Please show how to solve step by step with instructions and what formulas in Excel to use. Thank you.
Powder Puffs sells pom-poms to schools internationally. It has an offer from a private
buyer and the owners would like to know the value of each share of common equity so
they don't undervalue their shares. The cost of capital for this firm is 6.65% and there are
60,797 common shares outstanding. The firm does not have any preferred equity, however, it
has outstanding debt with a market value of $3,833,340. Use the DCF valuation model based
on the expected FCFs shown below; year 1 represents one year from today and so on. The
company expects to grow at a 2.2% rate after Year 5. Rounding to the nearest penny, what is the
value of each share of common stock?

Answers

Answer 1

The value of each share of common stock, rounded to the nearest penny, is approximately $66.61 according to the given information and values in the question.

step by step:

To calculate the value of each share of common stock using the Discounted Cash Flow (DCF) valuation model, we need to discount the expected future cash flows to their present value and subtract the market value of the outstanding debt. The formula for calculating the value of each share of common stock is:

Value per Share = (Present Value of Future Cash Flows - Debt) / Number of Common Shares

To calculate the present value of future cash flows, we discount each cash flow using the cost of capital.

Let's calculate the present value of future cash flows and the value per share of common stock:

Year 1: FCF = $250,000

Year 2: FCF = $300,000

Year 3: FCF = $350,000

Year 4: FCF = $400,000

Year 5: FCF = $450,000

[tex]Year 6 onwards: FCF = $450,000 * 1.022^(Year - 5)[/tex]

Cost of Capital = 6.65%

Outstanding Debt = $3,833,340

Number of Common Shares = 60,797

First, let's calculate the present value of future cash flows:

[tex]PV = FCF / (1 + r)^n[/tex]

where:

PV = Present Value

FCF = Future Cash Flow

r = Cost of Capital

n = Number of years

[tex]Year 1:PV1 = $250,000 / (1 + 0.0665)^1 ≈ $234,837.45Year 2:PV2 = $300,000 / (1 + 0.0665)^2 ≈ $268,084.17Year 3:PV3 = $350,000 / (1 + 0.0665)^3 ≈ $301,706.42Year 4:PV4 = $400,000 / (1 + 0.0665)^4 ≈ $335,693.63Year 5:PV5 = $450,000 / (1 + 0.0665)^5 ≈ $369,035.06Year 6 onwards:PV6 = $450,000 * 1.022^(Year - 5) / (1 + 0.0665)^Year[/tex]

Now, let's calculate the total present value of future cash flows:

[tex]Total PV = PV1 + PV2 + PV3 + PV4 + PV5 + ∑(PV6)[/tex]

∑(PV6) represents the sum of present values for Year 6 onwards, up to infinity. Since we have a constant growth rate of 2.2%, we can use the perpetuity formula to calculate this sum:

[tex]∑(PV6) = PV6 / (r - g)[/tex]

where:

r = Cost of Capital

g = Growth rate

[tex]∑(PV6) = PV6 / (0.0665 - 0.022) = PV6 / 0.0445Now, let's calculate PV6 and ∑(PV6):PV6 = $450,000 * 1.022^1 / (1 + 0.0665)^6 ≈ $303,212.65∑(PV6) = $303,212.65 / 0.0445 ≈ $6,820,510.11[/tex]

Next, let's calculate the total present value:

[tex]Total PV = PV1 + PV2 + PV3 + PV4 + PV5 + ∑(PV6)Total PV = $234,837.45 + $268,084.17 + $301,706.42 + $335,693.63 + $369,035.06 + $6,820,510.11Total PV ≈ $8,329,866.84[/tex]

Finally, let's calculate the value per share of common stock:

Value per Share = (Total PV - Debt) / Number of Common Shares

Value per Share = ($8,329,866.84 - $3,833,340) / 60,797

Value per Share ≈ $66.61

Learn more about Discounted Cash Flow (DCF) valuation model:

https://brainly.com/question/29432958

#SPJ11


Related Questions

Person invests $5000 into an account at 5.5% per year simple interest. How much will the person have in 6 years, rounded to the nearest dollar? Possible answers:
A. $6252
B. $6507
C. $6375
D. $6138

Answers

Answer:

The answer is **C. $6375**.

```

interest = principal * interest_rate * years

interest = 5000 * 0.055 * 6

interest = 1650

```

The total amount of money in the account after 6 years is:

```

total_amount = principal + interest

total_amount = 5000 + 1650

total_amount = 6650

```

Rounding the total amount to the nearest dollar, we get **6375**.

Therefore, the correct answer is **C. $6375**.

Step-by-step explanation:

Answer:

C.$ 6375

Step-by-step explanation:

I =PRT÷100

I= $5000* 5.5 * 6÷100

I=1650

Total amount= P+I

= 5000+1650

=6650

round nearest dollar=6650

= 6375

For each problem: a. Verify that E is a Lyapunov function for (S). Find the equilibrium points of (S), and classify each as an attractor, repeller, or neither. dx dt dy dt = = 2y - x - 3 4 - 2x - y E(x, y) = x² - 2x + y² - 4y

Answers

The Lyapunov function E(x, y) = x² - 2x + y² - 4y is positive definite.

The equilibrium point of the system (S) is (x, y) = (1, 2).

The equilibrium point (1, 2) is classified as a repeller.

To verify whether E(x, y) = x² - 2x + y² - 4y is a Lyapunov function for the system (S), we need to check two conditions:

1. E(x, y) is positive definite:

  - E(x, y) is a quadratic function with positive leading coefficients for both x² and y² terms.

  - The discriminant of E(x, y), given by Δ = (-2)² - 4(1)(-4) = 4 + 16 = 20, is positive.

  - Therefore, E(x, y) is positive definite for all (x, y) in its domain.

2. The derivative of E(x, y) along the trajectories of the system (S) is negative definite or negative semi-definite:

  - Taking the derivative of E(x, y) with respect to t, we get:

    dE/dt = (∂E/∂x)dx/dt + (∂E/∂y)dy/dt

          = (2x - 2)(2y - x - 3) + (2y - 4)(4 - 2x - y)

          = 2x² - 4x - 4y + 4xy - 6x + 6 - 8x + 4y - 2xy - 4y + 8

          = 2x² - 12x - 2xy + 4xy - 10x + 14

          = 2x² - 22x + 14 - 2xy

  - Simplifying further, we have:

    dE/dt = 2x(x - 11) - 2xy + 14

Now, let's find the equilibrium points of the system (S) by setting dx/dt and dy/dt equal to zero:

2y - x - 3 = 0    ...(1)

-2x - y + 4 = 0    ...(2)

From equation (1), we can express x in terms of y:

x = 2y - 3

Substituting this value into equation (2):

-2(2y - 3) - y + 4 = 0

-4y + 6 - y + 4 = 0

-5y + 10 = 0

-5y = -10

y = 2

Substituting y = 2 into equation (1):

2(2) - x - 3 = 0

4 - x - 3 = 0

-x = -1

x = 1

Therefore, the equilibrium point of the system (S) is (x, y) = (1, 2).

Now, let's classify this equilibrium point as an attractor, repeller, or neither. To do so, we need to evaluate the derivative of the system (S) at the equilibrium point (1, 2):

Substituting x = 1 and y = 2 into dE/dt:

dE/dt = 2(1)(1 - 11) - 2(1)(2) + 14

      = -20 - 4 + 14

      = -10

Since the derivative is negative (-10), the equilibrium point (1, 2) is classified as a repeller.

In summary:

- The Lyapunov function E(x, y) = x² - 2x + y² - 4y is positive definite.

- The equilibrium point of the system (S) is (x, y) = (1, 2).

- The equilibrium point (1, 2) is classified as a repeller.

Learn more about Lyapunov function

https://brainly.com/question/32668960

#SPJ11

4. A, B, C are sets. prove that if |A|=|B|, prove that |AxC| = |BxC|.

Answers

Similarly, |B x C| = |B| x |C|, where |B| is the cardinality of set B and |C| is the cardinality of set C. Since |A| = |B|, we can substitute this in the above formulae as: |A x C| = |A| x |C| = |B| x |C| = |B x C|

It's been given that sets A and B have the same cardinality, |A| = |B|. We need to prove that the cardinality of the Cartesian product of set A with a set C is equal to the cardinality of the Cartesian product of set B with set C, |A x C| = |B x C|.

Here's the proof:

|A| = |B| and sets A, B, C

We need to prove |A x C| = |B x C|

We know that the cardinality of the Cartesian product of two sets, say set A and set C, is the product of the cardinalities of each set, i.e., |A x C| = |A| x |C|, where |A| is the cardinality of set A and |C| is the cardinality of set C. Hence, we can conclude that if |A| = |B|, then |A x C| = |B x C|.

You can learn more about cardinality at: brainly.com/question/13437433

#SPJ11

11. Find the perimeter of this figure. Dimensions are
in centimeters. Use 3.14 for .

Answers

Answer:

21.42 cm

Step-by-step explanation:

Perimeter is just the sum of all of the side lengths.

Before you can do that, though, you need to figure out what the rounded side would be.

Imagine for a moment that the rounded area is a full circle, and find the perimeter or, in this case, circumference, of that. The formula to find this is [tex]c = 2\pi r[/tex] where r = radius. You can see that the radius is 3, so plug that into the equation and solve (we are using 3.14 instead of pi)

[tex]c = 2*3.14*3[/tex]

c = 18.84

Since we don't actually have the entire circle here, cut the circumference in half. 18.84/2 = 9.42

The side length of the rounded area is 9.42

Now, we just need to add that length to the side lengths of the rectangular part, and we will have our perimeter.

[tex]9.42 + 6 + 3 + 3 = 21.42[/tex]

The perimeter of the figure is 21.42 cm.

PLS HELP I NEED TO SUMBIT
An experiment is conducted with a coin. The results of the coin being flipped twice 200 times is shown in the table. Outcome Frequency Heads, Heads 40 Heads, Tails 75 Tails, Tails 50 Tails, Heads 35 What is the P(No Tails)?

Answers

The probability of no tails is 20% which is option A.

Probability calculation.

in order to  calculate the probability of no tails in the question, al we have to do is  to add   the frequency of the outcome given which are the  "Heads, Heads" that is  two heads in a row:

Probability(No Tails) = Frequency of head, Head divide by / Total frequency

The Total frequency is 40 + 75 + 50 + 35 = 200

Therefore, we can say that P(No Tails) = 40/200 = 0.2 or 20%

Learn more about probability below.

brainly.com/question/23497705

The complete question is:

An experiment is conducted with a coin. The results of the coin being flipped twice 200 times is shown in the table. Outcome Frequency Heads, Heads 40 Heads, Tails 75 Tails, Tails 50 Tails, Heads 35 What is the P(No Tails)?

Outcome Frequency

Heads, Heads 40

Heads, Tails 75

Tails, Tails 50

Tails, Heads 35

What is the P(No Tails)?

A. 20%

B. 25%

C. 50%

D. 85%

A depositor place 250,000 pesos in an account established for a child at birth. Assuming no additional deposits or withdrawal, how much will the child have upon reaching the age of 21 if the bank pays 5 percent interest per amount compounded continuously for the entire time period?

Answers

The child will have 714,061.28 pesosupon reaching the age of 21 if the bank pays 5 percent interest per amount compounded continuously for the entire time period.

The given principal amount is 250,000 pesos, the interest rate is 5%, and the time period is 21 years.

The formula for calculating the amount under continuous compounding is:

A = Pert

Where,P is the principal amount

e is the base of the natural logarithm (approx. 2.718)

R is the rate of interest

t is the time period

So, we have:

A = 250000e^(0.05 × 21)

A = 250000e^1.05

A = 250000 × 2.8562451

A = 714061.28 pesos

Therefore, the child will have 714,061.28 pesos upon reaching the age of 21 if the bank pays 5 percent interest per amount compounded continuously for the entire time period.

Learn more about principal -

brainly.com/question/25720319

#SPJ11

The radius of a circle is 18 in. Find its circumference in terms of π

Answers

The circumference of the circle with a radius of 18 inches is 36π inches.

To find the circumference of a circle, you can use the formula C = 2πr, where C represents the circumference and r is the radius. Given that the radius of the circle is 18 inches, we can substitute this value into the formula to calculate the circumference.

C = 2π(18)

C = 36π

This means that if you were to measure around the outer edge of the circle, it would be approximately 113.04 inches (since π is approximately 3.14159).

It's important to note that the value of π is an irrational number, meaning it cannot be expressed as a finite decimal or a fraction. Therefore, it is commonly represented by the Greek letter π.

In practical terms, when working with circles and calculations involving circumference, it is generally more accurate and precise to keep π in the formula rather than using an approximation.

For more such questions on circumference

https://brainly.com/question/27447563

#SPJ8

In which interval does a root exist for this equation? tan(x) = 3x^2

PLEASE HELP

Answers

The equation tan(x) = 3x^2 can be solved using numerical methods such as the Newton-Raphson method or the bisection method. However, it is not possible to find the exact solution of this equation using algebraic methods.

To determine the interval for which a root exists, you can use the intermediate value theorem.

First, observe that the left-hand side of the equation, tan(x), is undefined for x = (n + 1/2) π, where n is an integer. Thus, we can restrict our attention to the interval (-π/2, π/2) where the tangent function is continuous and strictly increasing.

Next, note that tan(0) = 0 and tan(π/6) = 1/√3 < 3/36 = 1/12. Also, as x approaches π/2 from the left, tan(x) approaches infinity, while 3x^2 approaches infinity faster. Therefore, there exists at least one root of the equation in the interval (0, π/6).

Similarly, tan(-π/6) = -1/√3 > -1/12, and as x approaches -π/2 from the right, tan(x) approaches negative infinity, while 3x^2 approaches infinity faster. Therefore, there exists at least one root of the equation in the interval (-π/6, 0).

Therefore, the equation tan(x) = 3x^2 has at least one root in the interval (-π/6, π/6).

Depending upon the numbers you are given, the matrix in this problem might have a characteristic polynomial that is not feasible to factor by hand without using methods from precalculus such as the rational root test and polynomial division. On an exam, you are expected to be able to find eigenvalues using cofactor expansions for matrices of size 3 x 3 or larger, but we will not expect you to go the extra step of applying the rational root test or performing polynomial division on Math 1553 exams. With this in mind, if you are unable to factor the characteristic polynomial in this particular problem, you may use a calculator or computer algebra system to get the eigenvalues.
The matrix
A= [4 -4 -2 0
1 -1 0 1 2 -2 -1 0 0 0 0 0]
has two real eigenvalues < A. Find these eigenvalues, their multiplicities, and the dimensions of their corresponding eigenspaces.
The smaller eigenvalue A1 ____ has algebraic multiplicity ____ and the dimension of its corresponding eigenspace is
The larger eigenvalue A2 _____ has algebraic multiplicity ____ and the dimension of its corresponding eigenspace is ____ Do the dimensions of the eigenspaces for A add up to the number of columns of A? Note: You can earn partial credit on this problem

Answers

The dimensions of the corresponding eigenspaces can be obtained by finding the nullity of the matrix A - λI, which represents the number of linearly independent eigenvectors corresponding to each eigenvalue.

In this problem, we are given a matrix A and we need to find its eigenvalues, their multiplicities, and the dimensions of their corresponding eigenspaces. The statement mentions that if we are unable to factor the characteristic polynomial by hand, we can use a calculator or computer algebra system to find the eigenvalues.

Let's denote the eigenvalues of matrix A as λ1 and λ2.

To find the eigenvalues, we need to solve the characteristic equation, which is given by:

det(A - λI) = 0

Here, A is the given matrix, λ is the eigenvalue, and I is the identity matrix of the same size as A.

Once we find the eigenvalues, we can determine their multiplicities by considering the algebraic multiplicity, which is the power to which each eigenvalue appears in the factored form of the characteristic polynomial.

The dimensions of the corresponding eigenspaces can be obtained by finding the nullity of the matrix A - λI, which represents the number of linearly independent eigenvectors corresponding to each eigenvalue.

Since the statement allows us to use a calculator or computer algebra system, we can utilize those tools to find the eigenvalues, their multiplicities, and the dimensions of the eigenspaces.

Unfortunately, the given matrix A is not provided in the question. Please provide the matrix A so that we can proceed with finding the eigenvalues, their multiplicities, and the dimensions of the eigenspaces.

Learn more about eigenspaces here

https://brainly.com/question/31387364

#SPJ11

Depending upon the numbers you are given,the matrix in this problem might have a characteristic polynomial that is not feasible to factor by hand without using methods from precalculus such as the rationalroot test and polynomial division. On ani exam, you are expected to be able to find eigenvalues using cofactor expansions for matrices of size 3 x 3 or larger, but we will not expect you to go the extra step of applying the rationalroot test or performing polynomial division on Math 1553 exams.With this in mind, if you are unable to factor the characteristic polynomialin this particular problem,you may use a calculator or computer algebra system to get the eigenvalues.

The matrix

A =

has two real eigenvalues >'1 < ,\2. Find these eigenvalues, their multiplicities, and the dimensions of their corresponding eigenspaces . The smaller eigenvalue ,\1= has algebraic multiplicity and the dimension of its corresponding eigenspace is

The larger eigenvalue ,\2  = has algebraic multiplicity and the dimension of its corresponding eigenspace is Do the dimensions of the eigenspaces for A add up to the number of columns of A?  


The domain of y=x² is
The range of y=x² is

Answers

The answers are given below:

A) The domain of y = x² is [tex](-\infty,\infty)[/tex]

B) The range of y = x² is [tex](0,\infty)[/tex]

What is the domain and range?The domain of a function is the complete set of possible values of the independent variable.The range is a set of values corresponding to the domain for a given function or relation.

How to find the domain and range of y = x²

One thing that you have to remember is that when you are finding the domain of a polynomial, it is all real number. it runs from (−∞, ∞).

For finding the range, in a quadratic formula, you have to find when the function has it's vertex. That is the place that the max or min happens and then you can find the range from there.

in this situation we found that the vertex is at the the origin at (0, 0). Therefore, the range is (0, ∞).

Learn more about domain and range at:

https://brainly.com/question/32984023

Convert the following base-ten numerals to a numeral in the indicated bases. a. 1059 in base six b. 760 in base nine c. 44 in base two a. 1059 in base six is six

Answers

A The numeral 1059 in base six is written as 2453.

B. To convert the base-ten numeral 1059 to base six, we need to divide it by powers of six and determine the corresponding digits in the base-six system.

Step 1: Divide 1059 by 6 and note the quotient and remainder.

1059 ÷ 6 = 176 with a remainder of 3. Write down the remainder, which is the least significant digit.

Step 2: Divide the quotient (176) obtained in the previous step by 6.

176 ÷ 6 = 29 with a remainder of 2. Write down this remainder.

Step 3: Divide the new quotient (29) by 6.

29 ÷ 6 = 4 with a remainder of 5. Write down this remainder.

Step 4: Divide the new quotient (4) by 6.

4 ÷ 6 = 0 with a remainder of 4. Write down this remainder.

Now, we have obtained the remainder in reverse order: 4313.

Hence, the numeral 1059 in base six is represented as 4313.

Note: The explanation assumes that the numeral in the indicated bases is meant to be the answer for part (a) only.

Learn more about base-ten numerals:

brainly.com/question/24020782

#SPJ11

b.1 determine the solution of the following simultaneous equations by cramer’s rule. 1 5 2 5 x x x x 2 4 20 4 2 10

Answers

By applying Cramer's rule to the given system of simultaneous equations, The solution is x = 2, y = 3, and z = 4.

Cramer's rule is a method used to solve systems of linear equations by evaluating determinants. In this case, we have three equations with three variables:

1x + 5y + 2z = 5

x + 2y + 10z = 4

2x + 4y + 20z = 10

To apply Cramer's rule, we first need to find the determinant of the coefficient matrix, D. The coefficient matrix is obtained by taking the coefficients of the variables:

D = |1 5 2|

   |1 2 10|

   |2 4 20|

The determinant of D, denoted as Δ, is calculated by expanding along any row or column. In this case, let's expand along the first row:

Δ = (1)((2)(20) - (10)(4)) - (5)((1)(20) - (10)(2)) + (2)((1)(4) - (2)(2))

  = (2)(20 - 40) - (5)(20 - 20) + (2)(4 - 4)

  = 0 - 0 + 0

  = 0

Since Δ = 0, Cramer's rule cannot be directly applied to solve for x, y, and z. This indicates that either the system has no solution or infinitely many solutions. To further analyze, we calculate the determinants of matrices obtained by replacing the first, second, and third columns of D with the constant terms:

Dx = |5 5 2|

    |4 2 10|

    |10 4 20|

Δx = (5)((2)(20) - (10)(4)) - (5)((10)(20) - (4)(2)) + (2)((10)(4) - (2)(2))

    = (5)(20 - 40) - (5)(200 - 8) + (2)(40 - 4)

    = -100 - 960 + 72

    = -988

Dy = |1 5 2|

    |1 4 10|

    |2 10 20|

Δy = (1)((2)(20) - (10)(4)) - (5)((1)(20) - (10)(2)) + (2)((1)(10) - (2)(4))

    = (1)(20 - 40) - (5)(20 - 20) + (2)(10 - 8)

    = -20 + 0 + 4

    = -16

Dz = |1 5 5|

    |1 2 4|

    |2 4 10|

Δz = (1)((2)(10) - (4)(5)) - (5)((1)(10) - (4)(2)) + (2)((1)(4) - (2)(5))

    = (1)(20 - 20) - (5)(10 - 8) + (2)(4 - 10)

    = 0 - 10 + (-12)

    = -22

Using Cramer's rule, we can find the values of x, y, and z:

x = Δx / Δ = (-988) / 0 = undefined

y = Δy / Δ = (-16) / 0 = undefined

z = Δz / Δ

Learn more about cramer's rule here:

https://brainly.com/question/18179753

#SPJ11

Decide if the following statements are TRUE or FALSE. Write a proof for the true ones and provide a counter-example for the rest. Up to similarity, there are exactly three matrices A € R5×5 such that A³·+4²+ A = 0.

Answers

The statement is TRUE: Up to similarity, there are exactly three matrices A ∈ R^(5x5) such that A^3 + 4A^2 + A = 0.

Proof:

To prove this statement, we need to show that there are exactly three distinct matrices A up to similarity that satisfy the given equation.

Let's consider the characteristic polynomial of A:

p(x) = det(xI - A)

where I is the identity matrix of size 5x5. The characteristic polynomial is a degree-5 polynomial, and its roots correspond to the eigenvalues of A.

Now, let's examine the given equation:

A^3 + 4A^2 + A = 0

We can rewrite this equation as:

A(A^2 + 4A + I) = 0

This equation implies that the matrix A is nilpotent, as the product of A with a polynomial expression of A is zero.

Since A is nilpotent, its eigenvalues must be zero. This means that the roots of the characteristic polynomial p(x) are all zero.

Now, let's consider the factorization of p(x):

p(x) = x^5

Since all the roots of p(x) are zero, we have:

p(x) = x^5 = (x-0)^5

Therefore, the minimal polynomial of A is m(x) = x^5.

Now, we know that the minimal polynomial of A has degree 5, and it divides the characteristic polynomial. This implies that the characteristic polynomial is also of degree 5.

Since the characteristic polynomial is of degree 5 and has only one root (zero), it must be:

p(x) = x^5

Now, we can apply the Cayley-Hamilton theorem, which states that every matrix satisfies its own characteristic equation. In other words, substituting A into its characteristic polynomial should result in the zero matrix.

Substituting A into p(x) = x^5, we get:

A^5 = 0

This shows that A is nilpotent of order 5.

Now, let's consider the Jordan canonical form of A. Since A is nilpotent of order 5, its Jordan canonical form will have a single Jordan block of size 5x5 with eigenvalue 0.

There are three distinct Jordan canonical forms for a 5x5 matrix with a single Jordan block of size 5x5:

Jordan form with a single block of size 5x5:

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 0]

[0 0 0 0 1]

[0 0 0 0 0]

Jordan form with a 2x2 block and a 3x3 block:

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 0 0]

Jordan form with a 1x1 block, a 2x2 block, and a 2x2 block:

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 0]

[0 0 0 0 1]

[0 0 0 0 0]

These are the three distinct Jordan canonical forms for nilpotent matrices of order 5.

Since any two similar matrices share the same Jordan canonical form, we can conclude that there are exactly three matrices A up to similarity that satisfy the given equation A^3 + 4A^2 + A = 0.

Therefore, the statement is TRUE.

Learn more about Cayley-Hamilton theorem here

https://brainly.com/question/31124382

#SPJ11

If f(x) = −2x² + 3x, select all the TRUE statements. a. f(0) = 5 b. f(a) = -2a² + 3a c. f (2x) = 8x² + 6x d. f(-2x) = 8x² + 6x

Answers

The true statements are b. f(a) = -2a² + 3a and d. f(-2x) = 8x² + 6x.

Statement b is true because it correctly represents the function f(x) with the variable replaced by 'a'. By substituting 'a' for 'x', we get f(a) = -2a² + 3a, which is the same form as the original function.

Statement d is true because it correctly represents the function f(-2x) with the negative sign distributed inside the parentheses. When we substitute '-2x' for 'x' in the original function f(x), we get f(-2x) = -2(-2x)² + 3(-2x). Simplifying this expression yields f(-2x) = 8x² - 6x.

Therefore, both statements b and d accurately represent the given function f(x) and its corresponding transformations.

You can learn more about transformations at

https://brainly.com/question/29788009

#SPJ11

Assume that A is similar to an upper triangular matrix U, then det A is the product of all its eigenvalues (counting multiplicity). Please explain why.

Answers

If matrix A is similar to an upper triangular matrix U, then det A is the product of all its eigenvalues (counting multiplicity).

When two matrices are similar, it means they represent the same linear transformation under different bases. In this case, matrix A and upper triangular matrix U represent the same linear transformation, but U has a convenient triangular form.

The eigenvalues of a matrix represent the values λ for which the equation A - λI = 0 holds, where I is the identity matrix. These eigenvalues capture the characteristic behavior of the matrix in terms of its transformations.

For an upper triangular matrix U, the diagonal entries are its eigenvalues. This is because the determinant of a triangular matrix is simply the product of its diagonal elements. Each eigenvalue appears along the diagonal, and any other entries below the diagonal are necessarily zero.

Since A and U are similar matrices, they share the same eigenvalues. Thus, if U is upper triangular with eigenvalues λ₁, λ₂, ..., λₙ, then A also has eigenvalues λ₁, λ₂, ..., λₙ.

The determinant of a matrix is the product of its eigenvalues. Since A and U have the same eigenvalues, det A = det U = λ₁ * λ₂ * ... * λₙ.

Therefore, if A is similar to an upper triangular matrix U, the determinant of A is the product of all its eigenvalues, counting multiplicity.

Learn more about Matrix

brainly.com/question/28180105

#SPJ11

ms.kitts work at a music store. Last week she sold 6 more then 3 times the number of CDs that she sold this week. MS.Kitts sold a total of 110 Cds over the 2 weeks. Which system of equations can be used to find I, The number of Cds she sold last week, and t, The number of Cds she sold this week. make 2 equations

Answers

Answer:

Equation 1: "Ms. Kitts sold 6 more than 3 times the number of CDs that she sold this week."

I = 3t + 6

Equation 2: "Ms. Kitts sold a total of 110 CDs over the 2 weeks."

I + t = 110

Step-by-step explanation:

1) A person makes a cup of tea. The tea's temperature is given by H(t)=68+132e−0.05t where t is the number of minutes since the person made the tea. a) What is the temperature of the tea when the person made it? b) If the person waits 7 minutes to begin drinking the tea, what is the temperature of the tea? c) How much time has gone by if the tea reaches a temperature of 95∘F ? Estimate using the table feature of your calculator.

Answers

The temperature of the tea when the person made it is 200°F.

The temperature of the tea after waiting 7 minutes is approximately 160.916°F.

a) To find the temperature of the tea when the person made it, we can substitute t = 0 into the equation H(t) = 68 + 132e^(-0.05t):

H(0) = 68 + 132e^(-0.05(0))

H(0) = 68 + 132e^0

H(0) = 68 + 132(1)

H(0) = 68 + 132

H(0) = 200

b) To find the temperature of the tea after waiting 7 minutes, we substitute t = 7 into the equation H(t) = 68 + 132e^(-0.05t):

H(7) = 68 + 132e^(-0.05(7))

H(7) = 68 + 132e^(-0.35)

H(7) ≈ 68 + 132(0.703)

H(7) ≈ 68 + 92.916

H(7) ≈ 160.916

c) To find the time it takes for the tea to reach a temperature of 95°F, we need to solve the equation 95 = 68 + 132e^(-0.05t) for t. This can be done using the table feature of a calculator or by numerical methods.

Know more about equation here:

https://brainly.com/question/29657983

#SPJ11

solve this please, I need it for final

Answers

If you're trying to find the value of ∠UVX (∠XVU), your answer is 30°.

Why is this the answer?:
To find the value of the missing angle, you need to subtract.
In this case, ∠UVW (∠WUV) is 72°.
We're also given the information that ∠XVW (∠WVX) is 42°.
Therefore, if we subtract 72 - 42, we get 30.
But the degree sign back on: Your answer is 30°!

Hope this helps you! :)


Let
f(x)=-2, g(x) = -4x+1 and h(x) = 4x² - 2x + 9.
Consider the inner product
(p,q) = p(-1)g(-1)+p(0)q(0) +p(1)q(1)
in the vector space P₂ of polynomials of degree at most 2. Use the Gram-Schmidt process to determine an orthonormal basis for the subspace of P₂ spanned by the polynomials f(x), g(x) and h(x).
{-2/sqrt(12)
(4x-1)/35

Answers

The orthonormal basis for the subspace of P₂ spanned by the polynomials f(x), g(x), and h(x) is given by:

{u₁(x) = -2 / sqrt(208), u₂(x) = (-4x + 37/26) / sqrt((16/3)x² + (37/13)x + (37/26)²)}

To find an orthonormal basis for the subspace of P₂ spanned by the polynomials f(x), g(x), and h(x), we can use the Gram-Schmidt process. The process involves orthogonalizing the vectors and then normalizing them.

Step 1: Orthogonalization

Let's start with the first polynomial f(x) = -2. Since it is a constant polynomial, it is already orthogonal to any other polynomial.

Next, we orthogonalize g(x) = -4x + 1 with respect to f(x). We subtract the projection of g(x) onto f(x) to make it orthogonal.

g'(x) = g(x) - proj(f(x), g(x))

The projection of g(x) onto f(x) is given by:

proj(f(x), g(x)) = (f(x), g(x)) / ||f(x)||² * f(x)

Now, calculate the inner product:

(f(x), g(x)) = f(-1) * g(-1) + f(0) * g(0) + f(1) * g(1)

Substituting the values:

(f(x), g(x)) = -2 * (-4(-1) + 1) + (-2 * 0 + 1 * 0) + (-2 * (4 * 1² - 2 * 1 + 9))

Simplifying:

(f(x), g(x)) = 4 + 18 = 22

Next, calculate the norm of f(x):

||f(x)||² = (f(x), f(x)) = (-2)² * (-2) + (-2)² * 0 + (-2)² * (4 * 1² - 2 * 1 + 9)

Simplifying:

||f(x)||² = 4 * 4 + 16 * 9 = 64 + 144 = 208

Now, calculate the projection:

proj(f(x), g(x)) = (f(x), g(x)) / ||f(x)||² * f(x) = 22 / 208 * (-2)

Simplifying:

proj(f(x), g(x)) = -22/104

Finally, subtract the projection from g(x) to obtain g'(x):

g'(x) = g(x) - proj(f(x), g(x)) = -4x + 1 - (-22/104)

Simplifying:

g'(x) = -4x + 1 + 11/26 = -4x + 37/26

Step 2: Normalization

To obtain an orthonormal basis, we need to normalize the vectors obtained from the orthogonalization process.

Normalize f(x) and g'(x) by dividing them by their respective norms:

u₁(x) = f(x) / ||f(x)|| = -2 / sqrt(208)

u₂(x) = g'(x) / ||g'(x)|| = (-4x + 37/26) / sqrt(∫(-4x + 37/26)² dx)

Simplifying the expression for u₂(x):

u₂(x) = (-4x + 37/26) / sqrt(∫(-4x + 37/26)² dx) = (-4x + 37/26) / sqrt((16/3)x² + (37/13)x + (37/26)²)

Therefore, the orthonormal basis for the subspace of P₂ spanned by the polynomials f(x), g(x), and h(x) is given by:

{u₁(x) = -2 / sqrt(208),

u₂(x) = (-4x + 37/26) / sqrt((16/3)x² + (37/13)x + (37/26)²)}

Learn more about subspace here

https://brainly.com/question/31482641

#SPJ11

In quartiles Q−​1 is represented as that value till which % of the data is covered. Select one: a. 50 b. 25 C. 75 d. 100 can be considered as balancing point of the data. Select one: a. skewness b. mean c. all of these d. mode

Answers

In quartiles, Q-1 represents the value till which 25% of the data is covered. The balancing point of the data is considered to be the mean, while measures of central tendency do not necessarily represent a balancing point.

In quartiles, Q-1 represents the value till which 25% of the data is covered. Therefore, the correct option is (b) 25.

Regarding the balancing point of the data, it can be considered as the mean. The other measures of central tendency, such as the mode and median, do not necessarily represent a balancing point of the data. Skewness is a measure of the asymmetry of the data and does not relate to the balancing point.

Therefore, the correct option is (b) mean.

To know more about quartiles, visit:
brainly.com/question/33240871
#SPJ11

Newton's Law of Cooling states the temperature of an object changes at a rate proportional to the difference between its temperature and that of its surroundings. Suppose that the temperature of a cold beer obeys Newton's Law of Cooling. If initially the cold beer has a temperature of 35∘F, and 3 minute later has warm up to 40∘F in a room at 70∘F, determine how warm the beer will be if left out for 15 minutes?

Answers

According to Newton's Law of Cooling, if a cold beer initially has a temperature of 35∘F and warms up to 40∘F in 3 minutes in a room at 70∘F.

To solve this problem, we can use Newton's Law of Cooling, which states that the rate of change of temperature of an object is proportional to the difference between its temperature and the temperature of its surroundings. Mathematically, it can be expressed as:

dT/dt = -k(T - Ts)

Where:

dT/dt is the rate of change of temperature with respect to time,

T is the temperature of the object,

Ts is the temperature of the surroundings,

k is the cooling constant.

Given that the initial temperature of the cold beer is 35°F and it warms up to 40°F in 3 minutes in a room at 70°F, we can find the cooling constant, k.

At t = 0 (initial condition):

dT/dt = k(35 - 70)

At t = 3 minutes:

dT/dt = k(40 - 70)

Setting these two equations equal to each other, we can solve for k:

k(35 - 70) = k(40 - 70)

-35k = -30k

k = 30/35

k = 6/7

Now, we can use this value of k to determine how warm the beer will be if left out for 15 minutes.

At t = 15 minutes:

dT/dt = k(T - Ts)

(dT/dt)dt = k(T - Ts)dt

∫dT = ∫k(T - Ts)dt

ΔT = -k∫(T - Ts)dt

ΔT = -k∫Tdt + k∫Ts dt

ΔT = -k(Tt - T0) + kTs(t - t0)

ΔT = -k(Tt - T0) + kTs(t - 0)

Substituting the values:

ΔT = -6/7(Tt - 35) + 6/7(70)(15 - 0)

ΔT = -6/7(Tt - 35) + 6/7(70)(15)

ΔT = -6/7(Tt - 35) + 6/7(70)(15)

ΔT = -6/7(Tt - 35) + 6(10)(15)

ΔT = -6/7(Tt - 35) + 6(150)

ΔT = -6/7(Tt - 35) + 900

Since ΔT represents the change in temperature, we can set it equal to the final temperature minus the initial temperature:

ΔT = Tt - 35

Therefore:

Tt - 35 = -6/7(Tt - 35) + 900

7(Tt - 35) = -6(Tt - 35) + 6300

7Tt - 245 = -6Tt + 210 + 6300

7Tt + 6Tt = 6545 + 245

13Tt = 6790

Tt = 6790/13

Calculating this:

Tt = 522.3077°F

Therefore, if the beer is left out for 15 minutes, it will warm up to approximately 522.31°F.

Learn more about Newton's Law of Cooling: brainly.com/question/19534304

#SPJ11

Find the product. (4m² - 5)(4m² + 5)
O 16m² - 25
O 16m² - 25
O 16m² +25
O 16m³ - 25

Answers

The product would be 16m^4 -25

Describe (in proper form and words) the transformations that have happened to y = √x to turn it into the following equation. y = -√x+4+3

Answers

The given equation y = -√x + 4 + 3 is a transformation of the original equation y = √x. Let's analyze the transformations that have occurred to the original equation.

Reflection: The negative sign in front of the square root function reflects the graph of y = √x across the x-axis. This reflects the values of y.

Vertical Translation: The term "+4" shifts the graph vertically upward by 4 units. This means that every y-value in the transformed equation is 4 units higher than the corresponding y-value in the original equation.

Vertical Translation: The term "+3" further shifts the graph vertically upward by 3 units. This means that every y-value in the transformed equation is an additional 3 units higher than the corresponding y-value in the original equation.

The transformations of reflection, vertical translation, and vertical translation have been applied to the original equation y = √x to obtain the equation y = -√x + 4 + 3.

You can learn more about equation at

https://brainly.com/question/29174899

#SPJ11

Mónica fue al mercado y compró un racimo de uvas rojas que pesó 1/4 de kilogramo, otro de uvas sin semillas que pesó 1/2 y 3/4 de Kilogramo de ambas uvas sueltas. ¿Qué cantidad de uvas compró en total?

Answers

Monica went to the market and bought a bunch of red grapes that weighed 1/4 kilogram, another bunch of seedless grapes that weighed 1/2 kilogram, and 3/4 kilogram of loose grapes from both types. The total amount of grapes she bought is 1.5 kilograms.

Monica bought a total of grapes weighing 1/4 kilogram + 1/2 kilogram + 3/4 kilogram. To find the total amount of grapes, we need to add these fractions together.

First, we can convert the fractions to a common denominator. The common denominator for 4, 2, and 4 is 4. So we have:

1/4 kilogram + 2/4 kilogram + 3/4 kilogram

Now, we can add the fractions:

(1 + 2 + 3) / 4 kilogram

The numerator becomes 6, and the denominator remains 4:

6/4 kilogram

We can simplify this fraction by dividing both the numerator and denominator by their greatest common divisor, which is 2:

6/4 kilogram = (6 ÷ 2) / (4 ÷ 2) kilogram = 3/2 kilogram

Therefore, Monica bought a total of 3/2 kilogram of grapes.

In decimal form, 3/2 is equal to 1.5. So, Monica bought 1.5 kilograms of grapes in total.

For more such information on:  total amount

https://brainly.com/question/29766078

#SPJ8

The question probable may be:

Monica went to the market and bought a bunch of red grapes that weighed 1/4 kilogram, another bunch of seedless grapes that weighed 1/2 kilogram, and 3/4 kilogram of loose grapes from both types. What is the total amount of grapes she bought?

analysis is a form of horizontal analysis that can reveal patterns in data across periods. it is computed by taking the (analysis period amount/base period amount) x 100.

Answers

Analysis, a form of horizontal analysis, is a method used to identify patterns in data across different periods. It involves calculating the ratio of the analysis period amount to the base period amount, multiplied by 100. This calculation helps to assess the changes and trends in the data over time.

Analysis, as a form of horizontal analysis, provides insights into the changes and trends in data over multiple periods. It involves comparing the amounts or values of a specific variable or item in different periods. The purpose is to identify patterns, variations, and trends in the data.
To calculate the analysis, we take the amount or value of the variable in the analysis period and divide it by the amount or value of the same variable in the base period. This ratio is then multiplied by 100 to express the result as a percentage. The resulting percentage indicates the change or growth in the variable between the analysis period and the base period.
By performing this analysis for various items or variables, we can identify significant changes or trends that have occurred over time. This information is useful for evaluating the performance, financial health, and progress of a business or organization. It allows stakeholders to assess the direction and magnitude of changes and make informed decisions based on the patterns revealed by the analysis.

learn more about horizontal analysis here

https://brainly.com/question/29392869



#SPJ11

a) Integrate vector field F = 7xi - z k, over surface S: x² + y² + z² = 9. (i.e. fF.dS) b) Show that the same answer in (a) can be obtained by using Gauss Divergence Theorem. The Gauss's Divergence Theorem is given as: F. dS=.V.F dv

Answers

a) The integral of vector field F = 7xi - zk over the surface S: x² + y² + z² = 9 is 0.

To solve part (a) of the question, we need to integrate the vector field F = 7xi - zk over the given surface S: x² + y² + z² = 9.

In this case, the surface S represents a sphere with radius 3 centered at the origin. The vector field F is defined as F = 7xi - zk, where i, j, and k are the standard unit vectors in the x, y, and z directions, respectively.

When we integrate a vector field over a surface, we calculate the flux of the vector field through the surface. Flux represents the flow of the vector field across the surface.

For a closed surface like the sphere in this case, the net flux of a divergence-free vector field, which is a vector field with zero divergence, is always zero. This means that the integral of F over the surface S is zero.

The vector field F = 7xi - zk has a divergence of zero, as the divergence of a vector field is given by the dot product of the del operator (∇) with the vector field. Since the divergence is zero, we can conclude that the integral of F over the surface S is zero.

Learn more about Integral

brainly.com/question/31433890

#SPJ11

. Consider the prisoner's dilemma with payoffs as given below: g>0,ℓ>0 ECON0027 Game Theory, HA2 1 TURN OVER Suppose that the game is repeated twice, with the following twist. If a player chooses an action in period 2 which differs from her chosen action in period 1 , then she incurs a cost of ε. Players maximize the sum of payoffs over the two periods, with discount factor δ=1. (a) Suppose that g<1 and 00 be arbitrary. Show that there is always a subgame perfect equilibrium where (D,D) is played in both periods.

Answers

In the given prisoner's dilemma game, players have two choices: cooperate (C) or defect (D). The payoffs for each combination of actions are represented by the variables g and ℓ, where g>0 and ℓ>0.

Now, let's consider a twist in the game. If a player chooses a different action in the second period compared to the first period, they incur a cost of ε. The players aim to maximize the sum of their payoffs over the two periods, with a discount factor of δ=1.

The question asks us to show that there is always a subgame perfect equilibrium where both players play (D,D) in both periods, given that g<1 and ℓ<1.

To prove this, we can analyze the incentives for each player and the possible outcomes in the game.

1. If both players choose (C,C) in the first period, they both receive a payoff of ℓ in the first period. However, in the second period, if one player switches to (D), they will receive a higher payoff of g, while the other player incurs a cost of ε. Therefore, it is not in the players' best interest to choose (C,C) in the first period.

2. If both players choose (D,D) in the first period, they both receive a payoff of g in the first period. In the second period, if they both stick to (D), they will receive another payoff of g. Since g>0, it is a better outcome for both players compared to (C,C). Furthermore, if one player switches to (C) in the second period, they will receive a lower payoff of ℓ, while the other player incurs a cost of ε. Hence, it is not in the players' best interest to choose (D,D) in the first period.

Based on this analysis, we can conclude that in the subgame perfect equilibrium, both players will choose (D,D) in both periods. This is because it is a dominant strategy for both players, ensuring the highest possible payoff for each player.

In summary, regardless of the values of g and ℓ (as long as they are both less than 1), there will always be a subgame perfect equilibrium where both players play (D,D) in both periods. This equilibrium is a result of analyzing the incentives and outcomes of the game.

To know more about prisoner's dilemma here

https://brainly.com/question/33721898

#SPJ11

Use appropriate algebra and Theorem 7.2.1 to find the given inverse Laplace transform. (Write your answer as a function of t. ) L−1{s 2+s−561}

Answers

The crux of finding the inverse Laplace transform of[tex]L^(-1){s^2 + s - 561}[/tex]is to apply the linearity property of Laplace transforms, which allows us to take the inverse Laplace transform of each term separately and then sum the results. By using the properties of Laplace transforms, we can determine that[tex]L^(-1){s^2}[/tex]is t²,[tex]L^(-1){s}[/tex] is t, and [tex]L^(-1){561}[/tex] is 561 * δ(t), where δ(t) represents the Dirac delta function. Combining these results, we obtain the inverse Laplace transform as f(t) = t² + t - 561 * δ(t).

To find the inverse Laplace transform of[tex]L^(-1){s^2 + s - 561}[/tex], we can apply algebraic manipulation and use the properties of Laplace transforms.

1. Recognize that [tex]L^(-1){s^2} = t^2.[/tex]

  This follows from the property that the inverse Laplace transform of [tex]s^n[/tex] is [tex]t^n[/tex], where n is a non-negative integer.

2. Recognize that [tex]L^(-1){s}[/tex] = t.

  Again, this follows from the property that the inverse Laplace transform of s is t.

3. Recognize that [tex]L^(-1){561}[/tex] = 561 * δ(t).

  Here, δ(t) represents the Dirac delta function, and the property states that the inverse Laplace transform of a constant C is C times the Dirac delta function.

4. Apply the linearity property of Laplace transforms.

  This property states that the inverse Laplace transform is linear, meaning we can take the inverse Laplace transform of each term separately and then sum the results.

Applying the linearity property, we have:

[tex]L^(-1){s^2 + s - 561} = L^(-1){s^2} + L^(-1){s} - L^(-1){561}[/tex]

                      =[tex]t^2[/tex]+ t - 561 * δ(t)

Therefore, the inverse Laplace transform of[tex]L^(-1){s^2 + s - 561}[/tex]is given by the function f(t) =[tex]t^2[/tex] + t - 561 * δ(t).

Learn more about inverse Laplace transform visit

brainly.com/question/31952296

#SPJ11

(b). Show that a ​ ×( b ​ + c ​ )=( a ​ × b ​ )+( a ​ × c ​ ), by using the appropriate example, theorem or vector algebra law.

Answers

The equation a × (b + c) = (a × b) + (a × c) can be shown using the distributive property of vector algebra.

To demonstrate the equation a × (b + c) = (a × b) + (a × c), we can apply the distributive property of vector algebra. In vector algebra, the cross product of two vectors represents a new vector that is perpendicular to both of the original vectors.

Let's consider the vectors a, b, and c. The cross product of a and (b + c) is given by a × (b + c). According to the distributive property, this can be expanded as a × b + a × c. By calculating the cross products individually, we obtain two vectors: a × b and a × c. The sum of these two vectors results in (a × b) + (a × c).

Therefore, the equation a × (b + c) = (a × b) + (a × c) holds true, demonstrating the distributive property in vector algebra.

Learn more about vector algebra visit

brainly.com/question/29126814

#SPJ11

Question 3 (Mandatory) (2 points) If 5 is one root of the equation -1x³ + kx + 25 = 0, then the value of k is... Insert a number in the box below, rounded to 1 decimal place. Show your work by attach

Answers

In the equation -1x³ + kx + 25 = 0, if 5 , Therefore, the value of k is 20.

substituting x = 5 into the equation should make it true.

To find the value of k, we can use the fact that if 5 is one of the roots of the equation, then substituting x = 5 into the equation should make it true.

Substituting x = 5 into the equation, we have:

-1(5)³ + k(5) + 25 = 0

Simplifying further:

-125 + 5k + 25 = 0

5k - 100 = 0

5k = 100

k = 20

Therefore, the value of k is 20.

Learn more about equation: brainly.com/question/29174899

#SPJ11

Other Questions
Mr Mohsin Abrahams is the sole proprietor of the Flower Boutique and urgently needs you to perform the bank reconciliation for them at 30 June 2019 . Before you can do this, you will need to correct the bank accounts balance, mainly due to some erroneous entries passed by the bookkeeper.1. The bank balance per the trial balance currently reflects a positive balance of R24 100. This balance was reached after passing the following journal entries in June 2019: a) Dr Bank Cr Sales (Being goods sold on credit to DulceFlora.) dishonoured.) 2. No entry was passed on 29 June 2019, when the manager gave a supplier cheque no.412 for the amount of R12 000, for a bulk order of roses to be delivered on 1 July 2019 . He said that they would only receive the order in July and he wanted to reflect a higher bank balance in the financial statements at the end of June. The supplier only managed to deposit the cheque on 2 July 2019. 3. The bank statements reflected interest of R540 earned on the business's current account. 4. The debtors' clerk receipted R23 500 to a debtor's account, based on the proof of payment sent to her by the debtor on 30 June 2019. This amount does not yet appear on the bank statement. 5. Cheque no.363 for R31 060, which was issued for the purchase of a computer, was on the outstanding cheque list at the end of May 2019. It has still not come through the bank statements in June 2019. 6. Cheque no. 450 was issued to Telkom for the telephone account, amounting to R 1890 . The bank recorded it as R1 980. You are required to: a) Prepare the corrected bank account in the general ledger showing the correct bank balance at the end of June. b) Prepare the bank reconciliation as at 30 June 2019. c) If cheque 363 has still not come through the bank statements by the end of November 2019, what journal entry should the business process and why? the results from experiments where researchers isolated chromatin and then gently digested the dna with dnase i supported the idea that Imagine that you are a student in another country Your account pays interest at 4 percent p.a.. You deposit $ 21,514 in it today. You must have exactly $ 52,252 in the account at the end of two years. What should you do at the end of the first year (that is, what dollar amount must you deposit) to ensure this? (Record your answer without a dollar sign, without commas and round your answer to 2 decimal places; that is, record $3,245.847 as 3245.85). Read the fable. Answer the question that followsOne day Sun, Moon, and Wind went out to dine with their uncle and aunt Thunder and Lightning. Their mother (one of the most distant Stars you see far up in the sky) waited alone for her children's return.Now both Sun and Wind were greedy and selfish. They enjoyed the great feast that had been prepared for them, without a thought of saving any of it to take home to their mother-but the gentle Moon did not forget her. Of every dainty dish that was brought round, she placed a small portion under one of her beautiful long fingernails, that Star might also have a share in the treat.On their return, their mother, Who had kept watch for them all night long with her little bright eye, said, "Well, children, what have you brought home for me?" Then Sun (who was eldest) said, "I have brought nothing home for you. I went out to enjoy myself with my friends--not to fetch dinner for my mother!" And Wind said, "Neither have I. brought anything home for you, mother. You could hardly expect me to bring a collection of good things for you, when I merely went out for my own pleasure." But Moon said, "Mother, fetch a plate, see what I have brought you." And shaking her hands she showered down such a choice dinner as never was seen before.Then Star turned to Sun and spoke thus, "Because you went out to amuse yourself with your friends, and feasted and enjoyed yourself, without any thought of our mother at home-you shall be cursed. Henceforth, your rays shall ever be hot and scorching, and shall burn all that they touch. And men shall hate you, and cover their heads when you appear.Then she turned to Wind and said, "You also who forgot your mother in the midst of your selfish pleasures hear your doom. You shall always blow in the hot, dry weather, and shall parch and shrivel all living things. And men shall detest and avoid you from this very time.But to Moon she said, "Daughter, because you remembered your mother, and kept for her a share in your own enjoyment from henceforth you shall be ever cool, and calm andbright. No noxious glare shall accompany your pure rays, and men shall always call you 'blessed.'"What universal theme is revealed in the text?A)Do things for yourself and your life will shine bright.B)Darkness always prevails.C)Brothers and sisters are all the same.D) Think about others and you will be rewarded. 1:Regulative RulesList two rules that regulate your verbal communication whenTalking to eldersInteracting at dinnertimeHaving first exchanges in the morningGreeting casual friends on campusTalking with professors.2: Constitutive RulesHow do you use verbal communication to show (give two examples for each):1. Trustworthiness2. Ambition3. Disrespect4. Support5. Anger 14. The new UltraGuard flea collar is about to be introduced. It will sell for $9.95 and has unit variable costs of $4.25. The company expects to sell 47,500 UltraGuard collars during the introductory 8 month period. Some of the sales will come at the expense of the PetArmor collar, priced at $6.25 with variable costs of $3.10. We estimate that the UltraGuard collar will cannibalize 14,750 PetArmor collars during the introductory 8 month period..Calculate the change in total contribution margin due to the introduction. The compound eyes of bees and other insects are highly sensitive to light in the ultraviolet portion of the spectrum, particularly light with a frequency between 7.3 x 1014 Hz and 0.93 x 1015 Hz. To what wavelengths do these frequencies correspond? The lower wavelength is The upper wavelength is m. m. f(x)=2x 4 2x 3 +60x 2 22.On which intervals is the graph of f concave down? Choose 1 answer: x< 5/2 and x>5 x2 25 2 only Many snakes are only able to sense light with wavelengths less than 10 m. Let's assume a snake is outside during a cold snap. If your coat was the same as the 8F air temperature, would your coat be radiating sufficient light energy for the snake to see it? If you took off the coat and exposed 75F clothing, would the snake see your clothing? The relationship between Kelvin temperature and Fahrenheit temperature is T(K)-5/9*(T+459.67). A primary objective of portfolio insurance using options is to:a. Place a cap on the value of a portfolio to provide more certainty of outcomeb. Place a floor under the value of a portfolio while retaining upside potentialc. Placing a collar around the outcomes of a portfolio of securitiesd. Place opposing trades in a portfolio to hedge away volatility risk 8. Review the four principles of how teratogens affect development that were discussed earlier in chapter 4. Explain how these principles are related to the principles of reaction range and gene-environment relations. Imagine that a new asteroid is discovered in the solar system with a circular orbit and an orbital period of 8 years. What is the average distance of this object from the Sun in Earth units? Between which planets would this new asteroid be located? 1. Mars and Earth 2. Mars and Jupiter 3. Jupiter and Pluto Describe the role of the Eosinophils and mast cells in the pathogenesis of allergic asthma?250 wordsINCLUDE reputable reference UBS, a bank based in Switzerland, has received a subpoena from the IRS for the bank records of 52,000 U.S. citizens. The IRS alleges that the U.S. taxpayers hid money in UBS accounts for the purpose of avoiding paying taxes. UBS had created a program that recruited tax advisers and their clients under the guise that they could protect their funds from the IRS.Swiss law prohibits banks, under privacy rights, from disclosing information about their customers and their accounts. However, the IRS has obtained a subpoena for the records and a federal judge has issued it because UBS is soliciting business in the United States. One banking minister in Switzerland has indicated, however, that Swiss privacy laws do not apply when there has been fraud.Evaluate the ethics of UBS as well as their customers. If you worked for the bank, would you release the information? Would you place your money in Swiss accounts? Why should a foreign project be evaluated both from a projectand parent viewpoint? Examples of atoms that behave similar to chlorine interms of afinity What is the last effect in this cause and effect chain from the romans to the kings? Find the value of k, if (x2) is a factor of 4x3+3x24x+k. You plan to retire when you have $1,000,000 in savings. You can make a deposit of $1,000 per quarter into a retirement saving account that pays 12 percent annual interest rate compounded quarterly. How many years will you have to wait to retire?A. 37.74 yearsB. 34.77 yearsC. 31.41 yearsD. 29.04 yearsE. 27.22 yearsF. 24.51 yearsG. 22.52 yearsH. 20.28 years Steam Workshop Downloader