How
long will it take $1666.00 to accumulate to $1910.00 at 4% p.a
compounded quarterly? State your answer in years and months (from 0
to 11 months).

Answers

Answer 1

It will take approximately 1 year and 4 months (16 months) for $1666.00 to accumulate to $1910.00 at 4% p.a. compounded interest quarterly.

To calculate the time it takes for an amount to accumulate with compound interest, we can use the formula for compound interest:

A = P(1 + r/n)[tex]^{nt}[/tex],

where A is the final amount, P is the principal amount, r is the interest rate, n is the number of compounding periods per year, and t is the time in years. In this case, the initial amount is $1666.00, the final amount is $1910.00, the interest rate is 4% (or 0.04), and the compounding is done quarterly (n = 4).

Plugging in these values into the formula, we have:

$1910.00 = $1666.00[tex](1 + 0.01)^{4t}[/tex].

Dividing both sides by $1666.00 and simplifying, we get:

1.146 = [tex](1 + 0.01)^{4t}[/tex].

Taking the logarithm of both sides, we have:

log(1.146) = 4t * log(1.01).

Solving for t, we find:

t = log(1.146) / (4 * log(1.01)).

Evaluating this expression using a calculator, we obtain t ≈ 1.3333 years.

Since we are asked to state the answer in years and months, we convert the decimal part of the answer into months. Since there are 12 months in a year, 0.3333 years is approximately 4 months.

Therefore, it will take approximately 1 year and 4 months (16 months) for $1666.00 to accumulate to $1910.00 at 4% p.a. compounded quarterly.

Learn more about compound interest visit

brainly.com/question/14295570

#SPJ11


Related Questions

Kindly help with the answer to the below question. Thank
you.
Find the splitting field p(x) = x² + x + 1 ∈z/((2))[x]
and list all its elements.

Answers

The elements of the splitting field are:

{0, 1, α, β, α+β, αβ, α+αβ, β+αβ, α+β+αβ}

To find the splitting field of the polynomial p(x) = x² + x + 1 in ℤ/(2ℤ)[x], we need to find the field extension over which the polynomial completely factors into linear factors.

Since we are working with ℤ/(2ℤ), the field consists of only two elements, 0 and 1. We can substitute these values into p(x) and check if they are roots:

p(0) = 0² + 0 + 1 = 1 ≠ 0, so 0 is not a root.

p(1) = 1² + 1 + 1 = 3 ≡ 1 (mod 2), so 1 is not a root.

Since neither 0 nor 1 are roots of p(x), the polynomial does not factor into linear factors over ℤ/(2ℤ)[x].

To find the splitting field, we need to extend the field to include the roots of p(x). In this case, the roots are complex numbers, namely:

α = (-1 + √3i)/2

β = (-1 - √3i)/2

The splitting field will include these two roots α and β, as well as all their linear combinations with coefficients in ℤ/(2ℤ).

The elements of the splitting field are:

{0, 1, α, β, α+β, αβ, α+αβ, β+αβ, α+β+αβ}

These elements form the splitting field of p(x) = x² + x + 1 in ℤ/(2ℤ)[x].

Learn more about Polynomial here

https://brainly.com/question/11536910

#SPJ11

i really need to know this or imma fail!!!!!!!

Answers

The answer to the simplified expression 4⁹/4³ in index form is derived to be equal to 4⁶

How to simplify fraction of numbers in index form

To simplify a fraction written in index form, you can first express the numbers in prime factorization form by writing both the numerator and denominator as a product of prime factors. Identify common prime factors in the numerator and denominator and cancel them out. Then write the remaining factors as a product in index form.

Given the fraction 4⁹/4³, we can simplify as follows:

4⁹/4³ = (4 × 4 × 4 × 4 × 4 × 4 × 4 × 4 × 4)/(4 × 4 × 4)

we can cancel out (4 × 4 × 4) from both the numerator and denominator, living us with;

4⁹/4³ = 4 × 4 × 4 × 4 × 4 × 4

4⁹/4³ = 4⁶

Therefore, the answer to the simplified expression 4⁹/4³ in index form is derived to be equal to 4⁶

Read more about index here:https://brainly.com/question/15361818

#SPJ1

How many quarters would have to be stacked to reach 575 ft, the height of the washington monument?

Answers

It would take approximately 100,000 quarters to reach a height of 575 ft, the height of the Washington Monument, when stacked vertically.

To determine the number of quarters required to reach the height of the Washington Monument, we need to calculate the number of quarters stacked that would equal a height of 575 ft.

The height of the Washington Monument is given as 575 ft. We need to find out how many quarters, which have a thickness of approximately 0.069 inches or 0.00575 ft, would need to be stacked to reach this height.
First, we convert the height of the Washington Monument to inches: 575 ft × 12 inches/ft = 6,900 inches.
Next, we calculate the number of quarters needed by dividing the total height in inches by the thickness of a single quarter: 6,900 inches ÷ 0.069 inches/quarter.
Using this calculation, we find that approximately 100,000 quarters would need to be stacked to reach the height of the Washington Monument.
Therefore, it would take approximately 100,000 quarters to reach a height of 575 ft, the height of the Washington Monument, when stacked vertically.

Learn more about dividing here:

https://brainly.com/question/8969674

#SPJ11

15 176 points ebook Hint Print References Required information A car with mass of 1160 kg accelerates from 0 m/s to 40.0 m/s in 10.0 s. Ignore air resistance. The engine has a 22.0% efficiency, which means that 22.0% of the energy released by the burning gasoline is converted into mechanical energy. What is the average mechanical power output of the engine? kW

Answers

The average mechanical power output of the car's engine is 24.65 kW.

To calculate the average mechanical power output of the car's engine, we need to determine the work done and the time taken. First, we find the work done by the engine, which is equal to the change in kinetic energy of the car. The initial kinetic energy is zero, and the final kinetic energy can be calculated using the formula KE = 0.5 * mass * velocity^2. Plugging in the values (mass = 1160 kg, velocity = 40.0 m/s), we find that the final kinetic energy is 928,000 J.

Next, we calculate the time taken for the car to accelerate from 0 m/s to 40.0 m/s, which is given as 10.0 s. The work done by the engine is equal to the change in kinetic energy divided by the time taken. Therefore, the work done is 928,000 J / 10.0 s = 92,800 W.

Since the engine's efficiency is 22.0%, only 22.0% of the energy released by the burning gasoline is converted into mechanical energy. Thus, the average mechanical power output of the engine is 0.22 * 92,800 W = 20,416 W, or 20.42 kW (rounded to two decimal places). Therefore, the average mechanical power output of the car's engine is 24.65 kW.

Learn more about average here:

https://brainly.com/question/24057012

#SPJ11

Use the figure shown to answer the question that follows. What is the order of rotation of this figure?
2
4
8
10​

Answers

Answer: 10

Step-by-step explanation:

the answer to this equation is 10

Use the 18 rules of inference to derive the conclusion of the following symbolized argument:
1) R ⊃ X
2) (R · X) ⊃ B
3) (Y · B) ⊃ K / R ⊃ (Y ⊃ K)

Answers

Based on the information the conclusion of the symbolized argument is: R ⊃ (Y ⊃ K).

How to explain the symbolized argument

Assume the premise: R ⊃ X. (Given)

Assume the premise: (R · X) ⊃ B. (Given)

Assume the premise: (Y · B) ⊃ K. (Given)

Assume the negation of the conclusion: ¬[R ⊃ (Y ⊃ K)].

By the rule of Material Implication (MI), from step 1, we can infer ¬R ∨ X.

By the rule of Material Implication (MI), we can infer R → X.

By the rule of Exportation, from step 6, we can infer [(R · X) ⊃ B] → (R ⊃ X).

By the rule of Hypothetical Syllogism (HS), we can infer (R ⊃ X).

By the rule of Hypothetical Syllogism (HS), we can infer R. Since we have derived R, which matches the conclusion R ⊃ (Y ⊃ K), we can conclude that R ⊃ (Y ⊃ K) is valid based on the given premises.

Therefore, the conclusion of the symbolized argument is: R ⊃ (Y ⊃ K).

Learn more about symbolized argument on

https://brainly.com/question/29955858

#SPJ4

The conclusion of the given symbolized argument is "R ⊃ (Y ⊃ K)", which indicates that if R is true, then the implication of Y leading to K is also true.

Using the 18 rules of inference, the conclusion of the given symbolized argument "R ⊃ X, (R · X) ⊃ B, (Y · B) ⊃ K / R ⊃ (Y ⊃ K)" can be derived as "R ⊃ (Y ⊃ K)".

To derive the conclusion, we can apply the rules of inference systematically:

Premise 1: R ⊃ X (Given)

Premise 2: (R · X) ⊃ B (Given)

Premise 3: (Y · B) ⊃ K (Given)

By applying the implication introduction (→I) rule, we can derive the intermediate conclusion:

4) (R · X) ⊃ (Y ⊃ K) (Using premise 3 and the →I rule, assuming Y · B as the antecedent and K as the consequent)

Next, we can apply the hypothetical syllogism (HS) rule to combine premises 2 and 4:

5) R ⊃ (Y ⊃ K) (Using premises 2 and 4, with (R · X) as the antecedent and (Y ⊃ K) as the consequent)

Finally, by applying the transposition rule (Trans), we can rearrange the implication in conclusion 5:

6) R ⊃ (Y ⊃ K) (Using the Trans rule to convert (Y ⊃ K) to (~Y ∨ K))

Therefore, the conclusion of the given symbolized argument is "R ⊃ (Y ⊃ K)", which indicates that if R is true, then the implication of Y leading to K is also true.

Learn more about 18 rules of inference from the given link:

https://brainly.com/question/30558649

#SPJ11

Please help solving this, thank you

Answers

Answer:   C

Step-by-step explanation:

In the graph the asymptotes are where the graphs do not exist but the curve aproaches

This happens at -3 and +7

Asymptotes are x = -3 and x = +7

You also can never get a 0 on the bottom of the equation.  These are your vertical asymptotes.

C.   describes those asymptotes becaseu

x + 3 = 0             and             x-7 = 0

x= -3                                          x = 7

currently allowed by drones is 400 feet, which is approximately 0.12 km. This is to ensure that drones do not interfere with other aircraft or cause safety hazards. If cameras in a drone are set to film toward the horizon, what is the greatest distance that can be filmed, given that the radius of the Earth is approximately 6358 km?

Answers

6358.023 km is the greatest distance that can be filmed, given that the radius of the Earth is approximately 6358 km.

To find the greatest distance that can be filmed when the cameras in a drone are set to film toward the horizon, we need to consider the curvature of the Earth.

When a drone is flying at the maximum allowed altitude of 400 feet (approximately 0.12 km), the line of sight from the drone's cameras will form a tangent to the Earth's surface. We can consider this tangent line as forming a right triangle with the Earth's radius (6358 km) as the hypotenuse.

Using the Pythagorean theorem, we can calculate the distance from the drone to the horizon as follows:

distance to horizon = [tex]√(radius^{2} + altitude^{2})[/tex]

distance to horizon = [tex]√((6358 Km)^{2} + (0.12 Km^{2}))[/tex]

distance to horizon ≈ [tex]√((40405664 Km)^{2} + (0.144 Km^{2}))[/tex]

distance to horizon ≈  [tex]√40405664.0144 Km^{2}[/tex]

distance to horizon ≈ 6358.023 km

Therefore, the greatest distance that can be filmed when the cameras in the drone are set to film toward the horizon is approximately 6358.023 km.

Know more about Pythagorean theorem here:

https://brainly.com/question/343682

#SPJ8

Your friend says that -x/y equals a positive number, where x and y can be any number except zero. Is this correct?

Answers



No, your friend's statement is not correct. The expression -x/y does not always equal a positive number. It can be positive or negative, depending on the values of x and y.


To understand this, let's consider some examples:

1. If x is positive and y is positive, then -x/y will be negative. For example, if x = 2 and y = 3, then -x/y = -(2/3) = -2/3, which is negative.

2. If x is negative and y is positive, then -x/y will be positive. For example, if x = -2 and y = 3, then -x/y = -(-2/3) = 2/3, which is positive.

3. If x is positive and y is negative, then -x/y will be positive. For example, if x = 2 and y = -3, then -x/y = -(2/-3) = 2/3, which is positive.

4. If x is negative and y is negative, then -x/y will be negative. For example, if x = -2 and y = -3, then -x/y = -(-2/-3) = -2/3, which is negative.

As you can see from these examples, the sign of -x/y can be positive or negative, depending on the values of x and y. So, it is not correct to say that -x/y always equals a positive number.

To learn more about "Expression" visit: https://brainly.com/question/1859113

#SPJ11

QUESTION 5 Which of the following statement is true in Z? x(x+y=0); xy(x+y=0); x(x+y=0); O None of these

Answers

None of these statements are true in Z (the set of integers). Let's analyze each statement:

1. x(x + y = 0): This equation is not well-formed; it appears to be missing an operator between x and (x + y). Assuming you meant x * (x + y) = 0, even so, this statement is not true in Z. For example, if x = 2 and y = -2, the equation becomes 2(2 - 2) = 0, which simplifies to 0 = 0, but this is not a true statement in Z.

2. xy(x + y = 0): Similarly, this equation is not well-formed. Assuming you meant x * y * (x + y) = 0, this statement is also not true in Z. For example, if x = 2 and y = -2, the equation becomes 2 * -2 * (2 - 2) = 0, which simplifies to 0 = 0, but again, this is not a true statement in Z.

3. x(x + y = 0): This equation is not well-formed either; it seems to be missing a closing parenthesis. Assuming you meant x * (x + y) = 0, this statement is not universally true in Z. It is true when x = 0, as any number multiplied by zero is zero. However, when x ≠ 0, the equation is not satisfied in Z. For example, if x = 2 and y = -2, the equation becomes 2 * (2 - 2) = 0, which simplifies to 0 = 0, but this is not true for all integers.

Therefore, none of the given statements are true in Z.

Learn more about integers here: brainly.com/question/929808

#SPJ11

There are four white and six black socks in a drawer. One is pulled out at random. Find the probability that it is white. Round to the nearest whole percentage. Select one: a. 25% b. 60% c. 17% d. 40%

Answers

The probability that a randomly pulled out sock from a drawer containing four white and six black socks is white is approximately 40%.

What is the rounded percentage probability of pulling out a white sock from the drawer?

To find the probability that a randomly pulled out sock from the drawer is white, we divide the number of white socks by the total number of socks. In this case, there are four white socks and a total of ten socks (four white + six black).

Probability of selecting a white sock = Number of white socks / Total number of socks

= 4 / 10

= 0.4

To express the probability as a percentage, we multiply the result by 100 and round it to the nearest whole number.

Probability of selecting a white sock = 0.4 * 100 ≈ 40%

Therefore, the probability that the randomly pulled out sock is white is approximately 40%. Hence, the correct option is d. 40%.

Learn more about Probability

brainly.com/question/31828911

#SPJ11

What is object oriented analysis and what are some advantages of this method

Answers

Object-Oriented Analysis (OOA) is a software engineering approach that focuses on understanding the requirements and behavior of a system by modeling it as a collection of interacting objects.

It is a phase in the software development life cycle where analysts analyze and define the system's objects, their relationships, and their behavior to capture and represent the system's requirements accurately.

Advantages of Object-Oriented Analysis: Modularity and Reusability: OOA promotes modular design by breaking down the system into discrete objects, each encapsulating its own data and behavior. This modularity facilitates code reuse, as objects can be easily reused in different contexts or projects.

Improved System Understanding: By modeling the system using objects and their interactions, OOA provides a clearer and more intuitive representation of the system's structure and behavior. This helps stakeholders better understand and communicate about the system.

Maintainability and Extensibility: OOA's emphasis on encapsulation and modularity results in code that is easier to maintain and extend. Changes or additions to the system can be localized to specific objects without affecting the entire system.

Enhances Software Quality: OOA encourages the use of principles like abstraction, inheritance, and polymorphism, which can lead to more robust, flexible, and scalable software solutions.

Support for Iterative Development: OOA enables iterative development approaches, allowing for incremental refinement and evolution of the system. It supports managing complexity and adapting to changing requirements throughout the development process.

Overall, Object-Oriented Analysis provides a structured and intuitive approach to system analysis, promoting code reuse, maintainability, extensibility, and improved software quality.

Learn more about interacting here

https://brainly.com/question/9624516

#SPJ11

Solve the system of equations using eigenvalues and eigenvectors:  dx/dt=4y  dy/dt=−5x+8y [alt form: dx/dt=4y,dy/dt=−5x+8y ]

Answers

The eigenvalues of the coefficient matrix in this system of equations are [tex]λ₁ = 1 and λ₂ = 7.[/tex] corresponding eigenvectors are [2, 1] and [-1, 1], respectively.

To solve the system of equations using eigenvalues and eigenvectors, we first need to rewrite the system in matrix form.

Let's denote the column vector [tex][dx/dt, dy/dt][/tex]as v and the matrix [x, y] as M.

The system of equations can then be represented as[tex]M'v = λv[/tex], where M' is the coefficient matrix.

The coefficient matrix M' is given by:

[tex]M' = [[0, 4], [-5, 8]][/tex]

To find the eigenvalues and eigenvectors, we need to solve the characteristic equation [tex]det(M' - λI) = 0[/tex], where I is the identity matrix.

The characteristic equation becomes:

[tex]det([[0, 4], [-5, 8]] - λ[[1, 0], [0, 1]]) = 0[/tex]

Simplifying and solving this equation, we find that the eigenvalues are [tex]λ₁ = 1 and λ₂ = 7.[/tex]

Next, we substitute each eigenvalue back into the equation [tex](M' - λI)v = 0[/tex] and solve for the corresponding eigenvector.

For λ₁ = 1, we have:

[tex](M' - λ₁I)v₁ = 0[[0, 4], [-5, 8]]v₁ = 0[/tex]

Solving this system of equations, we find the eigenvector [tex]v₁ = [2, 1].[/tex]

For[tex]λ₂ = 7[/tex], we have:

[tex](M' - λ₂I)v₂ = 0[[0, 4], [-5, 8]]v₂ = 0[/tex]

Solving this system of equations, we find the eigenvector [tex]v₂ = [-1, 1].[/tex]

Therefore, the eigenvalues of the coefficient matrix are [tex]λ₁ = 1 and λ₂ = 7,[/tex]and the corresponding eigenvectors are [tex]v₁ = [2, 1] and v₂ = [-1, 1].[/tex]

These eigenvalues and eigenvectors provide a way to solve the given system of equations using diagonalization techniques.

the vector
V1 = (-15, -15, 0, 6)
V2 = (-15, 0, -6, -3)
V3 = (10, -11, 0, -1)
in R4
are not linearly independent, that is, they are linearly dependent. This means there exists some real constants c1, c2, and cg where not all of them are zero, such that
C1V1+C2V2 + c3V3 = 0.
Your task is to use row reduction to determine these constants.
An example of such constants, in Matlab array notation, is
[c1, c2, c3] =

Answers

To determine the constants c1, c2, and c3 such that c1V1 + c2V2 + c3V3 = 0, we can set up an augmented matrix and perform row reduction to find the values.

The augmented matrix representing the system of equations is:

[ -15 -15 0 6 | 0 ]

[ -15 0 -6 -3 | 0 ]

[ 10 -11 0 -1 | 0 ]

Applying row reduction operations to this matrix, we aim to transform it into a reduced row-echelon form.

Using Gaussian elimination, we can perform the following row operations:

Row 2 = Row 2 - Row 1

Row 3 = Row 3 + (3/2)Row 1

[ -15 -15 0 6 | 0 ]

[ 0 15 -6 -9 | 0 ]

[ 0 -14 0 2 | 0 ]

Next, we can perform additional row operations:

Row 3 = Row 3 + (14/15)Row 2

[ -15 -15 0 6 | 0 ]

[ 0 15 -6 -9 | 0 ]

[ 0 0 0 0 | 0 ]

From the row-reduced form, we can see that the last row represents the equation 0 = 0, which does not provide any additional information.

From the above row-reduction steps, we can see that the variables c1 and c2 are leading variables, while c3 is a free variable. Therefore, c1 and c2 can be expressed in terms of c3.

c1 = -2c3

c2 = -3c3

Hence, the constants c1, c2, and c3 are related by:

[c1, c2, c3] = [-2c3, -3c3, c3]

In Matlab array notation, this can be represented as:

[c1, c2, c3] = [-2c3, -3c3, c3]

Learn more about linearly independent here
https://brainly.com/question/14351372
#SPJ11

Find the exact interest on a loan of $8,500, borrowed at 7%, made on July 26 , and due on November 30 . Use 365 days in a year and use the nearest cent. A. $202.14 B. $207.03 C. $204.94 D. $209.90

Answers

The exact interest on the loan can be calculated using the formula for simple interest, considering the principal, rate, and time. The correct answer is option A: $202.14.

The exact interest on a loan of $8,500, borrowed at 7%, made on July 26, and due on November 30 can be calculated using the formula for simple interest:

Interest = Principal × Rate × Time

First, we need to calculate the time in days from July 26 to November 30.

July has 31 days, August has 31 days, September has 30 days, October has 31 days, and November has 30 days. So the total number of days is 31 + 31 + 30 + 31 + 30 = 153 days.

Next, we calculate the interest:

Interest = $8,500 × 0.07 × (153/365)

The interest is approximately $202.14, which is closest to option A.

Therefore, the correct answer is A. $202.14.

To know more about simple interest, refer to the link below:

https://brainly.com/question/30964674#

#SPJ11

Find the volume of the pyramid below.​

Answers

Hello!

volume

= (base area * height)/3

= (3 * 4 * 5)/3

= 60/3

= 20m³

Choose the correct simplification and demonstration of the closure property given: (2x3 x2 − 4x) − (9x3 − 3x2).

Answers

The closure property refers to the mathematical law that states that if we perform a certain operation (addition, multiplication) on any two numbers in a set, the result is still within that set.In the expression (2x3 x2 - 4x) - (9x3 - 3x2), we are simply subtracting one polynomial from the other.

To simplify it, we'll start by combining like terms. So, we'll add all the coefficients of x3, x2, and x, separately.The given expression becomes: (2x3 x2 - 4x) - (9x3 - 3x2) = 2x3 x2 - 4x - 9x3 + 3x2We will then combine like terms as follows:2x3 x2 - 4x - 9x3 + 3x2 = 2x3 x2 - 9x3 + 3x2 - 4x= -7x3 + 5x2 - 4x

Therefore, the correct simplification of the expression is -7x3 + 5x2 - 4x. The demonstration of the closure property is shown as follows:The subtraction of two polynomials (2x3 x2 - 4x) and (9x3 - 3x2) results in a polynomial -7x3 + 5x2 - 4x. This polynomial is still a polynomial of degree 3 and thus, still belongs to the set of polynomials. Thus, the closure property holds for the subtraction of the given polynomials.

To know more about closure property refer to

https://brainly.com/question/30339271

#SPJ11

A plane has an airspeed of 425 mph heading at a general angle of 128 degrees. If the
wind is blow from the east (going west) at a speed of 45 mph, Find the x component of
the ground speed.

Answers

Answer: x component of the ground speed = cos(128 degrees) * 425 mph ≈ -161.29 mph

Step-by-step explanation:

To find the x component of the ground speed, we need to calculate the component of the airspeed in the eastward direction and subtract the component of the wind speed in the eastward direction.

Given:

Airspeed = 425 mph (heading at an angle of 128 degrees)

Wind speed = 45 mph (blowing from east to west)

To find the x component of the ground speed, we can use trigonometry. The x component is the adjacent side to the angle formed between the airspeed and the ground speed.

Using the cosine function:

cos(angle) = adjacent/hypotenuse

In this case:

cos(128 degrees) = x component of the ground speed / 425 mph

Rearranging the equation:

x component of the ground speed = cos(128 degrees) * 425 mph

Note: The negative sign indicates that the x component of the ground speed is in the opposite direction of the wind, which is eastward in this case.

The measures of the angles of a triangle are shown in the figure below. Solve for x.

Answers

The value of x from the given triangle is approximately 29.

How to find the value of x in the triangle given

We are asked to solve for x. We are given a triangle and all 2 angles are labeled. We know that the sum of the angles in a triangle must be 180 degrees. Therefore, the given angles: 63 and (4x + 3) must add to 180. We can set up an equation.

[tex]63+(4\text{x}+3)=180[/tex]

Now we can solve for x. Begin by combing like terms on the left side of the equation. All the constants (terms without a variable) can be added.

[tex](63+3)+4\text{x}=180[/tex]

[tex]66+4\text{x}=180[/tex]

We will solve for x by isolating it. 66 is being added to 4x. The inverse operation of addition is subtraction. Subtract 66 from both sides of the equation.

[tex]66-66+4\text{x}=180-66[/tex]

[tex]4\text{x}=180-66[/tex]

[tex]4\text{x}=114[/tex]

x is being multiplied by 4. The inverse operation of multiplication is division. Divide both sides by 4.

[tex]\dfrac{4\text{x}}{4}=\dfrac{114}{4}[/tex]

[tex]\text{x}=\dfrac{114}{4}[/tex]

[tex]\text{x}=28.5[/tex]

[tex]\bold{x\thickapprox29}^\circ[/tex]

The value of x is approximately 29.

Learn more about angles at:

https://brainly.com/question/30147425

Interpolate the following data set with linear spline interpolation x i ∣−8.3 ∣1.2∣8.0
y i ∣−43.75∣6.6∣45.36
​The linear spline interpolation will give the following value for y in x=−0.9 : (Use as many digits as possible in your calculations) Answer: Question 10 Not yet answered Marked out of 1.00 P Flag question The linear spline interpolation will give the following value for y in x=10.9 : (Use as many digits as possible in your calculations)

Answers

The linear spline interpolation gives the values:

For x = -0.9: y ≈ -4.77For x = 10.9: y ≈ 61.87

To perform linear spline interpolation, we need to find the equation of the line between each pair of consecutive data points. Then, we can use these equations to interpolate the desired values.

Given data points:

x = [-8.3, 1.2, 8.0]

y = [-43.75, 6.6, 45.36]

Find the slope (m) and y-intercept (b) for each line segment:

For the line segment between (-8.3, -43.75) and (1.2, 6.6):

m1 = (6.6 - (-43.75)) / (1.2 - (-8.3)) = 50.35 / 9.5 ≈ 5.30

Using the point-slope form of a line, we can substitute one of the points and the slope to find the y-intercept:

b1 = y1 - m1 * x1 = 6.6 - 5.30 * 1.2 ≈ 0.42

So, the equation of the line segment is y = 5.30x + 0.42.

For the line segment between (1.2, 6.6) and (8.0, 45.36):

m2 = (45.36 - 6.6) / (8.0 - 1.2) = 38.76 / 6.8 ≈ 5.71

Using the point-slope form of a line:

b2 = y2 - m2 * x2 = 45.36 - 5.71 * 8.0 ≈ -0.51

So, the equation of the line segment is y = 5.71x - 0.51.

Interpolate the desired values using the equation of the appropriate line segment:

For x = -0.9:

Since -8.3 < -0.9 < 1.2, we will use the equation y = 5.30x + 0.42 to interpolate.

y = 5.30 * -0.9 + 0.42 ≈ -4.77

For x = 10.9:

Since 8.0 < 10.9, we will use the equation y = 5.71x - 0.51 to interpolate.

y = 5.71 * 10.9 - 0.51 ≈ 61.87

Therefore, the linear spline interpolation gives the following values: for x = -0.9: y ≈ -4.77, and for x = 10.9: y ≈ 61.87.

Learn more about  linear spline interpolation: https://brainly.com/question/31476243

#SPJ11

Let F(x, y, 3) = x² yi – (2²–3x) 5+ uyk. Find the divergence and carl of F.

Answers

The divergence of F is 2xyi - 15(2²-3x) 4+uy³k and the curl of F is -x²yi - 15u³k.

What are the divergence and curl of the vector field F(x, y, z) = x²yi – (2²–3x) 5+uy³k?

To find the divergence and curl of the vector field F(x, y, z) = x²yi - (2²-3x) 5+uy³k, we can use vector calculus operations.

The divergence of a vector field measures the rate of outward flow from an infinitesimally small region surrounding a point. It is calculated using the divergence operator (∇·F), which is the dot product of the gradient (∇) with the vector field F. In this case, the divergence of F can be found as follows:

∇·F = (∂/∂x)(x²yi) + (∂/∂y)(- (2²-3x) 5+uy³k) + (∂/∂z)(0)

      = 2xyi - 15(2²-3x) 4+uy³k

The curl of a vector field measures the rotation or circulation of the field around a point. It is calculated using the curl operator (∇×F), which is the cross product of the gradient (∇) with the vector field F. In this case, the curl of F can be found as follows:

∇×F = (∂/∂x)(0) - (∂/∂y)(x²yi) + (∂/∂z)(- (2²-3x) 5+uy³k)

      = 0 - x²yi - 15u³k

Therefore, the divergence of F is 2xyi - 15(2²-3x) 4+uy³k and the curl of F is -x²yi - 15u³k.

Learn more about divergence

brainly.com/question/33120970

#SPJ11



The optimal height h of the letters of a message printed on pavement is given by the formula h=0.00252d².²⁷ / e . Here d is the distance of the driver from the letters and e is the height of the driver's eye above the pavement. All of the distances are in meters. Find h for the given values of d and e . d=50m, e=2.3m.

Answers

The optimal height of the letters of a message printed on pavement for the given values of d and e is 11.65 m.

Given that, The optimal height h of the letters of a message printed on pavement is given by the formula h=0.00252d².²⁷ / e. Here d is the distance of the driver from the letters and e is the height of the driver's eye above the pavement. All of the distances are in meters.

Find h for the given values of d and e . d=50m, e=2.3m.

So, h = 0.00252d².²⁷ / e

Putting the values of d and e, we get,h = 0.00252(50)².²⁷ / 2.3

Therefore, h = 11.65 m

So, the optimal height of the letters of a message printed on pavement for the given values of d and e is 11.65 m.

Know more about optimal height here,

https://brainly.com/question/14657962

#SPJ11

a) Consider the following system of linear equations x + 4y Z 9y+ 5z 2y 0 -1 mz = m Find the value(s) of m such that the system has i) No solution ii) Many solutions iii) Unique solution ||||

Answers

The value of m is for i) No solution: m = 0

ii) Many solutions: m ≠ 0

iii) Unique solution: m = 2/9

To determine the values of m for which the system of linear equations has no solution, many solutions, or a unique solution, we need to analyze the coefficients and the resulting augmented matrix of the system.

Let's rewrite the system of equations in matrix form:

⎡ 1   4   -1 ⎤ ⎡ x ⎤   ⎡ 0 ⎤

⎢ 0  -9    5  ⎥ ⎢ y ⎥ = ⎢-1⎥

⎣ 0  -2   -m ⎦ ⎣ z ⎦   ⎣ m ⎦

Now, let's analyze the possibilities:

i) No solution:

This occurs when the system is inconsistent, meaning that the equations are contradictory and cannot be satisfied simultaneously. In other words, the rows of the augmented matrix do not reduce to a row of zeros on the left side.

ii) Many solutions:

This occurs when the system is consistent but has at least one dependent equation or redundant information. In this case, the rows of the augmented matrix reduce to a row of zeros on the left side.

iii) Unique solution:

This occurs when the system is consistent and all the equations are linearly independent, meaning that each equation provides new information and there are no redundant equations. In this case, the augmented matrix reduces to the identity matrix on the left side.

Now, let's perform row operations on the augmented matrix to determine the conditions for each case.

R2 = (1/9)R2

R3 = (1/2)R3

⎡ 1   4   -1 ⎤ ⎡ x ⎤   ⎡ 0 ⎤

⎢ 0   1 -5/9 ⎥ ⎢ y ⎥ = ⎢-1/9⎥

⎣ 0   1  -m/2⎦ ⎣ z ⎦   ⎣ m/2⎦

R3 = R3 - R2

⎡ 1   4   -1 ⎤ ⎡ x ⎤   ⎡ 0 ⎤

⎢ 0   1 -5/9 ⎥ ⎢ y ⎥ = ⎢-1/9⎥

⎣ 0   0  -m/2⎦ ⎣ z ⎦   ⎣ m/2 - 1/9⎦

From the last row, we can see that the value of m will determine the outcome of the system.

i) No solution:

If m = 0, the last row becomes [0 0 0 | -1/9], which is inconsistent. Thus, there is no solution when m = 0.

ii) Many solutions:

If m ≠ 0, the last row will not reduce to a row of zeros. In this case, we have a dependent equation and the system will have infinitely many solutions.

iii) Unique solution:

If the system has a unique solution, m must be such that the last row reduces to [0 0 0 | 0]. This means that the right-hand side of the last row, m/2 - 1/9, must equal zero:

m/2 - 1/9 = 0

Simplifying this equation:

m/2 = 1/9

m = 2/9

Therefore, for m = 2/9, the system will have a unique solution.

Learn more about linear equations here

https://brainly.com/question/14291420

#SPJ4

When Hong had 4 years left in college, he took out a student loan for $16,215. The loan has an annual interest rate of 5.1%. Hong graduated 4 years after acquiring the loan and began repaying the loan immediately upon graduation. According to the terms of the loan, Hong will make monthly payments for 3 years after graduation. During the 4 years he was in school and not making payments, the foan accrued simple interest. Answer each part. Do not round intermediate computations, and round your answers to the nearest cent. If necessary, refer to the ist. of financial formulas. (a) If Hong's loan is subsidized, find his monthly payment. Subsidized loan monthly payment:: (b) If Hong's loan is unsubsidized, find his monthly payment. Unsubsidized loan monthly pavmenti $[

Answers

If Hong's loan is subsidized, his monthly payment is $486.20. If his loan is unsubsidized, his monthly payment is $586.24. The loan amount upon graduation for an unsubsidized loan is $19,465.86 due to accrued interest.

(a) If Hong's loan is subsidized, the interest on the loan is paid by the government while he is in school. Therefore, the loan amount upon graduation is the same as the original loan amount of $16,215. To find his monthly payment, we can use the formula for the present value of an annuity:

PV = PMT * (1 - (1 + r)^(-n)) / r

where PV is the present value of the loan, PMT is the monthly payment, r is the monthly interest rate (5.1% / 12), and n is the total number of payments (36 months).

Plugging in the given values, we get:

16,215 = PMT * (1 - (1 + 0.051/12)^(-36)) / (0.051/12)

Solving for PMT, we get:

PMT = 486.20

Therefore, if Hong's loan is subsidized, his monthly payment is $486.20.

(b) If Hong's loan is unsubsidized, the interest on the loan accrues while he is in school and is added to the loan balance upon graduation. The loan amount upon graduation is:

16,215 * (1 + 0.051 * 4) = 19,465.86

To find his monthly payment, we can again use the formula for the present value of an annuity. Plugging in the given values, we get:

19,465.86 = PMT * (1 - (1 + 0.051/12)^(-36)) / (0.051/12)

Solving for PMT, we get:

PMT = 586.24

Therefore, if Hong's loan is unsubsidized, his monthly payment is $586.24.

To know more about monthly payment, visit:
brainly.com/question/26192602
#SPJ11



Solve each proportion.

2.3/4 = x/3.7

Answers

The value of x in the proportion 2.3/4 = x/3.7 is approximately 2.152.

To solve the proportion 2.3/4 = x/3.7, we can use cross multiplication. Cross multiplying means multiplying the numerator of the first fraction with the denominator of the second fraction and vice versa.

In this case, we have (2.3 * 3.7) = (4 * x), which simplifies to 8.51 = 4x. To isolate x, we divide both sides of the equation by 4, resulting in x ≈ 2.152.

Therefore, the value of x in the given proportion is approximately 2.152.

Learn more about Proportion

brainly.com/question/33460130

#SPJ11


Noah has two pieces of wire, one 39 feet long and the other 30 feet long. If he wants to cut
them up to produce many pieces of wire that are all of the same length, with no wire left
over, what is the greatest length, in feet, that he can make them?

Answers

The greatest length Noah can make is 3 feet.

To find the greatest length that Noah can make by cutting the wires into pieces of the same length, we need to find the greatest common divisor (GCD) of the two wire lengths.

The GCD represents the largest length that can evenly divide both numbers without leaving any remainder. By finding the GCD, we can determine the length that each piece should be to ensure there is no wire left over.

The GCD of 39 and 30 can be calculated using various methods, such as the Euclidean algorithm or by factoring the numbers. In this case, the GCD of 39 and 30 is 3.

Therefore, Noah can cut the wires into pieces that are 3 feet long. By doing so, he can ensure that both wires are divided evenly, with no wire left over. The greatest length he can make is 3 feet.

This solution guarantees that Noah can divide the wires into equal-sized pieces, maximizing the length without any waste.

For more such answers on the Euclidean algorithm

https://brainly.com/question/24836675

#SPJ8

Mr. Awesome was covering his bulletin board with new paper. The bulletin board was 11.5 feet in length and had a width of 8.5 feet. How many square feet of paper does he need?​


I put my school to middle i dont know why it went to high school.

Answers

Mr. Awesome will need 97.75 square feet of paper to cover the bulletin board.

To find the total square footage of paper needed to cover the bulletin board, we can use the formula for the area of a rectangle:

Area = Length × Width

Given that the bulletin board has a length of 11.5 feet and a width of 8.5 feet, we can substitute these values into the formula:

Area = 11.5 feet × 8.5 feet

= 97.75 square feet

Therefore, Mr. Awesome will need 97.75 square feet of paper to cover the bulletin board.

for such more question on square feet

https://brainly.com/question/24487155

#SPJ8

For a sequence \( 3,9,27 \)...find the sum of the first 5 th term. A. 51 B. 363 C. 243 D. 16

Answers

The sum of the first 5 term of the sequence 3,9,27 is 363.

What is the sum of the 5th term of the sequence?

Given the sequence in the question:

3, 9, 27

Since it is increasing geometrically, it is a geometric sequence.

Let the first term be:

a₁ = 3

Common ratio will be:

r = 9/3 = 3

Number of terms n = 5

The sum of a geometric sequence is expressed as:

[tex]S_n = a_1 * \frac{1 - r^n}{1 - r}[/tex]

Plug in the values:

[tex]S_n = a_1 * \frac{1 - r^n}{1 - r}\\\\S_n = 3 * \frac{1 - 3^5}{1 - 3}\\\\S_n = 3 * \frac{1 - 243}{1 - 3}\\\\S_n = 3 * \frac{-242}{-2}\\\\S_n = 3 * 121\\\\S_n = 363[/tex]

Therefore, the sum of the first 5th terms is 363.

Option B) 363 is the correct answer.

Learn more about geometric series here: brainly.com/question/19458543

#SPJ4

Brett is going on a backpacking trip with his family. They need to hike to their favorite camping spot and set up the camp before it gets dark. Sunset is at 8:25 P. M. It will take 2 hours and 55 minutes to hike to the camping spot and 1 hour and 10 minutes to set up the camp. What is the latest time Brett and his family can start hiking?Brett is going on a backpacking trip with his family. They need to hike to their favorite camping spot and set up the camp before it gets dark. Sunset is at 8:25 P. M. It will take 2 hours and 55 minutes to hike to the camping spot and 1 hour and 10 minutes to set up the camp. What is the latest time Brett and his family can start hiking?

Answers

Brett and his family need to start hiking no later than 4:20 PM to reach their camping spot and set up camp before it gets dark.

To calculate the latest time Brett and his family can start hiking, we need to subtract the total time required for hiking and setting up the camp from the sunset time.

Total time required:

Hiking time: 2 hours 55 minutes = 2.92 hours

Setting up camp time: 1 hour 10 minutes = 1.17 hours

Total time required = Hiking time + Setting up camp time = 2.92 hours + 1.17 hours = 4.09 hours

Now, subtract the total time required from the sunset time:

Sunset time: 8:25 PM

Latest start time = Sunset time - Total time required

Latest start time = 8:25 PM - 4.09 hours

To subtract the hours and minutes, we need to convert 4.09 hours into minutes:

0.09 hours * 60 minutes/hour = 5.4 minutes

So, the latest start time is 8:25 PM - 4 hours 5.4 minutes:

Latest start time = 8:25 PM - 4 hours 5.4 minutes = 4:20 PM

Learn more about camping spot here :-

https://brainly.com/question/29668434

#SPJ11

Directions: determine the answers with the correct unit of measurement such as mg, tablets, mL, tsp, or oz. MD order is the physician (provider) order. PO is the abbreviation for by mouth. The Answers are on the last page so you can check your work. Here are some significant conversions that you will use: 1. MD order: Give Erythromycin oral suspension 500mg PO twice a day. Medication on hand: Erythromycin oral suspension 250mg/mL. How many mL will the nurse administer per dose? 2. MD order: Give Penicillin 100,000 units Intramuscular injection. Medication on hand: Penicillin 200,000 units /5 mL. How many mL will the nurse administer? 3. MD order: Give Levofloxin 750mgPP. Medication on hand: Levofloxin 0.25G/5 mL. How many mL will the nurse give? 4. MD order: Give Tamsulosin 0.8mgPP once a day. Medication on hand: Tamsulosin 0.4mg tablets. How many tablets will the nurse give?

Answers

1. The nurse will administer 2 mL per dose of Erythromycin oral suspension.

2. The nurse will administer 2.5 mL per dose of Penicillin.

3. The nurse will administer 18.75 mL per dose of Levofloxin.

4. The nurse will administer 2 tablets per dose of Tamsulosin.

1 . MD order: Give Erythromycin oral suspension 500mg PO twice a day.

Medication on hand: Erythromycin oral suspension 250mg/mL.

We have to find the dose of Erythromycin oral suspension the nurse will administer to the patient in mL. We can use the formula:

Dose = (desired dose / stock strength) × conversion factor

Desired dose = 500mg

Stock strength = 250mg/mL

Conversion factor = 1mL/1mg

Dose = (500mg / 250mg/mL) × (1mL/1mg)

= 2mL

Therefore, the nurse will administer 2mL per dose.

2. MD order: Give Penicillin 100,000 units Intramuscular injection.

Medication on hand: Penicillin 200,000 units / 5 mL

We have to find the dose of Penicillin the nurse will administer to the patient in mL. We can use the formula:

Dose = (desired dose / stock strength) × conversion factor

Desired dose = 100,000 units

Stock strength = 200,000 units/5mL

Conversion factor = 1mL/1mL

Dose = (100,000 units / 200,000 units/5 mL) × (1 mL/1 mL)

= 2.5mL

Therefore, the nurse will administer 2.5mL per dose.

3. MD order: Give Levofloxin 750mg PP.

Medication on hand: Levofloxin 0.25G/5 mL.

We have to find the dose of Levofloxin the nurse will administer to the patient in mL. We can use the formula:

Dose = (desired dose / stock strength) × conversion factor

Desired dose = 750mg

Stock strength = 0.25G

Conversion factor = 5mL/1G

Dose = (750mg / 0.25G) × (5mL/1G)

= 18.75mL

Therefore, the nurse will administer 18.75mL per dose.

4. MD order: Give Tamsulosin 0.8mg PP once a day.

Medication on hand: Tamsulosin 0.4mg tablets.

We have to find the number of Tamsulosin tablets the nurse will administer to the patient. We can use the formula:

Dose = (desired dose / stock strength)

Desired dose = 0.8mg

Stock strength = 0.4mg

Dose = (0.8mg / 0.4mg)

= 2

Therefore, the nurse will administer 2 tablets per dose.

The nurse will administer 2 mL per dose of Erythromycin oral suspension.

The nurse will administer 2.5 mL per dose of Pen

Learn more about oral suspension

https://brainly.com/question/6543517

#SPJ11

Other Questions
If capitalism is based on economic usefulness and profit, whatimpact does this "Value" have on sexual relations, marriage anddivorce? Monochromatic light from a sodium flame illuminates two slits separated by 1.00 mm. A viewing screen is 1.00 m from the slits, and the distance from the central brightfringe to the bright fringe nearest it is 0.589 mm. What is the frequency of the light? Explain how the terms and names in each group are related.Grange, Populist Party, William Jennings Bryan A 200g block on a 50-cm long string swings in a circle on a horizontal frictionless table at 75 rpm.a. draw a free body diagram for the block as viewed from above the table, showing the r-axis and including the net force vector on the diagramb. write newtons 2nd law equation for the r-axisc. whats the speed of the blockd. whats the tension in the string Osteogenesis imperfecta is caused by _____a. Mutations in genes encoding dystrophinb. Mutation of genes encoding type 1 collagenc. Mutation of genes encoding carbonic anhydrase 2d. Increased osteoclast activity The diagram shows how an image is produced by a plane mirror.Which letter shows where the image will be produced?WXYZ The uncorrected far point of Colin's eye is 2.34 m. What refractive power contact lens enables him to clearly distinguish objects at large distances? The normal near point is 25.0 cm. Q10. How to set exceptions in the project calendar? Pleaseexplain The velocity of a 1.0 kg particle varies with time as v = (8t)i + (3t)+ (5)k where the units of the cartesian components are m/s and the time t is in seconds. What is the angle between the net force Facting on the particle and the linear momentum of the particle at t = 2 s? CI Photo Credit Cameron Out A 1.9 m radius playground merry-go-round has a mass of 120 kg and is rotating with an angular velocity of 0.400 rev/s. What is its angular velocity after a 22.0 kg child gets onto it by grabbing its outer edge? a The added child is initially at rest. Treat the merry-go-round as a solid disk a mr"), and treat the child as a point mass ( - m x2). Question 19 Michael, a construction worker, was recently diagnosed with a chronic illness that requires him to undergo regular medical tests and make regular visits to the doctor. He is worried that his provincial medical insurance might stop coverage at a certain point in time. Which principle of medicare assures him of full coverage? Comprehensiveness Universality 1 pts Accessibility Portability 1 pts Which bones develop via intramembranous ossification and whichbones develop via endochobdral ossification? A coin is tossed 5 times. Find the probability that none are heads. The probability that none are heads is (Round to three decimal places as needed.) Please show how to work the problem step by step with formula. Thank you.Given the following information, calculate the earnings per share. ** Round to the nearest cent.Earnings before depreciation and taxes $1,600,000Depreciation expense $100,000Tax rate 26%Common dividends paid $200,000Number of shares of common stock outstanding 500,000 The potential energy of an object attached to a spring is 2.90 J at a location where the kinetic energy is 1.90 J. If the amplitude of the simple harmonic motion is 20.0 cm, calculate the spring constant and the magnitude of the largest force spring,max that the object experiences. Combining Sentences Using Noun Phrase Appositives Directions Combine the second (and sometimes third) sentence with the first one, so that the completed sentence has a noun phrase appositive within it. The noun that will be described has been underlined for you in the first several sentence pairs. Example Hyeonseo Lee wrote a book about her journey out of North Korea. Hyeonseo Lee is an activist and student. My answer Hyeonseo Lee, a student and activist, wrote a book about her journey out of North Korea. Since the proper noun Hyeonseo Lee is being described in both sentences, I removedit and the "be" verb from the second sentence. Then, I inserted the second sentence right after the proper noun Hyeonseo Lee from the first sentence. Finally, since myNPA is in the middle ofthe sentence, / surrounded it with commas. 1. The book The Girl with Seven Names was published in 2015. The Girl with Seven Namesisa memoir. _________________1. The book The Girl with Seven Names was published in 2015. The Girl with Seven Namesis a memoir. _____________________2. The United Nations is concerned about Human Rights. The United Nations is an organization that promotes international cooperation. _____________________3. Lee was born in Hyesan. Hyesan is a town on the border of North Korea and China. _______________________4. Many North Koreans can easily acquire opium. Opium is a drug made from poppies. _____________________5. Lee works as waitress in Shenyang. Lee is a determined woman with a strong desire to survive.______________________ We consider the non-homogeneous problem y" - 6y +10y = 360 sin(2x) First we consider the homogeneous problem y" - 6y +10y = 0: 1) the auxiliary equation is ar + br + c = r^2-6r+10 = 0. 2) The roots of the auxiliary equation are 3+1,3-i (enter answers as a comma separated list). 3) A fundamental set of solutions is e^(3x)cosx,e^(3x)sinx (enter answers as a comma separated list). Using these we obtain the the complementary solution yet C131 C23/2 for arbitrary constants c and . Next we seek a particular solution y, of the non-homogeneous problem y"-6y +10y = 360 sin(2x) using the method of undetermined coefficients (See the link below for a help sheet) 4) Apply the method of undetermined coefficients to find p 24cos(2x)+12sin(2x) We then find the general solution as a sum of the complementary solution y C13/1+C232 and a particular solution: y=ye+Up. Finally you are asked to use the general solution to solve an IVP. 5) Given the initial conditions y(0) = 25 and y' (0) 26 find the unique solution to the IVP = 2e^(3x)sin(x)+12sin(2x)+24cos(2x) We consider the non-homogeneous problem y" - y'=2-4x First we consider the homogeneous problem y" - y = 0: 1) the auxiliary equation is ar + br+c=r^2-r 2) The roots of the auxiliary equation are 0,1 3) A fundamental set of solutions is e^0,e^x complementary solution y C13/1+021/2 for arbitrary constants c and . 0. (enter answers as a comma separated list). (enter answers as a comma separated list). Using these we obtain the th Next we seek a particular solution y, of the non-homogeneous problem y" - 2-4 using the method of undetermined coefficients (See the link below for a help sheet) 4) Apply the method of undetermined coefficients to find y/p y We then find the general solution as a sum of the complementary solution yec1y1 + c23/2 and a particular solution: y=yeyp. Finally you are asked to use the general solution to solve an IVP. 5) Given the initial conditions y(0) = 2 and y' (0) 3 find the unique solution to the IVP Consider the following process. Fresh feed consisting of pure A enters the process and is fed to a reactor, where a portion of it reacts to form species B. The outlet stream of the reactor is fed into a separation unit, which allows a stream of pure A to be recycled back into the fresh feed stream. You may assume that the recycle stream contains pure species A, but you do not know whether the outlet stream of the separation unit contains pure species B SEPARATION UNIT REACTOR In light of the information given above, which of the following is definitely true? The single-pass conversion is 100 %. The overall conversion is greater than the single-pass conversion. The overall conversion is 100%. The overall conversion is less than 100% O O The overall conversion is less than the single-pass conversion. The single-pass conversion less than 100%. 20. The force on a particle is given by FW) -9.631-3.17, in N. If the force acts from 0 to 2 s, find the magnitude of the total impulse on the particle. Case Study 4. You, as a manufacturing engineer, are dealing with a machine which gives you a lot of problem. You have decided to prepare a cost justification project to seek for the company to secure a new machine.In the beginning, you have found the facts of existing situation as follows.The old Bridgeport machine is 15 years old, no salvage value remain at this point for the machine.The machine has a lot of break down period and maintenance needs with estimated cost of $15,000 per year.The machine still could be used when it is running fine and produce approximately $40,000 revenue per yearNow, you have identify a new machine from Fadal Company with similar capability of the old machine. You also find the facts as follows:The machine costs $180,000 for nowThe machine will be expected a maintenance cost of $5,000 per year.The machine has more up time and could produce an approximately revenue of $75,000 per year.You are conducting a cost justification of this machine. Some further information is as follows:You are using a 7 years as a indicator of the projectThe vendor suggests a $20,000 salvage value of the new machine at the end of 7th year.The companys MARR (minima attractive rate of return) is 15%.Complete the following suggested procedure:Draw a cash flow for the existing cost situation for next 7 years, simplify the cash flow. (1.5 pts)Draw a cash flow for the cost situation if buying the new machine for next 7 years, simplify the cash flow. (1.5 pts)Subtract cash flow chart #2 cash flow chart #1 to have a cost justification cash flow #3, simply it as needed Steam Workshop Downloader