It is important not to undercook chicken, otherwise you might get very sick. The inside of the chicken has to be at a certain temperature (75 C or 165 F) to make sure it is safe. Why can't you just wait until the outside of the chicken is at this temperature? Why isn't the entire chicken at the same temperature
while it is being cooked?

Answers

Answer 1

When cooking chicken, it is crucial to ensure that the internal temperature reaches a certain level, typically 75°C (165°F), to eliminate harmful bacteria and reduce the risk of foodborne illnesses such as salmonella or campylobacter :

1) Heat transfer:

Heat transfer in cooking occurs primarily through conduction, where heat travels from a hotter region to a cooler one. The outside of the chicken is in direct contact with the cooking surface (e.g., a grill, pan, or oven), which provides the heat source.

2) Insulation and thickness:

The chicken's outer layers act as insulation, which slows down the heat transfer to the inner parts. Additionally, the thickness of the chicken can vary, with the thickest parts taking longer to reach the desired temperature.

3) Moisture content:

The moisture content of chicken affects the cooking process. Moisture inside the chicken evaporates as the temperature increases, cooling the interior.

4) Heat diffusion:

Heat diffuses through food unevenly, meaning that it takes time for the heat to penetrate the center of the chicken. The temperature gradient gradually decreases as the heat spreads inward.

Learn more about temperature here : brainly.com/question/7510619
#SPJ11


Related Questions

An object of mass Mis projected from the surface of earth with speed Ve and angle of projection de a) Set up and solve the equations of motion using Newtonian Mechanics b) Using Lagrangian mechanics solve the motion of the projectile. (Neglect the earthis rotation)

Answers

(a) To set up and solve the equations of motion using Newtonian mechanics for a projectile launched from the surface of the Earth, we consider the forces acting on the object.

The main forces involved are the gravitational force and the air resistance, assuming negligible air resistance. The equations of motion can be derived by breaking down the motion into horizontal and vertical components. In the horizontal direction, there is no force acting, so the velocity remains constant. In the vertical direction, the forces are gravity and the initial vertical velocity. By applying Newton's second law in both directions, we can solve for the equations of motion.

(b) Using Lagrangian mechanics, the motion of the projectile can also be solved. Lagrangian mechanics is an alternative approach to classical mechanics that uses the concept of generalized coordinates and the principle of least action.

In this case, the Lagrangian can be formulated using the kinetic and potential energy of the system. The equations of motion can then be obtained by applying the Euler-Lagrange equations to the Lagrangian. By solving these equations, we can determine the trajectory and behavior of the projectile.

In summary, (a) the equations of motion can be derived using Newtonian mechanics by considering the forces acting on the object, and (b) using Lagrangian mechanics, the motion of the projectile can be solved by formulating the Lagrangian and applying the Euler-Lagrange equations. Both approaches provide a framework to understand and analyze the motion of the projectile launched from the surface of the Earth.

Learn more about projectile here: brainly.com/question/28043302

#SPJ11

a 2-kg mass is suspended from an ideal linear spring with a spring constant of 500-n/m. from equilibrium, the mass is raised upward by 1-cm and then let go of. (a) what is the angular frequency of the oscillations that ensue? (b) what is the frequency of the oscillations? (c) what is the period of the oscillations? (d) what is the total energy of the mass/spring system? (e) what is the speed of the mass as it passes through the equilibrium position?

Answers

a. The angular frequency of the oscillations is 10 rad/s.

b. The frequency is 1.59 Hz,

c. The period is 0.63 s,

d. The total energy of the mass/spring system is 0.1 J,

e. The speed of the mass as it passes through the equilibrium position is 0.1 m/s.

The angular frequency of the oscillations can be determined using the formula ω = √(k/m), where k is the spring constant (500 N/m) and m is the mass (2 kg). Plugging in the values, we get ω = √(500/2) = 10 rad/s.

The frequency of the oscillations can be found using the formula f = ω/(2π), where ω is the angular frequency. Plugging in the value, we get f = 10/(2π) ≈ 1.59 Hz.

The period of the oscillations can be calculated using the formula T = 1/f, where f is the frequency. Plugging in the value, we get T = 1/1.59 ≈ 0.63 s.

The total energy of the mass/spring system can be determined using the formula E = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium (0.01 m in this case). Plugging in the values, we get E = (1/2)(500)(0.01)² = 0.1 J.

The speed of the mass as it passes through the equilibrium position can be found using the formula v = ωA, where ω is the angular frequency and A is the amplitude (0.01 m in this case). Plugging in the values, we get v = (10)(0.01) = 0.1 m/s.

Learn more about Frequency

brainly.com/question/29739263

#SPJ11

1. A 5kg,box is on an incline of 30°. It is accelerating down at 2.3m/s2. What is the coefficient of friction of the incline? A -1... 1 ACO The initialanand of the

Answers

The coefficient of friction of the incline is 0.47, determined by comparing the net force and the parallel component of gravitational force.

To find the coefficient of friction of the incline, we can use the following steps:

Calculate the gravitational force acting on the box:

F_gravity = m * g,

where m is the mass of the box (5 kg) and g is the acceleration due to gravity (9.8 m/s²).

F_gravity = 5 kg * 9.8 m/s² = 49 N.

Determine the component of the gravitational force parallel to the incline:

F_parallel = F_gravity * sin(θ),

where θ is the angle of the incline (30°).

F_parallel = 49 N * sin(30°) = 24.5 N.

Calculate the net force acting on the box in the downward direction:

F_net = m * a,

where a is the acceleration of the box (2.3 m/s²).

F_net = 5 kg * 2.3 m/s² = 11.5 N.

Determine the frictional force acting in the opposite direction of the motion:

F_friction = F_parallel - F_net.

F_friction = 24.5 N - 11.5 N = 13 N.

Calculate the normal force acting on the box perpendicular to the incline:

F_normal = F_gravity * cos(θ).

F_normal = 49 N * cos(30°) = 42.43 N.

Finally, calculate the coefficient of friction:

μ = F_friction / F_normal.

μ = 13 N / 42.43 N = 0.47.

Therefore, the coefficient of friction of the incline is 0.47.

To learn more about coefficient of friction here

https://brainly.com/question/29281540

#SPJ4

Complete question is:

A 5kg,box is on an incline of 30°. It is accelerating down at 2.3m/s². What is the coefficient of friction of the incline? A -1... 1 ACO The initialanand of the

The coefficient of friction of the incline is 0.31.

To find the coefficient of friction of the incline, we can follow these steps:

Step 1: Find the gravitational force acting on the box:

The force due to gravity, Fg = m × g = 5 kg × 9.8 m/s^2 = 49 N.

Step 2: Find the component of Fg along the incline:

The component of Fg along the incline, Fgx = Fg × sin θ = 49 N × sin 30° = 24.5 N.

Step 3: Find the net force acting on the box:

The net force acting on the box, Fnet = m × a = 5 kg × 2.3 m/s^2 = 11.5 N.

Step 4: Find the frictional force acting on the box:

The frictional force acting on the box, Ff = Fgx - Fnet = 24.5 N - 11.5 N = 13 N.

Step 5: Find the coefficient of friction of the incline:

The coefficient of friction of the incline, µ = Ff / FN, where FN is the normal force acting on the box.

Since the box is on an incline, the normal force acting on the box is given by:

FN = Fg × cos θ = 49 N × cos 30° = 42.43 N.

Substituting the values of Ff and FN in the equation, we get:

µ = 13 N / 42.43 N = 0.31.

Therefore, the coefficient of friction of the incline is 0.31.

Learn more about coefficient of friction:

https://brainly.com/question/29281540

#SPJ11

Remaining Time: 23 minutes, 44 seconds. ✓ Question Completion Status: L₂ A Moving to another question will save this response. Question 4 0.5 points A stone of mass m is connected to a string of l

Answers

Summary:

A stone of mass m is connected to a string of length l. The relationship between the mass and length of the string affects the dynamics of the system. By considering the forces acting on the stone, we can analyze its motion.

Explanation:

When a stone of mass m is connected to a string of length l, the motion of the system depends on several factors. One crucial aspect is the tension in the string. As the stone moves, the string exerts a force on it, known as tension. This tension force is directed towards the center of the stone's circular path.

The stone's mass influences the tension in the string. If the stone's mass increases, the tension required to keep it moving in a circular path also increases. This can be understood by considering Newton's second law, which states that the force acting on an object is equal to the product of its mass and acceleration. In this case, the force is provided by the tension in the string and is directed towards the center of the circular path. Therefore, a larger mass requires a larger force, and thus a greater tension in the string.

Additionally, the length of the string also plays a role in the stone's motion. A longer string allows the stone to cover a larger circular path. As a result, the stone will take more time to complete one revolution. This relationship can be understood by considering the concept of angular velocity. Angular velocity is defined as the rate of change of angle with respect to time. For a given angular velocity, a longer string will correspond to a larger path length, requiring more time to complete a full revolution.

In conclusion, the mass and length of the string are significant factors that influence the dynamics of a stone connected to a string. The mass affects the tension in the string, while the length determines the time taken to complete a revolution. Understanding these relationships allows us to analyze and predict the motion of the system.

Learn more about Acceleration here

brainly.com/question/15295474

#SPJ11

a radar system that receives, processes, and then resends a sinusoidal carrier signal of 2.8 ghz makes use of chip-level integrated circuit components on a circuit board. electromagnetic signal velocity is approximately 7 x 10 7 m/s on both the chip and the board.

Answers

The radar system mentioned in the question is designed to receive, process, and transmit a sinusoidal carrier signal with a frequency of 2.8 GHz.

This system utilizes chip-level integrated circuit components on a circuit board.
The electromagnetic signal velocity on both the chip and the circuit board is approximately 7 x 10^7 m/s.

This means that the electromagnetic signal, which carries the information in the radar system, travels at this speed through both the chip and the board.

It is worth noting that the signal velocity mentioned here is the speed of the electromagnetic waves in the specific medium, which in this case is the chip and the board.

The velocity of the signal is determined by the properties of the medium it travels through.

Learn more about sinusoidal

https://brainly.com/question/1831238

#SPJ11

4 Mine cart Collision Two mine carts begin motionless on opposite hills of heights hị and h2 above a level valley between them. The carts begin rolling frictionlessly down the hills and collide at the bottom and couple together. mi m2 = ? hi h2 If mine cart 1 has mass mi, what must the mass of cart 2 be so that the two carts are stopped by the collision? Answer in terms of mi, hi, and h2.

Answers

To stop two mine carts, starting from rest on opposite hills of heights h₁ and h₂, and colliding at the bottom, the mass of cart 2 (m₂) must be equal to the mass of cart 1 (m₁). This means m₂ = m₁.

In this scenario, we can consider the conservation of mechanical energy to determine the relationship between the masses of the two carts. The total mechanical energy at the top of each hill is given by the sum of potential energy and kinetic energy.

For cart 1 at height h₁, the total mechanical energy is E₁ = m₁gh₁, where g is the acceleration due to gravity.

For cart 2 at height h₂, the total mechanical energy is E₂ = m₂gh₂.

When the two carts collide at the bottom, they couple together, and their combined mass becomes (m₁ + m₂). The total mechanical energy at the bottom is then E = (m₁ + m₂)gh.

Since the carts come to a stop after the collision, their total mechanical energy at the bottom is zero. Therefore, we can equate the initial energy at the top of the hills to zero: E₁ + E₂ = 0.

Substituting the expressions for E₁ and E₂, we get m₁gh₁ + m₂gh₂ = 0.

Since h₁ and h₂ are positive values, in order for the equation to hold, m₁ and m₂ must have opposite signs. However, since mass cannot be negative, the only solution is if m₂ = -m₁. In other words, the mass of cart 2 (m₂) must be equal to the mass of cart 1 (m₁) in order for the two carts to stop after colliding.

To learn more about mechanical energy here brainly.com/question/32426649

#SPJ11

In a hydrogen atom, a given electron has l=7. So just how many
values can the magnetic quantum number have?
(please type the answer, Thank you)

Answers

The magnetic quantum number (ml) can have 15 values in the given condition where a given electron in a hydrogen atom has l = 7

The magnetic quantum number (ml) determines the direction of the angular momentum vector. It indicates the orientation of the orbital in space.

Magnetic quantum number has the following values for a given electron in a hydrogen atom:

ml = - l, - l + 1, - l + 2,...., 0,....l - 2, l - 1, l

The range of magnetic quantum number (ml) is from –l to +l. As given, l = 7

Therefore,

ml = -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7

In this case, the magnetic quantum number (ml) can have 15 values.

Learn more about magnetic quantum number: https://brainly.com/question/21760208

#SPJ11

Q1. Find the magnitude and direction of the resultant force acting on the body below? 1mark

Answers

The magnitude and direction of the resultant force acting on the body in the given figure can be found using vector addition. We can add the two vectors using the parallelogram law of vector addition and then calculate the magnitude and direction of the resultant force.

Here are the steps to find the magnitude and direction of the resultant force:

Step 1: Draw the vectors .The vectors can be drawn to scale on a piece of paper using a ruler and a protractor. The given vectors in the figure are P and Q.

Step 2: Complete the parallelogram .To add the vectors using the parallelogram law, complete the parallelogram by drawing the other two sides. The completed parallelogram should look like a closed figure with two parallel sides.

Step 3: Draw the resultant vector  Draw the resultant vector, which is the diagonal of the parallelogram that starts from the tail of the first vector and ends at the head of the second vector.

Step 4: Measure the magnitude .Measure the magnitude of the resultant vector using a ruler. The magnitude of the resultant vector is the length of the diagonal of the parallelogram.

Step 5: Measure the direction  Measure the direction of the resultant vector using a protractor. The direction of the resultant vector is the angle between the resultant vector and the horizontal axis.The magnitude and direction of the resultant force acting on the body below is shown in the figure below. We can see that the magnitude of the resultant force is approximately 7.07 N, and the direction is 45° above the horizontal axis.

Therefore, the answer is:

Magnitude = 7.07 N

Direction = 45°

To know more about magnitude  , visit;

https://brainly.com/question/30337362

#SPJ11

A deep-space probe moves away from Earth with a speed of 0.36 c. An antenna on the probe requires 3 s (probe time) to rotate through 1.2 rev. How much time is required for 1.2 rev ac- cording to an observer on Earth? Answer in units of s.

Answers

Therefore, the time required for 1.2 rev according to an observer on Earth is 5.62 s (approx.).

The time required for 1.2 rev according to an observer on Earth can be found as follows:

Given values are, speed of the deep-space probe, v = 0.36 c.

The time required for 1.2 rev by the antenna on the probe, t = 3 s.

We need to find the time required for 1.2 rev according to an observer on Earth.

Let, T be the time required for 1.2 rev according to an observer on Earth.

Then, the time dilation equation is given as:

t = T/√[1 - (v/c)²]

where, c is the speed of light.

Substituting the given values, we get,

3 = T/√[1 - (0.36)²]

Squaring both sides, we get,

9 = T²/[1 - (0.36)²]

On solving for T, we get,

T = 5.62 s (approx.)

Therefore, the time required for 1.2 rev according to an observer on Earth is 5.62 s (approx.).

When an object moves with a velocity comparable to the speed of light, its mass is increased, and its length is decreased.

This phenomenon is called time dilation.

The time dilation equation relates the time interval in one frame of reference to the time interval in another frame of reference.

When an observer measures the time interval of an event that occurs in a moving reference frame, the time interval is longer than the time interval measured by the observer who is at rest in the reference frame in which the event occurs.

The ratio of the time interval measured by an observer at rest to the time interval measured by an observer in a moving reference frame is called time dilation.

It is given by

t = T/√[1 - (v/c)²]

where, t is the time interval measured by an observer in a moving reference frame, T is the time interval measured by an observer at rest, v is the velocity of the moving reference frame, and c is the speed of light.

to know more about time dilation visit:

https://brainly.com/question/30493090

#SPJ11

In positron decay, a proton in the nucleus becomes a neutron and its positive charge is carried away by the positron. A neutron, though, has a larger rest energy than a proton. How is that possible?

Answers

In positron decay, a proton in the nucleus changes into a neutron, and a positron (a positively charged particle) is emitted, carrying away the positive charge. This process conserves both charge and lepton number.

Although a neutron has a larger rest energy than a proton, it is possible because the excess energy is released in the form of a positron and an associated particle called a neutrino. This is governed by the principle of mass-energy equivalence, as described by

Einstein's famous equation E=mc². In this equation, E represents energy, m represents mass, and c represents the speed of light. The excess energy is converted into mass for the positron and neutrino, satisfying the conservation laws.

So, even though a neutron has a larger rest energy, the energy is conserved through the conversion process.

to learn more about positron

https://brainly.com/question/3181894

#SPJ11

If a curve with a radius of 95 m is properly banked for a car traveling 67 km/h, what must be the coefficient of static friction for a car not to skid when traveling at 85 km/h? Express your answer using two significant figures.

Answers

To determine the required coefficient of static friction for a car not to skid on a curve with a radius of 95 m when traveling at 85 km/h, we first need to calculate the banking angle of the curve.

Using the formula for the banking angle, we find that the angle is approximately 34 degrees. Next, we can calculate the critical speed at which the car would start to skid on the curve, using the formula for critical speed.

The critical speed is found to be approximately 77 km/h. Since the given speed of 85 km/h is greater than the critical speed, the coefficient of static friction required for the car not to skid is not applicable in this case.

To determine the banking angle of the curve, we can use the formula:

tan(θ) = [tex]v^2 / (g * r)[/tex],

where θ is the banking angle, v is the speed of the car, g is the acceleration due to gravity (approximately 9.8 m/s^2), and r is the radius of the curve. Plugging in the given values, we have:

tan(θ) = (67 km/h)^2 / (9.8 m/s^2 * 95 m).

Simplifying and solving for θ, we find θ ≈ 34 degrees.

Next, we can calculate the critical speed at which the car would start to skid on the curve. The critical speed can be determined using the formula:

v_critical = [tex]√(μ * g * r),[/tex]

where μ is the coefficient of static friction. Plugging in the given values, we have:

v_critical = [tex]√(μ * 9.8 m/s^2 * 95 m).[/tex]

Simplifying and solving for v_critical, we find v_critical ≈ 77 km/h.

Since the given speed of 85 km/h is greater than the critical speed of 77 km/h, the car will start to skid regardless of the coefficient of static friction. Therefore, the coefficient of static friction is not applicable in this case.

To learn more about, coefficient:-

brainly.com/question/18095354

#SPJ11

Question 10 S What is the mass of a 12 cm3 tank of fresh water (density 1.00 g/cm3)?

Answers

The mass of the 12 cm^3 tank of fresh water is 12 grams.

To calculate the mass of the fresh water in the tank, we can use the formula:

Mass = Volume * Density

According to the question:

Volume of the tank (V) = 12 cm^3

Density of water (ρ) = 1.00 g/cm^3

Substituting the values into the formula, we have:

Mass = Volume * Density

Mass = 12 cm^3 * 1.00 g/cm^3

To solve this equation, we need to make sure the units cancel out appropriately. By multiplying the volume (cm³) by the density (g/cm³), the cm³ unit cancels out, leaving us with the unit of mass (grams):

Calculating the product, we get:

Mass = 12 g

Therefore, the mass of the 12 cm^3 tank of fresh water is 12 grams.

Learn more about mass https://brainly.com/question/86444

#SPJ11

Two forces acting on an object, F1=30 N, F2=40 N. The angle between is 90°. To make the object move in uniform linear motion in the direction of F1, a force F3 must be applied. Find the magnitude"

Answers

The magnitude of the force F3 required to make the object move in uniform linear motion in the direction of F1 is 50 N, given that F1 = 30 N and F2 = 40 N with a 90° angle between them.

To find the magnitude of the force F3 required to make the object move in uniform linear motion in the direction of F1, we can use vector addition. Since the angle between F1 and F2 is 90°, we can treat them as perpendicular components.

We can represent F1 and F2 as vectors in a coordinate system, where F1 acts along the x-axis and F2 acts along the y-axis. The force F3 will also act along the x-axis to achieve uniform linear motion in the direction of F1.

By using the Pythagorean theorem, we can find the magnitude of F3:

F3 = √(F1² + F2²).

Substituting the given values:

F1 = 30 N,

F2 = 40 N,

we can calculate the magnitude of F3:

F3 = √(30² + 40²).

F3 = √(900 + 1600).

F3 = √2500.

F3 = 50 N.

Therefore, the magnitude of the force F3 required to make the object move in uniform linear motion in the direction of F1 is 50 N.

To learn more about Pythagorean theorem, Visit:

https://brainly.com/question/343682

#SPJ11

Question 7 1 pts Mustang Sally just finished restoring her 1965 Ford Mustang car. To save money, she did not get a new battery. When she tries to start the car, she discovers that the battery is dead (an insufficient or zero voltage difference across the battery terminals) and so she will need a jump start. Here is how she accomplishes the jump start: 1. She connects a red jumper cable (wire) from the positive terminal of the dead battery to the positive terminal of a fully functional new battery. 2. She connects one end of a black jumper cable 2. to the negative terminal of the new battery. 3. She then connects the other end of the black jumper cable to the negative terminal of the dead battery. 4. The new battery (now in a parallel with the dead battery) is now part of the circuit and the car can be jump started. The car starter motor is effectively drawing current from the new battery. There is a 12 potential difference between the positive and negative ends of the jumper cables, which are a short distance apart. If you wanted to move an electron from the positive to the negative terminal of the battery, how many Joules of work would you need to do on the electron? Recall that e = 1.60 x 10-19 C. Answer to 3 significant figures in scientific notation, where 2.457 x 10-12 would be written as 2.46E-12, much like your calculator would show.

Answers

To calculate the work required to move an electron from the positive terminal to the negative terminal of the battery, we can use the formula:

Work = Charge * Voltage

Given:

Charge of the electron (e) = 1.60 x 10^-19 C

Potential difference (Voltage) = 12 V

Substituting these values into the formula, we have:

Work = (1.60 x 10^-19 C) * (12 V)

    = 1.92 x 10^-18 J

Therefore, the work required to move an electron from the positive terminal to the negative terminal of the battery is approximately 1.92 x 10^-18 Joules.

Note: The positive work value indicates that energy needs to be supplied to move the electron against the electric field created by the battery. In this case, the potential difference of 12 V represents the amount of work required to move the electron across the terminals of the battery.

To know more about an electron, please visit

https://brainly.com/question/12001116

#SPJ11

) The following data describes a rolling bowling ball.
mass 6 kg, diameter 23 cm, period 0.33 s, acceleration 0 m/s/s, price $17.99
What is its linear speed? 7.59 m/s 2.64 m/s 0.46 m/s 2.89 m/s 2.19 m/s 2.00 m/s

Answers

To calculate the linear speed of the given rolling bowling ball, we'll first need to find its circumference using the diameter of the ball as follows:

Circumference,

C = πd

= π × 23 cm

= 72.24 cm

Now, we know that the period of a rolling object is the time it takes to make one complete revolution. Hence, the frequency, f (in revolutions per second), of the rolling bowling ball is given by:

f = 1 / T

where,

T is the period of the ball, which is 0.33 s.

Substituting the given values in the above equation, we get:

f = 1 / 0.33 s

= 3.03 revolutions per second

We can now find the linear speed, v, of the rolling bowling ball as follows:

v = C × f

where,

C is the circumference of the ball,

which we found to be 72.24 cm,

f is the frequency of the ball, which we found to be 3.03 revolutions per second.

Substituting the values, we get:

v = 72.24 cm × 3.03 revolutions per second

= 218.84 cm/s

To convert this to meters per second, we divide by 100, since there are 100 centimeters in a meter:

v = 218.84 cm/s ÷ 100

= 2.19 m/s

Therefore, the linear speed of the given rolling bowling ball is 2.19 m/s. Hence, the correct option is 2.19 m/s.

To know more about speed  , visit;

https://brainly.com/question/13943409

#SPJ11

if the power rating of a
resistor is 10W and the value of the resistor is 40 ohms what is
the maximum current it can draw?

Answers

The maximum current that the resistor can draw is 0.5 A.

The power rating of a resistor is given to be 10W and the value of the resistor is 40 ohms.

Ohm's Law states that the current through a conductor between two points is directly proportional to the voltage across the two points.

Mathematically it can be expressed as;

V = IR

Here,

V is the voltage across the resistor,

I is the current through the resistor,  

R is the resistance of the resistor.

The Power formula states that the power P dissipated or absorbed by a resistor is given by;

P = VI

We are given that the power rating of the resistor is 10W, and the value of the resistor is 40 ohms.

Substituting the values given in the equation of power;

P = VI  

10W = V x I

At the same time, we can substitute the value of resistance in the Ohm's law equation;

V = IR

V = 40 ohms x I

On substituting this value of V in the power equation, we get;

10W = (40 ohms x I) x I

10 = 40I²  

I² = 1/4

I = 0.5 A

Therefore, the maximum current that the resistor can draw is 0.5 A.

Learn more about the current:

brainly.com/question/14626373

#SPJ11

QUESTION 15 2 A turntable has a moment of inertia of 0.89 kg m and rotates freely on a frictionless support at 37 rev/min. A 0.40-kg ball of putty is dropped vertically onto the turntable and hits a point 0.29 m from the center, changing its rate at 6 rev/min. By what factor does the kinetic energy of the system change after the putty is dropped onto the turntable? Give your answer to 2 decimal places

Answers

The moment of inertia of the turntable is 0.89 kg m. The turntable rotates freely on a frictionless support at 37 rev/min. The distance from the center where the 0.40-kg putty is dropped is 0.29 m. The rate of rotation of the turntable reduces to 6 rev/min after the putty is dropped.

We need to find the factor by which the kinetic energy of the system changes. Firstly, let us find the initial kinetic energy of the turntable. Given, moment of inertia of turntable, I = 0.89 kg mInitial angular speed, ωi = 37 rev/minInitial angular speed, ωi = 37 × 2π / 60 = 3.88 rad/sInitial kinetic energy of turntable, KEi = (1 / 2) I ωi² = (1 / 2) × 0.89 × (3.88)² ≈ 6.54 JoulesLet us now find the kinetic energy of the turntable after the putty has dropped. Let the angular velocity of the turntable after the putty has dropped be ωf.

Now, since angular momentum is conserved, we have the equation,I ωi = (I + mr²) ωfwhere m is the mass of the putty and r is the distance between the center of turntable and the point where the putty is dropped. Substituting values, we have0.89 × 3.88 = (0.89 + 0.40) r² ωf => r² ωf = 1.00Solving for ωf, we getωf = 1.00 / r²Substituting r = 0.29 m, we haveωf ≈ 12.82 rad/sLet us now find the final kinetic energy of the system.

To know more about inertia visit:

https://brainly.com/question/3268780

#SPJ11

A rectangular loop of wire is placed next to a straight wire, as
shown in the (Figure 1). There is a current of III = 4.0 AA in both
wires.
Determine the magnitude of the net force on the loop.

Answers

The magnetic field generated by the straight wire at the position of the loop is $\mathbf{B}=\frac{\mu_0 I}{2\pi r}\hat{\boldsymbol{\phi}}$,

where $\mu_0$ is the permeability of free space, $I$ is the current in the straight wire, $r$ is the distance between the straight wire and the center of the loop, and

$\hat{\boldsymbol{\phi}}$ is the unit vector in the azimuthal direction.

The current in the loop will experience a torque due to the interaction with the magnetic field, given by $\boldsymbol{\tau}=\mathbf{m}\times\mathbf{B}$, where $\mathbf{m}$ is the magnetic moment of the loop.

The magnetic moment of the loop is $\mathbf{m}=I\mathbf{A}$, where $\mathbf{A}$ is the area vector of the loop. For a rectangular loop, the area vector is $\mathbf{A}=ab\hat{\mathbf{n}}$, where $a$ and $b$ are the dimensions of the loop and $\hat{\mathbf{n}}$ is the unit vector perpendicular to the loop.

Therefore, the magnetic moment of the loop is $\mathbf{m}=Iab\hat{\mathbf{n}}$.

The torque on the loop is therefore $\boldsymbol{\tau}=\mathbf{m}\times\mathbf{B}=Iab\hat{\mathbf{n}}\times\frac{\mu_0 I}{2\pi r}\hat{\boldsymbol{\phi}}=-\frac{\mu_0 I^2ab}{2\pi r}\hat{\mathbf{z}}$, where $\hat{\mathbf{z}}$ is the unit vector in the $z$ direction.

This torque tends to align the plane of the loop perpendicular to the plane of the straight wire.The force on the loop is given by $\mathbf{F}=\nabla(\mathbf{m}\cdot\mathbf{B})$.

Since the magnetic moment of the loop is parallel to the plane of the loop and the magnetic field is perpendicular to the plane of the loop, the force on the loop is zero. Therefore, the net force on the loop is zero.

Learn more about magnetic field from the given link

https://brainly.com/question/14411049

#SPJ11

A piano string having a mass per unit length equal to 4.50 ✕
10−3 kg/m is under a tension of 1,500 N. Find the speed
with which a wave travels on this string.
m/s

Answers

The speed with which a wave travels on a piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m under a tension of 1,500 N is 75 m/s so the speed with which a wave travels on a piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m under a tension of 1,500 N is 75 m/s.

A piano is a stringed musical instrument in which the strings are struck by hammers, causing them to vibrate and create sound. The piano has strings that are tightly stretched across a frame. When a key is pressed on the piano, a hammer strikes a string, causing it to vibrate and produce a sound.

A wave is a disturbance that travels through space and matter, transferring energy from one point to another. Waves can take many forms, including sound waves, light waves, and water waves.

The formula to calculate the speed of a wave on a string is: v = √(T/μ)where v = speed of wave T = tension in newtons (N)μ = mass per unit length (kg/m) of the string

We have given that: Mass per unit length of the string, μ = 4.50 ✕ 10−3 kg/m Tension in the string, T = 1,500 N

Now, substituting these values in the above formula, we get: v = √(1500 N / 4.50 ✕ 10−3 kg/m)On solving the above equation, we get: v = 75 m/s

Therefore, the speed with which a wave travels on a piano string having a mass per unit length equal to 4.50 ✕ 10−3 kg/m under a tension of 1,500 N is 75 m/s.

Learn more about speed at

https://brainly.com/question/17661499

#SPJ11

Question 4 S What would the inside pressure become if an aerosol can with an initial pressure of 4.3 atm were heated in a fire from room temperature (20°C) to 600°C? Provide the answer in 2 decimal places.

Answers

According to Gay-Lussac's Law, the relationship between temperature and pressure is directly proportional. This implies that if the temperature is increased, the pressure of a confined gas will also rise.

The Gay-Lussac's Law is stated as follows:

P₁/T₁ = P₂/T₂ where,

P = pressure,

T = temperature

Now we can calculate the inside pressure become if an aerosol can with an initial pressure of 4.3 atm were heated in a fire from room temperature (20°C) to 600°C as follows:

Given data: P₁ = 4.3 atm (initial pressure), T₁ = 20°C (room temperature), T₂ = 600°C (heated temperature)Therefore,

P₁/T₁ = P₂/T₂4.3/ (20+273)

= P₂/ (600+273)4.3/293

= P₂/8731.9

= P₂P₂ = 1.9 am

therefore, the inside pressure would become 1.9 atm if an aerosol can with an initial pressure of 4.3 atm were heated in a fire from room temperature (20°C) to 600°C.

To know more about Gay-Lussac's Law visit:

https://brainly.com/question/30758452

#SPJ11

6. [-12 Points] DETAILS SERPSE10 26.2.OP.008. MY NOTES ASK YOUR TEACHER The heating coil in a coffee maker is made of nichrome wire with a radius of 0.275 mm. If the coil draws a current of 9.20 A when there is a 120 V potential difference across its ends, find the following. (Take the resistivity of nichrome to be 1.50 x 10-60 m.) (a) resistance of the coil (in) (b) length of wire used to wind the coil (in m) m 7. (-/1 Points) DETAILS SERPSE 10 26.3.OP.010.MI. MY NOTES ASK YOUR TEACHER If the magnitude of the drift velocity of free electrons in a copper wire is 6.44 x 10 m/s, what is the electric field in the conductor? V/m 8. [-/1 Points] DETAILS SERPSE 10 26.3.P.015. MY NOTES ASK YOUR TEACHER A current density of 9.00 x 10-43A/m? exists in the atmosphere at a location where the electric field is 103 V/m. Calculate the electrical conductivity of the Earth's atmosphere in this region. (m)- 9. (-/1 Points] DETAILS SERPSE 10 26.4.0P.011. MY NOTES ASK YOUR TEACHER A physics student is studying the effect of temperature on the resistance of a current carrying wire. She applies a voltage to a iron wire at a temperature of 53.0°C and notes that it produces a current of 1.30 A. If she then applies the same voltage to the same wire at -88.0°c, what current should she expect (in A)? The temperature coefficient of resistivity for iron is 5.00 x 10-(c)?. (Assume that the reference temperature is 20°C.)

Answers

(a) The resistance of the coil is approximately 13.04 ohms.

(b) The length of wire used to wind the coil is approximately 0.0582 meters.

(a) To find the resistance of the coil, we can use Ohm's Law, which states that resistance is equal to the voltage across the coil divided by the current flowing through it. The formula for resistance is R = V/I.

Given that the potential difference across the coil is 120 V and the current flowing through it is 9.20 A, we can substitute these values into the formula to find the resistance:

R = 120 V / 9.20 A

R ≈ 13.04 Ω

Therefore, the resistance of the coil is approximately 13.04 ohms.

(b) To determine the length of wire used to wind the coil, we can use the formula for the resistance of a wire:

R = (ρ * L) / A

Where R is the resistance, ρ is the resistivity of the wire material, L is the length of the wire, and A is the cross-sectional area of the wire.

We are given the radius of the nichrome wire, which we can use to calculate the cross-sectional area:

A = π * [tex]r^2[/tex]

A = π * (0.275 x[tex]10^-^3 m)^2[/tex]

Next, rearranging the resistance formula, we can solve for the length of wire:

L = (R * A) / ρ

L = (13.04 Ω * π * (0.275 x [tex]10^-^3 m)^2[/tex] / (1.50 x [tex]10^-^6[/tex] Ω*m)

L ≈ 0.0582 m

Therefore, the length of wire used to wind the coil is approximately 0.0582 meters.

For more such information on: resistance

https://brainly.com/question/30901006

#SPJ8

The maximum speed with which a driver can take a banked curve is 35m / s and the coefficient of friction between the racetrack surface and the tires of the racecar is mu*s = 0.7 and the radius of the turn is R =; 100, 0m Find the acceleration of the car and the angle teta
please i need the answer as fast as possible and i will rate
thanks

Answers

Acceleration refers to the rate of change of velocity over time. It measures how quickly an object's velocity is changing or how rapidly its motion is accelerating.

To find the acceleration of the car and the angle θ (theta) for a banked curve, we can use the following equations:

1. Centripetal Force (Fc):

The centripetal force is the force required to keep an object moving in a curved path. For a banked curve, the centripetal force is provided by the horizontal component of the normal force acting on the car.

Fc = m * ac

Where:

Fc is the centripetal force

m is the mass of the car

ac is the centripetal acceleration

2. Centripetal Acceleration (ac):

The Centripetal acceleration is the acceleration toward the center of the curve. It is related to the speed of the car (v) and the radius of the turn (R) by the equation:

ac = v^2 / R

3. Normal Force (N):

The normal force is the perpendicular force exerted by a surface to support an object. For a banked curve, the normal force is split into two components: the vertical component (Nv) and the horizontal component (Nh).

Nv = m * g

Nh = m * ac * sin(θ)

Where:

Nv is the vertical component of the normal force

g is the acceleration due to gravity (approximately 9.8 m/s^2)

Nh is the horizontal component of the normal force

θ is the angle of the banked curve

4. Frictional Force (Ff):

The frictional force is responsible for providing the necessary centripetal force. It is given by:

Ff = μs * Nv

Where:

μs is the coefficient of friction between the tires and the racetrack surface

Now, let's substitute these equations into each other to find the values of acceleration (ac) and angle (θ):

a. Equate the centripetal force and the horizontal component of the normal force:

m * ac = m * ac * sin(θ)

b. Simplify and cancel out the mass (m):

ac = ac * sin(θ)

c. Divide both sides by ac:

1 = sin(θ)

d. Solve for θ:

θ = arcsin(1)

Since sin(θ) can take on values between -1 and 1, the only angle that satisfies this equation is θ = 90 degrees. Therefore, the acceleration of the car is given by ac = v^2 / R, and the angle of the banked curve is θ = 90 degrees.

To know more about Acceleration visit:

https://brainly.com/question/30660316

#SPJ11

4. Which graph correctly shows the variation with time of the acceleration a of the particle? W M м н

Answers

The graph that correctly shows the variation with time of the acceleration a of the particle is graph W. The acceleration-time graph for a particle is shown below.

A linear graph shows a constant acceleration.What are the terms that need to be included in the answer? To make it a better response, the details on these terms are required.What is acceleration?Acceleration is the rate of change of an object's velocity with respect to time. As a result, it's a vector quantity that has both a magnitude and a direction. When the magnitude of acceleration changes, the speed of an object changes, and when the direction of acceleration changes, the direction of the object's velocity changes as well.

Therefore, it is the rate of change of velocity with time.What is a velocity-time graph?A velocity-time graph depicts how velocity varies over time. It's possible that the object is accelerating or decelerating. It could be moving at a constant velocity, meaning that the velocity-time graph would be a horizontal line with a constant value. The slope of a velocity-time graph represents the acceleration of the object.What is a linear graph?A linear graph is a graphical representation of a linear equation. A line drawn on a two-dimensional plane represents this type of graph. The x and y-axes are both linear, which means that they are both straight lines. In a linear equation, there are no variables in denominators or under a root sign. They have a slope and an intercept.

To know more about graphs visit:

https://brainly.com/question/1080092

#SPJ11

A merry-go-round has a mass of 1550 kg and a radius of 7.70 mm.How much net work is required to accelerate it from rest to a rotation rate of 1.00 revolution per 8.60 ss ? Assume it is a solid cylinder.

Answers

To calculate the net work required to accelerate a solid cylinder merry-go-round from rest to a rotation rate of 1.00 revolution per 8.60 s, we can follow several steps.

First, we need to determine the moment of inertia of the merry-go-round. Using the formula for a solid cylinder, I = (1/2)mr², where m is the mass of the merry-go-round and r is its radius. Given that the mass is 1550 kg and the radius is 0.0077 m, we can substitute these values to find I = 0.045 kgm².

Next, we can calculate the initial kinetic energy of the merry-go-round. Since it is initially at rest, the initial angular velocity, w₁, is zero. Therefore, the initial kinetic energy, KE₁, is also zero.

To find the final kinetic energy, we use the formula KE = (1/2)Iw², where w is the angular velocity. Given that the final angular velocity, w₂, is 1 revolution per 8.60 s, which is equivalent to 1/8.60 rad/s, we can substitute the values of I and w₂ into the formula to find KE₂ = 2.121 × 10⁻⁴ J (rounded to three decimal places).

Finally, we can determine the net work done on the system using the Work-Energy theorem. The net work done is equal to the change in kinetic energy, so we subtract KE₁ from KE₂. Since KE₁ is zero, the net work, W, is equal to KE₂. Therefore, W = 2.121 × 10⁻⁴ J.

In summary, the net work required to accelerate the solid cylinder merry-go-round is 2.121 × 10⁻⁴ J (rounded to three decimal places).

To Learn more about revolution, Click this!

brainly.com/question/31473219

#SPJ11

The driver of a car wishes to pass a truck that is traveling at a constant speed of (about ). Initially, the car is also traveling at and its front bumper is 24. 0 m behind the truck’s rear bumper. The car accelerates at a constant then pulls back into the truck’s lane when the rear of the car is 26. 0 m ahead of the front of the truck. The car is 4. 5 m long and the truck is 21. 0 m

Answers

The car takes a certain amount of time to pass the truck and travels a certain distance during the maneuver.

In the given scenario, the car starts 24.0 m behind the truck and accelerates at a constant rate. The car then moves ahead of the truck until its rear is 26.0 m ahead of the truck's front. The lengths of the car and the truck are also provided. To determine the time it takes for the car to pass the truck, we can use the relative positions and velocities of the car and the truck. By calculating the time it takes for the car's rear to reach a position 26.0 m ahead of the truck's front, we can find the duration of the maneuver. Additionally, by subtracting the initial and final positions, taking into account the lengths of the car and the truck, we can determine the distance traveled by the car during the passing maneuver.

To learn more about distance, Click here: brainly.com/question/13034462?

#SPJ11

Question 7 (5 marks) A coil of 500 turns, cach turn is circular of radius 22 mm, is kept in a constant magnetic field of 20 T so that the plane area of the coil is perpendicular to the magnetic field lines. In 0,66 sec the coil is pulled out of the field. The total resistance of the coil is 50 Ohm. Find the average induced current as the coil is pulled out of the field.

Answers

To calculate the average induced current as the coil is pulled out of the field, we can use Faraday's law of electromagnetic induction, which states that the induced electromotive force (emf) is equal to the rate of change of magnetic flux.

The magnetic flux (Φ) through a coil can be calculated by multiplying the magnetic field strength (B) by the area (A) of the coil and the cosine of the angle (θ) between the magnetic field lines and the plane of the coil:

Φ = B * A * cos(θ)

Given that the magnetic field strength (B) is 20 T, the area (A) of each turn is π * (0.022 m)^2, and the angle (θ) between the magnetic field lines and the plane of the coil is 90 degrees (since it is perpendicular), we can calculate the magnetic flux through one turn of the coil:

Φ = 20 T * π * (0.022 m)^2 * cos(90°) = 0.03094 Wb

The rate of change of magnetic flux (dΦ/dt) is equal to the change in flux divided by the time taken (0.66 s):

dΦ/dt = (0.03094 Wb - 0 Wb) / 0.66 s = 0.04685 Wb/s

The induced electromotive force (emf) can be calculated by multiplying the rate of change of magnetic flux by the number of turns in the coil (N):

emf = N * dΦ/dt = 500 * 0.04685 V = 23.43 V

Finally, we can calculate the average induced current (I) using Ohm's law (V = I * R), where R is the total resistance of the coil (50 Ω):

I = emf / R = 23.43 V / 50 Ω ≈ 0.469 A

Therefore, the average induced current as the coil is pulled out of the field is approximately 0.469 A.

To know more about induced current, please visit

https://brainly.com/question/31686728

#SPJ11

What is the volume occupied by 26.0 g of argon gas at a pressure of 1.11 atm and a temperature of 339 K ? Express your answer with the appropriate units. НА ? V = Value Units Submit Request Answer Part B Compare the volume of 26.0 g of helium to 26.0 g of argon gas (under identical conditions). The volume would be greater for helium gas. O The volume would be lower for helium gas. The volume would be the same for helium gas

Answers

The volume would be the same for helium gas.

Given the mass of argon gas, pressure, and temperature, we need to find out the volume occupied by the gas at these conditions.

We can use the Ideal Gas Law to solve the problem which is PV= nRT

The ideal gas law is expressed mathematically as PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature.1 atm = 101.3 kPa

1 mole of gas at STP occupies 22.4 L of volume

At STP, 1 mole of gas has a volume of 22.4 L and contains 6.022 × 1023 particles.

Hence, the number of moles of argon gas can be calculated as

n = (26.0 g) / (39.95 g/mol) = 0.6514 mol

Now, we can substitute the given values into the Ideal Gas Law as

PV = nRTV = (nRT)/P

Substituting the given values of pressure, temperature, and the number of moles into the above expression,

we get

V = (0.6514 mol × 0.08206 L atm mol-1 K-1 × 339 K) / 1.11 atm

V = 16.0 L (rounded to 3 significant figures)

Therefore, the volume occupied by 26.0 g of argon gas at a pressure of 1.11 atm and a temperature of 339 K is 16.0 L

Part B: Compare the volume of 26.0 g of helium to 26.0 g of argon gas (under identical conditions).

Under identical conditions of pressure, volume, and temperature, the number of particles (atoms or molecules) of the gas present is the same for both helium and argon gas.

So, we can use the Ideal Gas Law to compare their volumes.

V = nRT/P

For both gases, the value of nRT/P would be the same, and hence their volumes would be equal.

Therefore, the volume would be the same for helium gas.

Know more about volume:

https://brainly.com/question/28058531

#SPJ4

A mass attached to the end of a spring is oscillating with a period of 2.25s on a horontal Inctionless surface. The mass was released from restat from the position 0.0460 m (a) Determine the location of the mass att - 5.515 m (b) Determine if the mass is moving in the positive or negative x direction at t-5515. O positive x direction O negative x direction

Answers

a) The location of the mass at -5.515 m is not provided.

(b) The direction of motion at t = -5.515 s cannot be determined without additional information.

a)The location of the mass at -5.515 m is not provided in the given information. Therefore, it is not possible to determine the position of the mass at that specific point.

(b) To determine the direction of motion at t = -5.515 s, we need additional information. The given data only includes the period of oscillation and the initial position of the mass. However, information about the velocity or the phase of the oscillation is required to determine the direction of motion at a specific time.

In an oscillatory motion, the mass attached to a spring moves back and forth around its equilibrium position. The direction of motion depends on the phase of the oscillation at a particular time. Without knowing the phase or velocity of the mass at t = -5.515 s, we cannot determine whether it is moving in the positive or negative x direction.

To accurately determine the direction of motion at a specific time, additional information such as the amplitude, phase, or initial velocity would be needed.

To learn more about mass click here

brainly.com/question/86444
#SPJ11

Four identical charges (+2μC each ) are brought from infinity and fixed to a straight line. The charges are located 0.40 m apart. Determine the electric potential energy of this group.

Answers

The electric potential energy of the four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m is 1.44 × 10^-5 J.

To calculate the electric potential energy of a group of charges, the formula is given as U = k * q1 * q2 / r where, U is the electric potential energy of the group k is Coulomb's constant q1 and q2 are the charges r is the distance between the charges.

Given that there are four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m. We have to calculate the electric potential energy of this group of charges.

The electric potential energy formula becomes:

U = k * q1 * q2 / r = (9 × 10^9 Nm^2/C^2) × (2 × 10^-6 C)^2 × 4 / 0.40 m

U = 1.44 × 10^-5 J.

Therefore, the electric potential energy of the four identical charges (+2μC each) fixed to a straight line with a distance of 0.40 m is 1.44 × 10^-5 J.

Learn more about electric potential energy:

https://brainly.com/question/33229290

#SPJ11

When considering a real-life situation of a travelling water wave, which of the following properties decreases as the wave travels in one medium? a) wavelength b) frequency c) period d) speed e) amplitude D

Answers

When considering a real-life situation of a travelling water wave, wavelength decreases as the wave travels in one medium. The correct answer is option a).


A wave is a pattern that moves through a medium, transporting energy without transporting matter. A medium can be any material through which the wave can move, such as air, water, glass, or a vacuum. A travelling wave is one that moves from one place to another, carrying energy with it.

A travelling water wave is an example of a mechanical wave, which means it requires a medium to travel. The speed of a wave depends on the properties of the medium through which it is traveling, including density, elasticity, and temperature. The wavelength of a wave is the distance between two adjacent points that are in phase, while the amplitude is the height of the wave.

When a water wave travels in one medium, its wavelength decreases while its frequency remains constant. This is because the speed of the wave is determined by the properties of the medium, and as the wave moves into a region with different properties, its speed changes. Since the frequency of the wave is determined by the source that created it, it remains constant even as the wavelength changes.

Therefore, the correct answer to the given question is that the wavelength decreases as the wave travels in one medium.

Learn more about wavelength here:

https://brainly.com/question/15191027

#SPJ11

Other Questions
Which of the following borrower characteristics are generally considered less risky by the bank/credit union when the borrower applies for a mortgage? Choose all that are correct.Low DTI (debt-to-income ratio)Low credit scoreLow LTV (loan-to-value) ratio Two equal volumes of liquid are added to a chamber, separated by a semipermeable membrane. Water molecules (and only water molecules) can pass easily through the membrane. On one side (Side A) the liquid is pure water. On the other (Side B) the solution contains a high concentration of salt (NaCl) in water. After two hours, you observe that the water level on Side B is higher than on Side A. Which of the following best explains this result? O Water molecules repel each other, and diffuse away from areas of high concentration of water O Solute particles bound to water molecules, move away from a membrane impermeable to the solute, pulling water molecules across the membrane permeable to water. O Water molecules attract each other, and form bonds between water molecules that are stronger than those between water and the solute particles, drawing water toward areas of high solute concentration where water-solute bonds break and water-water bonds form. O Water molecules form stronger bonds with solute particles, than with neighboring water molecules, pulling water molecules across the membrane toward high concentrations of solute particles. Use the following probability distribution. Scenario Probability Stock X Stock Y Boom .3 4% 20% Normal .5 8% 12% Recession .2 10% -5%a) Find the expected rate of return on Stock X. b) Find the expected rate of return on Stock Y. c) Find the standard deviation of Stock X.d) Find the standard deviation of Stock Y. e) Find the covariance between Stock X and Stock Y. Suppose that you construct a two-stock portfolio as follows: Investment Stock X $1,000 Stock Y $3,000f) Find the portfolios expected rate of return. g) Find the portfolios standard deviation. h) Compare standard deviations of Stock X, Stock Y, and your portfolio.Explain your portfolios risk in terms of diversification. LOL, a courier company, entered into a 5-year long contract with Garys Auto Cleaning Co. ("Garys") to clean its trucks. The contract contains the following terms: Garys must clean LOLs trucks at Garys truck cleaning facility in Toronto every weekday morning In the event Garys is unable to perform the cleaning services, Garys must give LOL at least 24 hours notice For the first 2 years, the business relationship between LOL and Garys went well. LOL paid Garys approximately $220,000 / year, and Garys incurred costs of approximately $100,000 / year.On January 21 of the third year of the contract, there was a bad snow storm in Toronto and there was a power outage at Garys truck cleaning facility. When Garys workers arrived at the site that morning to clean LOLs trucks, the water pipes and pump did not work. As a result, they could not clean LOLs trucks. Garys workers called LOL to let them know that they could not clean their trucks that day. LOLs manager tried to call Gary, Garys general manager, to discuss how they could address the problem. Gary was unreachable and was not returning any calls or emails because he was out of the country. LOL did not want to deliver packages in dirty trucks, so LOL entered into a contract with another company to clean its trucks.The water pipes and pump at Garys were fixed 3 days later but by then LOL was using the new company to clean its trucks and was no longer interested in using Garys services. When Gary returned he was told by LOL that it decided to terminate (discharge) its contract with Garys effective as of January 21. LOL had been Garys most important client for the past 10 years and its main source of income. Garys business is on the brink of insolvency. Garys sues LOL for breach of contract claiming that LOL had no right to discharge the contract.Was LOL legally entitled to discharge (terminate) the contract with Garys as of January 21? Explain and support your answer by identifying the applicable law and applying it to the facts.PLEASE ANSWER FROM A LEGAL PERSPECTIVE In cases such as the one reported by Fox et al. (2008), what three general basic observations related to baseline behaviour must be identified as part of a functional analysis prior to designing the actual details of a behaviour modification program? You may search online for the concept of a functional analysis in behavioural modification, if you are not familiar with it. . Specifically, what were these three observations in the case study reported by Fox et al.? How did the design of the interventions take them into consideration? Documents we looked at about King Charles' execution tend to: (choose all that apply) A.Argue for the righteousness of the monarchy B.Humanize him C.Comment on his physical appearance D.Emphasize his privilege and arrogance During the last year the value of your house decreased by 20% If the value of your house is $205,000 today, what was the value of your house last year? Round your answer to the nearest cent, if necessary Use the method of undetermined coefficients to solve the second order ODE y'4y12y=10e^2x ,y(0)=3,y (0)=14 Batman is back! This time he has launched his grappling claw so that it has lodged against the lip of the roof above him. Batman imagines the force diagram for the claw: mg is downward normal force is to the right static friction is downward tension from the rope is diagonally up and to the left; the angle between the tension force and the vertical direction is 51 degrees The coefficient of static friction is 0.80 and the mass of the claw is 2.0 kg. Find the tension in the rope, in Newtons, so that the claw is in equilbrium (that is, the net force is zero in both the x and y directions). A block with a mass of 47.5 kg is pushed with a horizontal force of 150 N. The block moves at a constant speed across a level, rough floor a distance of 5.50 m. (a) What is the work done (in J) by the 150 N force? ] (b) What is the coefficient of kinetic friction between the block and the floor? 6. Heilman, Manzi and Braun (2008, p. 90) found that:"Despite womens advancement in the workplace, their representation in male-dominated fields and occupations remains distressingly low. What accounts for the scarcity of women in traditionally male roles? It is not a consequence of differential experience, education or skills. Rather, we posit that womens participation in the workplace is hindered by gender bias in evaluation."What is the name of this perceptual bias and how can its effects be reduced? S Points Order: Nexium (esomeprazole magnesium) 20 mg IVPB daily, infuse in 30 ml DSW over 30 minutes. The reconstitution directions are to add 10 mL NS to prescribed dose. At what rate will you set the IV pump in ml/h? Question 11 2 pts Based on the baroreceptor reflex, state how the following would respond due to a decrease in blood pressure: [ Select] Stretch of Baroreceptors [ Select] Firing of Action potentials [ Select] Vasomotor Center [ Select] Cardio Acceleratory Center [ Select] Blood vessel diameter [ Select] Heart Rate [ Select] Stroke Volume[ Select]Cardiac Output [ Select] Blood Pressure [ Select] : increase/decrease If a lender expects an inflation rate of 5 percent and asks for a nominal interest rate of 10 percent, then the lender expects to earn a real interest rate of GEOMETRIC OPTICS PRACTICE PROBLEM SET 1: MIRROR/LENS EQUATION a 1. SPHERICAL MIRROR. A spherical convex mirror has a radius of 30 cm. An object with a height of 0.30 m is placed 20 cm from the mirror. Note that in +- sign conventions, f is negative (-) if the mirror is a convex mirror. a. Calculate the image distance. b. Calculate the image height. c. Calculate the magnification. d. Summarize the properties of the image formed in terms of its LOST (location, orientation, size, and type). e. Draw the set-up using graphical methods (ray diagramming). Apply scale drawing. Make sure that your illustration matches well with what you have calculated and presented in ad. a a 2. THIN LENSES. A 4-cm object is placed 8 cm away from a converging lens with a focal length of 6 cm. a. Calculate the image distance. b. Calculate the image height. c. Calculate the magnification. d. Summarize the properties of the image formed in terms of its LOST location, orientation, size, and type). e. Draw the set-up using graphical methods (ray diagramming). Apply scale drawing. Make sure that your illustration matches well with what wou have calculated and presented in a d. according to levy, which of these factor(s) contributed to a significant increase in the urban population of the us over the course of the 19th century (1800s)? Ki Tae uses 54 meters of fencing to make a 6-sided outdoor dog pen. Two of the sides of the dog pen are each 15 meters long. The remaining 4 sides each have the same length. Write the converse, inverse, and contrapositive of the following statements. Which statements are equivalent? a. If you are eighteen, then you can't turn eighteen again. b. If you have health insuranc Assume that T is a linear transformation. Find the standard matrix of T T R->R^(4). T (e)=(5, 1, 5, 1), and T () =(-9, 3, 0, 0), where e=(1,0) and e = (0,1) A= (Type an integer or decimal for each matrix element.) true or false in the 1860 's the first transcontinental railroad was built in the united states Steam Workshop Downloader