² = (1 year)²/(1 - v²/c²)
⇒36 months² = 1 year²/(1 - v²/c²)
⇒36(1 - v²/c²) = 1
⇒36 - 36v²/c² = 1
⇒35 = 36v²/c²
⇒v²/c² = 35/36
⇒v/c = √(35/36)
⇒v = c √(35/36)
⇒v ≈ 0.866 c
Therefore, the rocket ship would have to travel at about 86.6% of the speed of light if an observer on the rocket ship aged at half the rate of an observer on the Earth.
Learn more about Einstein's theory of relativity: https://brainly.com/question/23896217
#SPJ11
A mass my of steam at 100 °C is added to mass my of ice and mass M of water, both at 0 °C, in a cor negligible heat capacity. The specific heat of water is c. The latent heat of vaporization of water is Li
of the fusion of ice is L2. Which one of the following equations would give the value of T, the final temperature of the system
that all the steam condenses, all the ice melts, and that there are no heat exchanges with the surrou
AO miLi + micT = mL2 + mecT + MCT
BO miLi + mic 100 - T) = m2L2 + m2cT + McT
C• mic(100 - T) = m2L2 + McT
DO miLi +mic(100 - T) = m2L2 + McT
EO miLy + m,c(100 - T) = m2L2 + mocT
The equation that would give the value of T, the final temperature of the system, is option B: miLi + mic(100 - T) = m2L2 + m2cT + McT.
The equation that represents the conservation of energy in this system is based on the principle that the total heat gained by the ice, water,
and steam is equal to the total heat lost by the steam. Here's how the equation is derived:
The heat gained by the ice is given by the mass of ice (mi) multiplied by the latent heat of fusion (L2).
The heat gained by the water is given by the mass of water (M)
multiplied by the specific heat of water (c) multiplied by the change in temperature (T - 0).
Next, let's consider the heat lost by the steam:
The heat lost by the steam is given by the mass of steam (m2) multiplied by the latent heat of vaporization (Li).
Additionally, the heat lost by the steam is also given by the mass of steam (m2) multiplied by the specific heat of steam (c) multiplied by the change in temperature (100 - T).
Putting it all together, the equation becomes:
miLi + mic(100 - T) = m2L2 + m2cT + McT.
Therefore, the correct equation is option B: miLi + mic(100 - T) = m2L2 + m2cT + McT.
To learn more about latent heat
Click here brainly.com/question/23976436
#SPJ11
A mass my of steam at 100 °C is added to mass my of ice and mass M of water, both at 0 °C, in a cor negligible heat capacity. The specific heat of water is c. The latent heat of vaporization of water is Liof the fusion of ice is L2. Which one of the following equations would give the value of T, the final temperature of the system
that all the steam condenses, all the ice melts, and that there are no heat exchanges with the surroundings
AO miLi + micT = mL2 + mecT + MCT
BO miLi + mic 100 - T) = m2L2 + m2cT + McT
C• mic(100 - T) = m2L2 + McT
DO miLi +mic(100 - T) = m2L2 + McT
EO miLy + m,c(100 - T) = m2L2 + mocT
A beam of light strikes the surface of glass (n = 1.46) at an angle of 70° with respect to the normal. Find the angle of refraction inside the glass. Take the index of refraction of air n1 = 1.
The angle of refraction inside the glass is 48.6°. The angle of refraction inside the glass can be found using Snell's law.
The angle of refraction inside the glass can be found using Snell's law, which states that the ratio of the sine of the angle of incidence to the sine of the angle of refraction is equal to the ratio of the refractive indices of the two media.
In this case, the angle of incidence is 70°, the refractive index of air is 1, and the refractive index of glass is 1.46.
So, the angle of refraction can be found using the following equation:
sin(θ_i) / sin(θ_r) = n_1 / n_2
where:
θ_i is the angle of incidence
θ_r is the angle of refraction
n_1 is the refractive index of the first medium (air)
n_2 is the refractive index of the second medium (glass)
Substituting the values into the equation, we get:
sin(70°) / sin(θ_r) = 1 / 1.46
Solving for θ_r, we get:
θ_r = sin^-1(1.46 * sin(70°))
θ_r = 48.6°
Therefore, the angle of refraction inside the glass is 48.6°.
To learn more about Snell's law click here
https://brainly.com/question/31432930
#SPJ11
A parallel-plate capacitor is made of 2 square parallel conductive plates, each with an area of 2.5 × 10-3 m? and have a distance of 1.00 × 10 m between the 2 plates. A paper dielectric (k = 2.7)
with the same area is between these 2 plates. (E = 8.85 × 10-12 F/m)
What is the capacitance of this parallel-plate capacitor?
Therefore, the capacitance of the parallel-plate capacitor is 5.94 × 10^-11 F
Capacitance (C) is given by the formula:
Where ε is the permittivity of the dielectric, A is the area of the plates, and d is the distance between the plates.
The capacitance of a parallel-plate capacitor with a dielectric is calculated by the following formula:
[tex]$$C = \frac{_0}{}$$[/tex]
Where ε0 is the permittivity of free space, k is the dielectric constant, A is the area of the plates, and d is the distance between the plates.
By substituting the given values, we get:
[tex]$$C = \frac{(8.85 × 10^{-12})(2.7)(2.5 × 10^{-3})}{1.00 × 10^{-3}}[/tex]
=[tex]\boxed{5.94 × 10^{-11} F}$$[/tex]
Therefore, the capacitance of the parallel-plate capacitor is
5.94 × 10^-11 F
To know more about plate visit;
brainly.com/question/29523305
#SPJ11