For the following composite function, find an inner function u = g(x) and an outer function y=f(u) such that y=f(g(x)). Then calculate dy dx y = tan (23)

Answers

Answer 1

To find an inner function[tex]u = g(x)[/tex] and an outer function[tex]y = f(u)[/tex]such that[tex]y = f(g(x)), let u = 23x and y = tan(u)[/tex]. Then, calculate [tex]dy/dx.[/tex]

[tex]Let u = g(x) = 23x.[/tex] This means the inner function is [tex]u = 23x.[/tex]

[tex]Let y = f(u) = tan(u).[/tex] This represents the outer function where y is a function of u.

Combining the inner and outer functions, we have[tex]y = tan(g(x)) = tan(23x).[/tex]

To calculate[tex]dy/dx[/tex], we differentiate[tex]y = tan(23x)[/tex]with respect to x using the chain rule.

Applying the chain rule, we have[tex]dy/dx = dy/du * du/dx.[/tex]

The derivative of [tex]y = tan(u)[/tex] with respect to u is[tex]dy/du = sec^2(u).[/tex]

The derivative of[tex]u = 23x[/tex] with respect to [tex]x is du/dx = 23.[/tex]

Multiplying the derivatives, we have dy/dx = (dy/du) * (du/dx) = sec^2(u) * 23.

Substituting [tex]u = 23x,[/tex] we have [tex]dy/dx = sec^2(23x) * 23.[/tex]

learn more about:- composite function here

https://brainly.com/question/30660139

#SPJ11


Related Questions

Find the curve's unit tangent vector. Also, find the length of the indicated portion of the curve r(t) = 6t³i-2t³j-3t³k 1st≤2 The curve's unit tangent vector is i+j+k (Type an integer or a simplified fraction.) units. The length of the indicated portion of the curve is (Simplify your answer.)

Answers

The curve's unit tangent vector is i - 1/3j - 1/7k units. The length of the indicated portion of the curve is 56.

Given curve r(t) = 6t³i - 2t³j - 3t³k, 1st ≤ 2.

To find the curve's unit tangent vector we have to find the derivative of the given function.

r(t) = 6t³i - 2t³j - 3t³kr'(t) = 18t²i - 6t²j - 9t²k

To find the unit vector, we have to divide the tangent vector by its magnitude.

r'(t) = √(18t²)² + (-6t²)² + (-9t²)²r'(t) = √(324[tex]t^4[/tex] + 36[tex]t^4[/tex] + 81[tex]t^4[/tex])r'(t) = √(441[tex]t^4[/tex])r'(t) = 21t²i - 7t²j - 3t²k

The unit vector u is given by

u = r'(t) / |r'(t)|u = (21t²i - 7t²j - 3t²k) / √(441[tex]t^4[/tex])u = (21t²/21i - 7t²/21j - 3t²/21k)u = i - 1/3j - 1/7k

Therefore the curve's unit tangent vector is i - 1/3j - 1/7k.

Now, we need to find the length of the curve from t = 1 to t = 2.

So the length of the curve is given by

S = ∫₁² |r'(t)| dtS = ∫₁² √(18t²)² + (-6t²)² + (-9t²)² dS = ∫₁² √(324[tex]t^4[/tex] + 36[tex]t^4[/tex] + 81[tex]t^4[/tex]) dS = ∫₁² √(441[tex]t^4[/tex]) dS = ∫₁² 21t² dtS = [7t³] from 1 to 2S = 56 units

Therefore the length of the indicated portion of the curve is 56.

Hence, the correct option is "The curve's unit tangent vector is i - 1/3j - 1/7k units. The length of the indicated portion of the curve is 56."

Learn more about tangent vector :

https://brainly.com/question/31476175

#SPJ11

(For a Dot Plot) Out of 20 kids, 1 kid is 5 y/o, 2 kids are 6 y/o, 3 kids are 7 y/o, 7 kids are 8 y/o, 4 kids are 9 y/o, 2 kids are 10 y/o, and 1 kid is 12 y/o. Evie is 9 years old, so what percent of the kids are older than her?

Answers

25% of the kids are older than Evie.

To find the percentage of kids older than Evie, we need to determine the total number of kids who are older than 9 and divide it by the total number of kids (20), then multiply by 100.

The number of kids older than 9 is the sum of the kids who are 10 and 12 years old: 4 + 1 = 5.

Now we can calculate the percentage:

Percentage = (Number of kids older than 9 / Total number of kids) * 100

Percentage = (5 / 20) × 100

Percentage = 25%

Therefore, 25% of the kids are older than Evie.

for such more question on percentage

https://brainly.com/question/24877689

#SPJ8

Use Green's Theorem to evaluate f xyºda + xºdy, where C is the rectangle with vertices (0,0), (8,0), (3,2), and (0,2) Add Work

Answers

The f xyºda + xºdy, where C is the rectangle with vertices (0,0), (8,0), (3,2), and (0,2) is 16 using Green's Theorem.

We first need to find the partial derivatives of f:

f_x = y

f_y = x

Then, we can evaluate the line integral over C using the double integral of the curl of F:

Curl(F) = (0, 0, 1)

∬curl(F) · dA = area of rectangle = 16

Therefore,

∫C fxy dx + x dy = ∬curl(F) · dA

= 16

So the value of the line integral is 16.

To know more about Green's Theorem refer here:

https://brainly.com/question/30080556#

#SPJ11

Let R be the region in the first quadrant bounded above by the parabola y = 4 - x² and below by the line y = 1. Then the area of R is: 6 units squared √√3 units squared This option None of these

Answers

The area of the region R bounded above by the parabola y = 4 - x² and below by the line y = 1 in the first quadrant is [tex]3\sqrt3 - (\sqrt3)^3/3[/tex].

To find the area of the region R bounded above by the parabola

y = 4 - x² and below by the line y = 1 in the first quadrant, we need to determine the limits of integration and evaluate the integral.

The region R can be defined by the following inequalities:

1 ≤ y ≤ 4 - x²

0 ≤ x

To find the limits of integration for x, we set the two equations equal to each other and solve for x:

4 - x² = 1

x² = 3

x = ±[tex]\sqrt{3}[/tex]

Since we are interested in the region in the first quadrant, we take the positive square root: x =[tex]\sqrt{3}[/tex].

Therefore, the limits of integration are:

0 ≤ x ≤ √3

1 ≤ y ≤ 4 - x²

The area of the region R can be found using the double integral:

Area =[tex]\int\int_R \,dA[/tex]=[tex]\int\limits^{\sqrt{3}}_0\int\limits^{(4-x^2)}_1 \,dy \,dx[/tex]

Integrating first with respect to y and then with respect to x:

Area =[tex]\int\limits^{\sqrt{3}}_0 [(4 - x^2) - 1] dx[/tex] = [tex]=\int\limits^{\sqrt3}_0 (3 - x^2) dx[/tex]

Integrating the expression (3 - x²) with respect to x:

Area =[tex][3x - (x^3/3)]^{\sqrt3}_0[/tex] = [tex]= [3\sqrt3 - (\sqrt3)^3/3] - [0 - (0/3)][/tex]

Simplifying:

Area =[tex]3\sqrt3 - (\sqrt3)^3/3[/tex]

Therefore, the area of the region R is [tex]3\sqrt3 - (\sqrt3)^3/3[/tex].

To learn more about Area refer the below link

https://brainly.in/question/50270542

#SPJ11

Consider a deck of 52 cards with 4 suits and 13 cards (2-10,J,K,Q,A) in each suit. Jack takes one such deck and arranges them in a line in a completely random order. Now he wants to find the number of "Power Trios" in this line of cards. A "Power Trio" is a set of 3 consecutive cards where all cards are
either a Jack, Queen or King (J,Q or K). A "Perfect Power Trio" is a set of 3 consecutive cards with exactly 1 Jack, 1 Queen and 1 King (in any order).
Find the expected number of Power Trios that Jack will find.
Find the expected number of Perfect Power Trios that Jack will find.

Answers

Both the expected number of Power Trios and Perfect Power Trios that Jack will find is 50/3.

We have,

To find the expected number of Power Trios and Perfect Power Trios, we need to consider the total number of possible arrangements of the cards and calculate the probabilities of encountering Power Trios and Perfect Power Trios in a random arrangement.

First, let's determine the total number of possible arrangements of the 52 cards in a line.

This can be calculated as 52 factorial (52!). However, since we are only interested in the relative positions of the Jacks, Queens, and Kings, we divide by the factorial of the number of ways the three face cards can be arranged (3 factorial, or 3!).

Therefore, the total number of possible arrangements is:

Total arrangements = 52! / (3!)

Now let's calculate the expected number of Power Trios.

A Power Trio can occur at any position in the line, except for the last two positions since there would not be three consecutive cards.

So there are (52 - 3 + 1) = 50 possible starting positions for a Power Trio.

Each starting position has a 1/3 probability of having a Power Trio (as the three consecutive cards can be JQK, QKJ, or KJQ). Therefore, the expected number of Power Trios is:

Expected number of Power Trios = 50 x (1/3) = 50/3

Next, let's calculate the expected number of Perfect Power Trios.

For a Perfect Power Trio to occur, the three consecutive cards must have one Jack, one Queen, and one King in any order.

The probability of this happening at any given starting position is

3! / (3³) since there are 3! ways to arrange the face cards and 3³ possible combinations for the three consecutive cards.

Therefore, the expected number of Perfect Power Trios is:

Expected number of Perfect Power Trios = 50 x (3! / (3^3)) = 50/3

Thus,

Both the expected number of Power Trios and Perfect Power Trios that Jack will find is 50/3.

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ12

Solve by using multiplication with the addition-or-subtraction method.

4x - 5y = 0
8x + 5y = -6

Answers

Answer:

x = -0.25

y = -0.5

Step-by-step explanation:

4x - 5y = 0

8x + 5y = -6

We multiply the first equation by -2

-8x + 10y = 0

8x + 5y = -6

15y = -6

y = -6/15 = -2/5 = -0.4

Now we put -0.4 in for y and solve for x

8x + 5(-0.4) = -6

-8x - 2 = -6

-8x = -4

x = -1/2 = -0.5

Let's Check the answer.

4(-0.5) - 5(-0.4) = 0

-2 + 2 = 0

0 = 0

So, x = -0.5 and y = -0.4 is the correct answer.

Find the perimeter and area of each regular polygon to the nearest tenth.

Answers

The perimeter and area of the regular polygon, (a pentagon), obtained from the radial length of the circumscribing circle of the polygon are about 17.6 ft and 21.4 ft²

What is a regular pentagon?

A regular pentagon is a five sided polygon with the same length for the five sides of forming a loop.

The polygon is a regular pentagon, therefore;

The interior angle of a pentagon = 108°

The 3ft radial segment bisect the interior angle, such that half the length of a side, s, of the pentagon is therefore;

cos(108/2) = (s/2)/3

(s/2) = 3 × cos(108/2)

s = 2 × 3 × cos(108/2)

The perimeter of the pentagon, 5·s = 5 × 2 × 3 × cos(108°/2) ≈ 17.6

The perimeter of the pentagon is about 17.6 ft

The area of the pentagon can be obtained from the areas of the five congruent triangles in a pentagon as follows;

Altitude of one triangle = Apothem, a = 3 × sin(108°/2)

Area of one triangle, A = (1/2)·s·a = (1/2) × 2 × 3 × cos(108°/2) × 3 × sin(108°/2) = 9 × cos(108°/2) × sin(108°/2)

Trigonometric identities indicates that we get;

A = 9 × cos(108°/2) × sin(108°/2) = 9/2 × sin(108°)

The area of the pentagon = 5 × A = 5 × 9/2 × sin(108°) ≈ 21.4 ft²

Learn more on the perimeter of a polygon here: https://brainly.com/question/13303683

#SPJ1

help asap
A particle moves along the x-axis with velocity v(t)=t-cos(t) for t20 seconds. A) Given that the position of the particle at t=0 seconds is given by x(0)-2. Find x(2), the position of the particle at

Answers

After integrating, the position function is: x(t) = (1/2)t^2 - sin(t) - 2, position of the particle at t = 2 seconds is -sin(2)

To find the position of the particle at t = 2 seconds, we need to integrate the velocity function v(t) = t - cos(t) with respect to t to obtain the position function x(t).

∫v(t) dt = ∫(t - cos(t)) dt

Integrating the terms separately, we have:

∫t dt = (1/2)t^2 + C1

∫cos(t) dt = sin(t) + C2

Combining the integrals, we get:

x(t) = (1/2)t^2 - sin(t) + C

Now, to find the constant C, we can use the initial condition x(0) = -2. Substituting t = 0 and x(0) = -2 into the position function, we have:

x(0) = (1/2)(0)^2 - sin(0) + C

-2 = 0 + C

C = -2

Therefore, the position function is:

x(t) = (1/2)t^2 - sin(t) - 2

To find x(2), we substitute t = 2 into the position function:

x(2) = (1/2)(2)^2 - sin(2) - 2

x(2) = 2 - sin(2) - 2

x(2) = -sin(2)

Hence, the position of the particle at t = 2 seconds is -sin(2).

To know more about integrals refer here:

https://brainly.com/question/31059545#

#SPJ11

i
need help
Find the area of the region bounded by y = x + 10 and y = x2 + x + 1. 7 Find the volume of the solid obtained by rotating the region bounded by the curves y = x3, y = 8, and the y-axis about the X-a

Answers

The volume of the solid obtained by rotating the region bounded by y = x^3, y = 8, and the y-axis about the X-axis is (1536/5)π cubic units.

To find the area of the region bounded by y = x + 10 and y = x^2 + x + 1, we need to find the points of intersection of these two curves.

Setting them equal to each other, we get:

x + 10 = x^2 + x + 1

Rearranging and simplifying, we get:

x^2 - 9 = 0

Solving for x, we get:

x = -3 or x = 3

Thus, the two curves intersect at x = -3 and x = 3.

To find the area between them, we integrate the difference between the two curves with respect to x from -3 to 3:

∫[-3,3] [(x^2 + x + 1) - (x + 10)] dx

= ∫[-3,3] (x^2 - 9) dx

= [x^3/3 - 9x] from -3 to 3

= [(27/3) - (27)] - [(-27/3) - (-27)]

= -54/3

= -18

Therefore, the area of the region bounded by y = x + 10 and y = x^2 + x + 1 is 18 square units.

To find the volume of the solid obtained by rotating the region bounded by y = x^3, y = 8, and the y-axis about the X-axis, we can use the method of cylindrical shells.

For a given value of y between 0 and 8, the radius of the shell is given by r = y^(1/3), and its height is given by h = 2πy. Thus, its volume is given by:

dV = 2πy * r dy

Substituting r = y^(1/3) and h = 2πy, we get:

dV = 2πy * y^(1/3) dy

Integrating this expression with respect to y from 0 to 8, we get:

V = ∫[0,8] 2πy^(4/3) dy

= (6/5)πy^(5/3) from 0 to 8

= (6/5)π(8^(5/3))

= (1536/5)π cubic units

To know more about volume of the solid refer here:

https://brainly.com/question/23705404#

#SPJ11

Which of the following has the same horizontal asymptote with f(x)= x^2+5/x^2-2

Answers

Answer:

Horzontal asymptote: y = 1

Step-by-step explanation:

The numerator and denominator has the same degree, so we just divide the leading coefficients.

y = 1/1

y = 1

Please explain each step in neat handwriting. thank you!
2. Use an integral to find the area above the curve y = -e* + e(2x-3) and below the x-axis, for x > 0. You need to use a graph to answer this question. You will not receive any credit if you use the m

Answers

The area above the curve y = -eˣ + e²ˣ⁻³ and below the x-axis, for x ≥ 0, is infinite.

To begin, let's define the given function as f(x) = -eˣ + e²ˣ⁻³. Our objective is to find the area between this curve and the x-axis for x ≥ 0.

Step 1: Determine the interval of integration

The given condition, x ≥ 0, tells us that we need to calculate the area starting from x = 0 and moving towards positive infinity. Therefore, our interval of integration is [0, +∞).

Step 2: Set up the integral

The area we want to find can be calculated as the integral of the function f(x) = -eˣ + e²ˣ⁻³ from 0 to +∞. Mathematically, this can be represented as:

A = ∫[0,+∞) [-eˣ + e²ˣ⁻³] dx

Step 3: Evaluate the integral

To evaluate the integral, we need to find the antiderivative of the integrand. Let's integrate term by term:

∫[-eˣ + e²ˣ⁻³] dx = -∫eˣ dx + ∫e²ˣ⁻³ dx

Integrating the first term, we have:

-∫eˣ dx = -eˣ + C1

For the second term, let's make a substitution to simplify the integration. Let u = 2x-3. Then, du = 2 dx, or dx = du/2. The limits of integration will also change according to this substitution. When x = 0, u = 2(0) - 3 = -3, and when x approaches +∞, u approaches 2(+∞) - 3 = +∞. Thus, the integral becomes:

∫e²ˣ⁻³ dx = ∫eᵃ * (1/2) du = (1/2) ∫eᵃ du = (1/2) eᵃ + C2

Now we can rewrite the integral as:

A = -eˣ + (1/2)e²ˣ⁻³ + C

Step 4: Evaluate the definite integral

To find the area, we need to evaluate the definite integral from 0 to +∞:

A = ∫[0,+∞) [-eˣ + e²ˣ⁻³] dx

= lim as b->+∞ (-eˣ + (1/2)e²ˣ⁻³) - (-e⁰ + (1/2)e²⁽⁰⁾⁻³)

= -lim as b->+∞ eˣ + (1/2)e²ˣ⁻³ + 1

As b approaches +∞, the first term eˣ and the second term (1/2)e²ˣ⁻³ both go to +∞. Thus, the overall limit is +∞.

To know more about integral here

https://brainly.com/question/18125359

#SPJ4

Dialysis treatment removes urea and other waste products from a patient's bloo u(t) = — Cert/v where r is the rate of flow of blood through the dialyzer (in mL/min), V is the volu 00 [u(t) u(t) dt = Explain the meaning of the integral 1. u(t) dt in the context of this problem. O As t→[infinity]o, the amount of urea in the blood approaches As t→[infinity]o, all the urea in the blood at time t = 0 is removed. O As too, the volume of blood pumped through the dialyzer approaches 0. O As too, the volume of blood pumped through the dialyzer approaches Co. As too, the rate at which urea is removed from the blood approaches Co. blood flow externally through a machine called a dialyzer. The rate at which urea is removed from the blood (in mg/min) is often described by the equation (in ml), and Co is the amount of urea in the blood (in mg) at time t= 0. Evaluate the integral u(t) at.

Answers

The integral ∫u(t) dt represents the accumulated amount of urea (in mg) that has been removed from the blood over a certain period of time.

In the given context, u(t) represents the rate at which urea is being removed from the blood at any given time t (in mg/min). By integrating u(t) with respect to time from an initial time t = 0 to a final time t = T, we can find the total amount of urea that has been removed from the blood during that time interval.

So, evaluating the integral ∫u(t) dt at a specific time T will give us the accumulated amount of urea that has been removed from the blood up to that point in time.

It is important to note that the integral alone does not give information about the total amount of urea remaining in the blood. It only provides information about the amount that has been removed within the specified time interval.

To learn more about “integral” refer to the https://brainly.com/question/30094386

#SPJ11

What percent of 4c is each expression?
*2a

Answers

4c is 50a/c % of the expression 2a

How to determine what percent of 4c is 2a

From the question, we have the following parameters that can be used in our computation:

Expression = 2a

Percentage = 4c

Represent the percentage expression with x

So, we have the following equation

x% * Percentage  = Expression

Substitute the known values in the above equation, so, we have the following representation

x% * 4c = 2a

Evaluate

x = 50a/c %

Express as percentage

Hence, the percentage is 50a/c %

Read more about percentage at

https://brainly.com/question/11360390

#SPJ1

T/F. a vector b inrm is in the range of t if and only if ax=b has a solution

Answers

The statement "a vector b in R^m is in the range of matrix A if and only if the equation Ax = b has a solution" is true.

The range of a matrix A, also known as the column space of A, consists of all possible linear combinations of the columns of A. If a vector b is in the range of A, it means that there exists a vector x such that Ax = b. This is because the range of A precisely represents all the possible outputs that can be obtained by multiplying A with a vector x.

Conversely, if the equation Ax = b has a solution, it means that b is in the range of A. The existence of a solution x guarantees that the vector b can be obtained as an output by multiplying A with x.

Therefore, the statement is true: a vector b in R^m is in the range of matrix A if and only if the equation Ax = b has a solution.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

You are located 55 km from the epicenter of an earthquake. The Richter scale for the magnitude m of the earthquake at this distance is calculated from the amplitude of shaking, A (measured in um = 10-6m) using the following formula m = - log A + 2.32 The news reports the earthquake had a magnitude of 5. What was the amplitude of shaking for this earthquake? Make sure to remember that log is the logarithm of base 10. The amplitude A is um. Round your answer to the nearest integer.

Answers

The amplitude of shaking for this earthquake is approximately 0.004 um(rounded to the nearest integer).

Given that you are located 55 km from the epicenter of an earthquake. The Richter scale for the magnitude m of the earthquake at this distance is calculated from the amplitude of shaking, A (measured in um = 10⁻⁶) using the following formula; m = - log A + 2.32

Also, the news reports the earthquake had a magnitude of 5. To find the amplitude of shaking for this earthquake, substitute m = 5 in the given formula; m = - log A + 2.325 = - log A + 2.32log A = 2.32 - 5log A = -2.68

Taking antilog of both sides, we get;

A = antilog (-2.68)A = 0.00375 um.

Therefore, the amplitude of shaking for this earthquake is approximately 0.004 um(rounded to the nearest integer).

To know more about amplitude click on below link :

https://brainly.com/question/30283156#

#SPJ11

1. Determine if the sequence if convergent. Explain your
conclusion. 2. Determine if the sequence if convergent. Explain your
conclusion.

Answers

To determine whether a sequence is convergent , we need to analyze its behavior as the terms of the sequence approach infinity.

Let's address each sequence separately:

1) Since the first sequence is not specified, we cannot determine its convergence without more information. The convergence of a sequence depends on the values of its terms, so we need the specific terms of the sequence to make a conclusion about its convergence.

2) Similarly, without specific information about the second sequence, we cannot determine its convergence. We need the actual values of the terms in the sequence to analyze its behavior and determine if it converges or not.

In general, to determine the convergence of a sequence, we can look for patterns, perform mathematical operations on the terms, or apply known convergence tests, such as the limit comparison test, ratio test, or the monotone convergence theorem. However, without any information about the sequences in question, it is not possible to make a conclusion about their convergence.

Learn more about convergent here:

https://brainly.com/question/30326862

#SPJ11

find the solutions of the equation in the interval [−2, 2]. use a graphing utility to verify your results. (enter your answers as a comma-separated list.) tan(x) = −1

Answers

The solutions of the equation Tan(x) = -1 on the interval [-2, 2] are [tex]x = -\pi /4[/tex]and [tex]x = 3π/4[/tex].

To find the solution of the equation tan(x) = -1 within the specified interval, you can use a graphics program to visualize the equation. By plotting the graphs for y = Tan(x) and y = -1, we can identify the point where the two graphs intersect.

On the interval [-2, 2], the graph of y = Tan(x) traverses values ​​-∞, [tex]-\pi /4[/tex], [tex]\pi /4[/tex], and ∞. The graph at y = -1 is a horizontal line at y = -1. Observing the points of intersection shows that the graph for tan(x) = -1 intersects at x = [tex]-\pi /4[/tex] and [tex]x = 3\pi /4[/tex]within the specified interval.

Therefore, the solutions of the equation Tan(x) = -1 on the interval [-2, 2]. You can check this by using a graphics program to plot the graphs for y = Tan(x) and y = -1 and verify that they intersect at those points within the specified interval.


Learn more about equation here:

https://brainly.com/question/12695174


#SPJ11

The number of hours of daylight in Toronto varies sinusoidally during the year, as described by the equation, h(t) = 2.81sin (3 (t - 78) + 12.2, where his hours of daylight and t is the day of the year since January 1. a. Find the function that represents the instantaneous rate of change.

Answers

The function that represents the instantaneous rate of change of the hours of daylight in Toronto is h'(t) = 8.43 * cos(3(t - 78)).

To find the function that represents the instantaneous rate of change of the hours of daylight in Toronto, we need to take the derivative of the given function, h(t) = 2.81sin(3(t - 78)) + 12.2, with respect to time (t).

Let's proceed with the calculation:

h(t) = 2.81sin(3(t - 78)) + 12.2

Taking the derivative with respect to t:

h'(t) = 2.81 * 3 * cos(3(t - 78))

Simplifying further:

h'(t) = 8.43 * cos(3(t - 78))

Therefore, the function that represents the instantaneous rate of change of the hours of daylight in Toronto is h'(t) = 8.43 * cos(3(t - 78)).

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ4

(q6) Find the volume of the solid obtained by rotating the region bounded by y = 2x and y = 2x2 about the line y = 2.

Answers

The volume of the solid obtained by rotating the region bounded by y = 2x and y = 2x² about the line y = 2 is π/3 units cube.

option D is the correct answer.

What is the volume of the solid obtained?

The volume of the solid obtained by rotating the region bounded by y = x and y = 2x² about the line y = 2 is calculated as follows;

y = 2x²

x² = y/2

x = √(y/2) ----- (1)

2x = y

x = y/2 ------- (2)

Solve (1) and (2) to obtain the limit of the integration.

y/2 =  √(y/2)

y²/4 = y/2

y = 2 or 0

The volume obtained by the rotation is calculated as follows;

V = π∫(R² - r²)

V = π ∫[(√(y/2)² - (y/2)² ] dy

V = π ∫ [ y/2  - y²/4 ] dy

V = π [ y²/4 - y³/12 ]

Substitute the limit of the integration as follows;

y = 2 to 0

V = π [ 1  -  8/12 ]

V = π [1/3]

V = π/3 units cube

Learn more about volume of solid here: https://brainly.com/question/24259805

#SPJ1

Question 1:
Question 2:
Please solve both questions
6 The region bounded by the curves y= and the lines x= 1 and x = 4 is revolved about the y-axis to generate a solid. Х a. Find the volume of the solid. b. Find the center of mass of a thin plate cove

Answers

Find the center of mass of a thin plate cove given, the region bounded by the curves y= and the lines x=1 and x=4 is revolved about the y-axis to generate a solid and we need to find the volume of the solid.

It is given that the region bounded by the curves y= and the lines x=1 and x=4 is revolved about the y-axis to generate a solid.(i) Find the volume of the solidWe have, y= intersects x-axis at (0, 1) and (0, 4). Hence, the y-axis is the axis of revolution. We will use disk method to find the volume of the solid.Volumes of the disk, V(x) = π(outer radius)² - π(inner radius)²where outer radius = x and inner radius = 1Volume of the solid generated by revolving the region bounded by the curve y = , and the lines x = 1 and x = 4 about the y-axis is given by:V = ∫ V(x) dx for x from 1 to 4V = ∫[ πx² - π(1)²] dx for x from 1 to 4V = π ∫ [x² - 1] dx for x from 1 to 4V = π [ (x³/3) - x] for x from 1 to 4V = π [(4³/3) - 4] - π [(1³/3) - 1]V = 21π cubic units(ii) Find the center of mass of a thin plate coveThe coordinates of the centroid of a lamina with the density function ρ(x, y) = 1 are given by:xc= 1/A ∫ ∫ x ρ(x,y) dAyc= 1/A ∫ ∫ y ρ(x,y) dAzc= 1/A ∫ ∫ z ρ(x,y) dAwhere A = Area of the lamina.The lamina is a thin plate of uniform density, therefore the density function is ρ(x, y) = 1 and A is the area of the region bounded by the curves y= and the lines x= 1 and x = 4.Now, xc is the x-coordinate of the center of mass, which is obtained by:xc= 1/A ∫ ∫ x ρ(x,y) dAwhere the limits of integration for x and y are obtained from the region bounded by the curves y= and the lines x= 1 and x = 4, as follows:1 ≤ x ≤ 4and0 ≤ y ≤The above integral can be written as:xc= 1/A ∫ ∫ x dA for x from 1 to 4 and for y from 0 toTo evaluate the above integral, we need to express dA in terms of dx and y. We have:dA = dx dyNow, we can write the above integral as:xc= 1/A ∫ ∫ x dA for x from 1 to 4 and for y from 0 toxc= 1/A ∫ ∫ x dx dy for x from 1 to 4 and for y from 0 toOn substituting the limits and the values, we get:xc= [1/(21π)] ∫ ∫ x dx dy for x from 1 to 4 and for y from 0 to= [1/(21π)] ∫[∫(4-y) y dy] dx for x from 1 to 4= [1/(21π)] ∫[4∫ y dy - ∫y² dy] dx for x from 1 to 4= [1/(21π)] ∫[4(y²/2) - (y³/3)] dx for x from 1 to 4= [1/(21π)] [(8/3) ∫ [1 to 4] dx - ∫ [(1/27) (y³)] [0 to ] dx]= [1/(21π)] [(8/3)(4 - 1) - (1/27) ∫ [0 to ] y³ dy]= [1/(21π)] [(8/3)(3) - (1/27)(³/4)]= [32/63π]Therefore, the x-coordinate of the center of mass is 32/63π.

Learn more about  center of mass here:

https://brainly.com/question/15578432

#SPJ11

Question 2 (2 points) Evaluate the definite integral $(x)g(**)dx shown in arriving at your answer. when g(0) = 0 and g(8) = 5 All work, all steps must be

Answers

To evaluate the definite integral [tex]∫[0 to 8] x * g(x^2) dx[/tex], where g(0) = 0 and g(8) = 5, we can follow these steps:the value of the definite integral [tex]∫[0 to 8] x * g(x^2)[/tex] dx is 20.

Step 1: Apply the substitution

Let [tex]u = x^2[/tex]. Then, du = 2x dx, which implies dx = du / (2x).

Step 2: Rewrite the integral with the new variable

The original integral becomes:

[tex]∫[0 to 8] x * g(x^2) dx = ∫[u=0 to u=64] (1/2) * g(u) du[/tex]

Step 3: Evaluate the integral

Now we can substitute the limits of integration:

[tex]∫[0 to 8] x * g(x^2) dx = ∫[u=0 to u=64] (1/2) * g(u) du[/tex]

[tex]= (1/2) * ∫[0 to 64] g(u) du[/tex]

Step 4: Apply the given information

Since g(0) = 0 and g(8) = 5, we can use these values to evaluate the definite integral:

[tex]∫[0 to 8] x * g(x^2) dx = (1/2) * ∫[0 to 64] g(u) du[/tex]

= (1/2) * [0 to 8] 5 du

= (1/2) * 5 * [0 to 8] du

= (1/2) * 5 * [8 - 0]

= (1/2) * 5 * 8

= 20.

To know more about integral click the link below:

brainly.com/question/31056014

#SPJ11







[5]. Calculate the exact values of the following definite integrals. S xsin(2x) dx ſusin (a) 4 s dx ( b) 3 x² – 4

Answers

The exact value of the definite integral ∫ xsin(2x) dx is (-1/2)x cos(2x) + 1/4 sin(2x) + C. And the exact value of the definite integral ∫ (3x² - 4) dx is [tex]x^3[/tex] - 4x + C.

To calculate the exact values of the definite integrals, let's evaluate each integral separately:

(a) ∫ xsin(2x) dx

To solve this integral, we can use integration by parts.

Let u = x and dv = sin(2x) dx.

Then, du = dx and v = -1/2 cos(2x).

Using the integration by parts formula:

∫ u dv = uv - ∫ v du

∫ xsin(2x) dx = (-1/2)x cos(2x) - ∫ (-1/2 cos(2x)) dx

                   = (-1/2)x cos(2x) + 1/4 sin(2x) + C

Therefore, the exact value of the definite integral ∫ xsin(2x) dx is (-1/2)x cos(2x) + 1/4 sin(2x) + C.

(b) ∫ (3x² - 4) dx

To integrate the given function, we apply the power rule of integration:

[tex]\int\ x^n dx = (1/(n+1)) x^{(n+1) }+ C[/tex]

Applying this rule to each term:

∫ (3x² - 4) dx = (3/3) [tex]x^3[/tex] - (4/1) x + C

                    = [tex]x^3[/tex] - 4x + C

Therefore, the exact value of the definite integral ∫ (3x² - 4) dx is x^3 - 4x + C.

Learn more about Integrals at

brainly.com/question/31059545

#SPJ4

Please help me with this: Find the volume of the composite solid

Answers

The volume of the composite solid is equal to 290 cubic centimeters.

How to determine the volume of a solid

In this problem we find the representation of a composite solid, whose volume (V), in cubic centimeters, must be found. This solid is the result of combining a prism and pyramid, whose volume formulas are:

Prism with a right triangle base

V = (1 / 2) · w · l · h

Where:

w - Base width, in centimeters.l - Base height, in centimeters.h - Prism height, in centimeters.

Pyramid with triangular base

V = (1 / 6) · w · l · h

And the volume of the entire solid is:

V = (1 / 2) · (5 cm) · √[(13 cm)² - (5 cm)²] · (8 cm) + (1 / 6) · (5 cm) · √[(13 cm)² - (5 cm)²] · (5 cm)

V = 290 cm³

To learn more on volumes of composite solids: https://brainly.com/question/23755595

#SPJ1

Solve the following absolute value inequality. 6 X Give your answer in interval notation using STACK's interval functions. For example, enter co (2,5) for 2 < x < 5 or [2, 5), and oc(-inf, 2) for x �

Answers

It seems like the absolute value inequality equation is missing. Please provide the complete equation, and I'd be happy to help you solve it using the terms "inequality," "interval," and "notation."

To solve the absolute value inequality |6x| < 12, we first isolate x by dividing both sides by 6:

|6x|/6 < 12/6

|x| < 2

This means that x is within 2 units from 0 on the number line, including negative values.

In interval notation, we can write this as (-2, 2).

Therefore, the answer to the question is: (-2, 2), using STACK's interval functions, we can write this as co(-2, 2).

(term used as functions are justified as diffrent meanings in the portal of mathematics educations or any elementary form of education.A function is defined as a relation between a set of inputs having one output each. In simple words, a function is a relationship between inputs where each input is related to exactly one output. Every function has a domain and codomain or range. A function is generally denoted by f(x) where x is the input. The general representation of a function is y = f(x).)

to know more about function, please visit;

https://brainly.com/question/11624077

#SPJ11

Find the equilibrium point for a product D(x) = 16 -0.0092? and S(x) = 0.0072²Round only final answers to 2 decimal places The equilibrium point (*e, p.) is

Answers

We need to set the two functions equal to each other and solve for the value of x that satisfies the equation. The equilibrium point is the point where the quantity demanded equals the quantity supplied.

Setting the demand function D(x) equal to the supply function S(x), we have:

16 - 0.0092x = 0.0072x^2

To find the equilibrium point, we need to solve this equation for x. Rearranging the equation, we have:

0.0072x^2 + 0.0092x - 16 = 0

This is a quadratic equation. We can solve it by factoring, completing the square, or using the quadratic formula. Once we find the values of x that satisfy the equation, we can substitute them back into either the demand or supply function to determine the corresponding equilibrium price. Without the complete equation or further information, it is not possible to calculate the equilibrium point or determine the values of x and p. Additional details are needed to provide a specific answer.

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

Problem 9. (1 point) Find the area of the surface obtained by rotating the curve 9x = y2 + 18, 257 < 6, about the x-axis. Area =

Answers

To find the area of the surface obtained by rotating the curve 9x = y^2 + 18, where 2 < y < 6, about the x-axis, we can use the formula for the surface area of revolution.

The formula for the surface area of revolution when rotating a curve y = f(x) about the x-axis over the interval [a, b] is given by:

A = 2π ∫[a,b] f(x) √(1 + (f'(x))^2) dx

In this case, the given curve is 9x = y^2 + 18, so we need to solve for y in terms of x:

9x = y^2 + 18

y^2 = 9x - 18

y = ±√(9x - 18)

Since the problem specifies that 2 < y < 6, we can consider the positive square root:

y = √(9x - 18)

To find the interval [a, b], we need to determine the values of x that correspond to the given range of y.

2 < y < 6

2 < √(9x - 18) < 6

4 < 9x - 18 < 36

22 < 9x < 54

22/9 < x < 6

Therefore, the interval [a, b] is [22/9, 6].

Next, we need to find the derivative f'(x) in order to calculate the expression inside the square root in the surface area formula:

f(x) = √(9x - 18)

f'(x) = 1/2(9x - 18)^(-1/2) * 9

Now, we can substitute the values into the surface area formula and integrate over the interval [a, b]:

A = 2π ∫[22/9, 6] √(9x - 18) √(1 + (1/2(9x - 18)^(-1/2) * 9)^2) dx

To simplify the expression, we can combine the square roots under the integral:

A = 2π ∫[22/9, 6] √(9x - 18) √(1 + (81/4(9x - 18))) dx

A = 2π ∫[22/9, 6] √(9x - 18) √(1 + 81/(4(9x - 18))) dx

to know more about derivative visit:

brainly.com/question/29144258

#SPJ11

Select the correct answer. solve the problem У = (x + 1), y(0) = 1 numerically for y(02) using step size h 0.1. 1.1 1.11 1.2 1.21 1.221

Answers

We must determine the value of y at x = 0.2 in order to numerically solve the equation y = (x + 1) with the initial condition y(0) = 1 and a step size of h = 0.1. The right response is 1.2.

We can utilise the Euler's method or any other numerical integration method to solve the issue numerically. By making small steps of size h and updating the value of y in accordance with the derivative of the function, Euler's approach approximates the value of y at a given x.

We can iteratively proceed as follows, starting with y(0) = 1, as follows:

At x = 0, y = 1.

Y = y(0) + h * f(x(0), y(0)) = 1 + 0.1 * (0 + 1) = 1.1 when x = 0.1.

Y = y(0.1) + h * f(x(0.1), y(0.1)) = 1.1 + 0.1 * (0.1 + 1) = 1.2 for x = 0.2.

So, 1.2 is the right response. This is the approximate value of y at x = 0.2 that was determined by applying a step size of h = 0.1 when solving the given problem numerically.

Learn more about step size here:

https://brainly.com/question/28526056


#SPJ11

a game is played where a contestant is asked to reach into a well-shaken bag containing an equal number of red, yellow, and green marbles. each time he selects a marble, he notes its color and places the marble back in the bag. the bag is then shaken well, and he selects again. after 15 selections, the total number of times each color was selected is recorded. the contestant is awarded points based on the number of times each color is selected in those 15 selections.

Answers

In a game, a contestant selects marbles from a bag containing an equal number of red, yellow, and green marbles for 15 selections, recording the total number of times each color is selected to earn points, but the specific scoring system is not specified.

Based on the information provided, the game involves the following steps:

The contestant reaches into a well-shaken bag containing an equal number of red, yellow, and green marbles.

The contestant selects a marble, notes its color, and places it back in the bag.

The bag is shaken well after each selection.

The contestant repeats the selection process for a total of 15 selections.

The total number of times each color (red, yellow, and green) is selected in those 15 selections is recorded.

The contestant is awarded points based on the number of times each color is selected.

The specific scoring system for awarding points based on the number of selections of each color is not provided. The description only mentions that points are awarded based on the selection count.

To know more about selections,

https://brainly.com/question/31864928

#SPJ11

Let S be the solid of revolution obtained by revolving about the z-axis the bounded region Renclosed by the curve y = x²(6 - 1) and the India. The goal of this exercise is to compute the volume of us

Answers

To compute the volume of the solid of revolution S, obtained by revolving the bounded region R enclosed by the curve y = x^2(6 - x) and the x-axis about the z-axis, we can use the method of cylindrical shells. The volume of the solid of revolution S is approximately 2440.98 cubic units. First, let's find the limits of integration for x. The curve y = x^2(6 - x) intersects the x-axis at x = 0 and x = 6.

So, the limits of integration for x will be from 0 to 6. Now, let's consider a vertical strip of thickness dx at a given x-value. The height of this strip will be the distance between the curve y = x^2(6 - x) and the x-axis, which is simply y = x^2(6 - x). To find the circumference of the cylindrical shell at this x-value, we use the formula for circumference, which is 2πr, where r is the distance from the axis of revolution to the curve. In this case, the distance from the z-axis to the curve is x, so the circumference is 2πx.

The volume of this cylindrical shell is the product of its circumference, height, and thickness. Therefore, the volume of the shell is given by dV = 2πx * x^2(6 - x) * dx. To find the total volume of the solid of revolution S, we integrate the expression for dV over the limits of x: V = ∫[0 to 6] 2πx * x^2(6 - x) dx.

Simplifying the integrand, we have: V = 2π ∫[0 to 6] x^3(6 - x) dx.

Evaluating this integral will give us the volume of the solid of revolution S. To evaluate the integral V = 2π ∫[0 to 6] x^3(6 - x) dx, we can expand and simplify the integrand, and then integrate with respect to x.

V = 2π ∫[0 to 6] (6x^3 - x^4) dx

Now, we can integrate term by term:

V = 2π [(6/4)x^4 - (1/5)x^5] evaluated from 0 to 6

V = 2π [(6/4)(6^4) - (1/5)(6^5)] - [(6/4)(0^4) - (1/5)(0^5)]

V = 2π [(3/2)(1296) - (1/5)(7776)]

V = 2π [(1944) - (1555.2)]

V = 2π (388.8)

V ≈ 2π * 388.8

V ≈ 2440.98

Therefore, the volume of the solid of revolution S is approximately 2440.98 cubic units.

Learn more about integration here: https://brainly.com/question/31040425

#SPJ11

Write the following expression as the sine, cosine, or tangent of a double angle. Then find the exact value of the expression. 2 sin 15° cos 15° Write the following expression as the sine, cosine, or tangent of a double angle. Select the correct choice below and fill in the answer box to complete your choice. (Simplify your answer. Type your answer in degrees. Use integers or decimals for any numbers in the expression.) O A. 2 sin 15° cos 15º = sinº O B. 2 sin 15° cos 15º = tanº O C. 2 sin 15° cos 15º = cos º Click to select and enter your answer(s) and then click Check Answer.

Answers

Therefore, the correct choice is A, and the expression can be written as: 2 sin 15° cos 15° = sin(30°) = 1/2

The given expression is 2 sin 15° cos 15°. This expression can be written using the double angle formula for sine, which is sin(2θ) = 2 sinθ cosθ. In this case, θ is 15°.
So, 2 sin 15° cos 15° can be rewritten as sin(2 * 15°), which simplifies to sin(30°).
Now, we can find the exact value of sin(30°) using the properties of a 30-60-90 right triangle. In such a triangle, the side ratios are 1:√3:2, where the side opposite the 30° angle has a length of 1, the side opposite the 60° angle has a length of √3, and the hypotenuse has a length of 2. The sine function is defined as the ratio of the length of the opposite side to the length of the hypotenuse. So, sin(30°) = 1/2.
To know more about tangent visit:

https://brainly.com/question/10053881

#SPJ11

Other Questions
Wrapping a hot potato in aluminum foil significantly reduces the rate at which it cools by: A. melting B. evaporation C. condensation D. conduction. 7. For the three-part question that follows, provide your answer to each part in the given workspace. Identify each part with a coordinating reA, Part B, and Part C.in.Part A: Determine the value of the diameter of the circle shown above.Part B: Determine the value of the radius of the circle shown above.Part C: Explain your reasoning for Part A and Part B of this problem.- AA- ABU Font FamilyFE EC1D1+4 .Given that: sinhx = ; find values of the following, leavingyour answers as fractions.a) coshxb) tanhxc) Sechxd) cothxe) sinh2xf) cosech2x to contribute to organizational strategy the supply department should please explain, thank you!!1. Let S be the part of the paraboloid z = x2 + y between z = 0 and 2 = 4. (a) Find a parameterization (u.v) for S. (b) Find an expression for the tangent vectors T, and T. (c) Find an expression for HELP please. Several people were asked how many miles their workplace is from home. The results are shown below. Use the data to make a frequency table and a histogram. Distance to Work Miles Frequency Distance to Work (ml) 21 14 39 1 18 24 2 93 12 26 6 41 7 52 30 11 37 10. What feeling does John Masefield describe in the poem "Sea Fever?" Calculate The Amount Financed, The Finance Charge, And The Monthly Payments (In $) For The Add-On Interest Loan. (Round Your Answers To The Nearest Cent.) Purchase (Cash) Price Down Payment Amount Financed Add-On Number Of Interest Payments Finance Charge Monthly Payment $50,900 25% 11.6% 60Calculate the amount financed, the finance charge, and the monthly payments (in $) for the add-on interest loan. (Round your BRAINLIST! Quick! Please Your Commentary: Your comments in your own words about this idea & how it poses questions about our society, world, or future.In the article "Is Society Moving In The Right Direction With Technology Rapidly Taking Over The World?" by by Andrea Loubier it states, "Many see Al as augmenting human capacities but some predict the opposite - that people's deepening dependence on machine-driven networks will erode their abilities to think for themselves, take action independent of automated systems, and interact effectively with others." can it use tanx=sec2x-1 if yes,answer in detail,if nogive another way and answer in detail chris , a minor, signs a contract to buy alcoholic beverages for dine and drink, his parents' restaurant. the contract is currently sells its latest high-speed colour printer, the Hyper 500, for $357. Its cost of goods sold for the Hyper 500 is $204 per unit, and this year's sales (at the current price of $357) are expected to be 20,000 units. Hyperion plans to lower the price of the Hyper 500 to $306 one year from now. a. Suppose Hyperion considers dropping the price to $306 immediately, (rather than waiting one year). By doing so it expects to increase this year's sales by 26% to 25, 200 units. What would be the incremental impact on this year's EBIT of such a price drop? b. Suppose that for each printer sold, Hyperion expects additional sales of $68 per year on ink cartridges for the three-year life of the printer, and Hyperion has a gross profit margin of 80% on ink cartridges. What is the incremental impact on EBIT for the next three years of dropping the price immediately (rather than waiting one year)? a. Suppose Hyperion considers dropping the price to $306 immediately, (rather than waiting one year). By doing so it expects to increase this year's sales by 26% to 25, 200 units. What would be the incremental impact on this year's EBIT of such a price drop? The change in EBIT will be $. (Round to the nearest dollar.) b. Suppose that for each printer sold, Hyperion expects additional sales of $68 per year on ink cartridges for the three-year life of the printer, and Hyperion has a gross profit margin of 80% on ink cartridges. What is the incremental impact on EBIT for the next three years of dropping the price immediately (rather than waiting one year)? The change in EBIT from ink cartridge sales will be $. (Round to the nearest dollar.) The incremental change in EBIT for the first year is $. (Round to the nearest dollar.) The incremental change in EBIT for the second year is $. (Round to the nearest dollar.) The incremental change in EBIT for the third year is $ Consider the following. (Round your answers to three decimal places.)x2/4+ y2/1 = 1(a) Find the area of the region bounded by the ellipse.(b) Find the volume and surface area of the solid generated by revolving the region about its major axis (prolate spheroid).(c) Find the volume and surface area of the solid generated by revolving the region about its minor axis (oblate spheroid). volume surface area Select the correct answer.Which detail from paragraph 8 shapes the central idea that children are unfairly worked? A. "They stamp buckles and metal ornaments of all kinds" B. "little beasts of burden, robbed of school life" C. "tiny children make artificial flowers and neckwear" D. "The children make our shoes in the shoe factories" Solve each question. Identify the type of equation and use the appropriate techniques to solve these types of equations.Linearabsolute value equationsquadratic equationsrational equationsradical equationstrigonometric equations Given below are statements that summarize the characteristics of , , and rays. Identify the characteristics that correspond to each type of radiation.1. it is symbolized as 4/2 He2. it has the weakest penetrating power3. It is a hig-speed electron4. It possesses neither mass nor charge5. it has the dtrongest penetrating power6. its is symbolized as 0/-1e7. it is the most massive of all the components 4. Use the graph to evaluate: 2 + -2 2 4.6 a. 1,f(x)dx b. f(x)dx C. L,f(x)dx d. f(x)dx Describe memory hierarchy for cloud storage, registers, l1 cache, main memory, l2 cache, l3 cache, and mass storage. individual heterogeneous for a recessive disorder such as cystic fibrosis or Tay-Sachs diseasediagrammed family history that is used to study inheritance patterns of a trait through several generations and that can be used to predict disorders in future offspringchromosome that is not a sex chromosomecomplex inheritance pattern that occurs when neither allele is dominant and both alleles are expressedcomplex inheritance pattern in which the heterozygous phenotype is intermediate between those of the two homozygous parent organisms A country has large natural gas and petroleum deposits. How is it likely to answer the three basic economic questions? Steam Workshop Downloader