The cylinder's speed at the bottom of the ramp is 3.08 m/s.
The gravitational potential energy of the cylinder is given by mgh, where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height of the cylinder above the ground. The rotational kinetic energy of the cylinder is given by 1/2Iω^2, where I is the moment of inertia of the cylinder and ω is the angular velocity of the cylinder.
The moment of inertia of a solid cylinder about its axis of rotation is given by I = 1/2MR^2, where M is the mass of the cylinder and R is the radius of the cylinder. The angular velocity of the cylinder is given by ω = v/R, where v is the linear velocity of the center of mass of the cylinder.
Substituting these equations into the conservation of energy equation, we get:
[tex]mgh = 1/2I\omega ^2[/tex]
[tex]mgh = 1/2(1/2MR^2)(v/R)^2[/tex]
[tex]mgh = 1/4MR^2v^2[/tex]
Solving for v, we get:
[tex]v = \sqrt{ (2gh/R)}[/tex]
In this case, we have:
m = 5.00 kg
g = 9.80 m/s^2
h = 2.00 m
R = 7.00 cm = 0.0700 m
Substituting these values into the equation for v, we get:
[tex]v = \sqrt{(2(9.80 m/s^2)(2.00 m)/(0.0700 m))} = 3.08 m/s[/tex]
Therefore, the cylinder's speed at the bottom of the ramp is 3.08 m/s.
To learn more about conservation of energy here brainly.com/question/29220242
#SPJ11
A 0. 03C charge is placed at the orgin. A 0. 13C charge is then placed at a position of 3. 15m along the x axis. Calculate the magnitude of the electric force on the 0. 13C charge. _______ N Calculate the magnitude of the elecric field half way between the two charges.
_______
The magnitude of the electric force on the 0.13C charge is approximately 1.538 * 10⁻⁷ N and the magnitude of the electric field halfway between the two charges is approximately 5.073 * 10⁶ N/C.
To calculate the magnitude of the electric force on the 0.13C charge, we can use Coulomb's law, which states that the magnitude of the electric force between two charges is directly proportional to the product of their magnitudes and inversely proportional to the square of the distance between them.
Given:
Charge 1 (Q1) = 0.03C
Charge 2 (Q2) = 0.13C
Distance (r) = 3.15m
1. Determine the electric force:
Using Coulomb's law formula, F = k * |Q1 * Q2| / r², where k is the electrostatic constant (9 * 10^9 Nm²/C²):
F = (9 * 10^9 Nm²/C²) * |0.03C * 0.13C| / (3.15m)²
F = (9 * 10^9 Nm²/C²) * (0.03C * 0.13C) / (3.15m * 3.15m)
F ≈ 1.538 * 10⁻⁷ N
Therefore, the magnitude of the electric force on the 0.13C charge is approximately 1.538 * 10⁻⁷ N.
2. Calculate the magnitude of the electric field halfway between the two charges:
To find the electric field halfway between the two charges, we can consider the charges as point charges and use the formula for electric field, E = k * |Q| / r².
Given:
Charge (Q) = 0.13C
Distance (r) = (3.15m) / 2 = 1.575m
E = (9 * 10^9 Nm²/C²) * |0.13C| / (1.575m)²
E ≈ 5.073 * 10⁶ N/C
Therefore, the magnitude of the electric field halfway between the two charges is approximately 5.073 * 10⁶ N/C.
In summary:
- The magnitude of the electric force on the 0.13C charge is approximately 1.538 * 10⁻⁷ N.
- The magnitude of the electric field halfway between the two charges is approximately 5.073 * 10⁶ N/C.
To more about force visit:
https://brainly.com/question/30507236
#SPJ11
5) A beaker contains 2 grams of ice at a temperature of -10°C. The mass of the beaker may be ignored. Heat is supplied to the beaker at a constant rate of 2200J/minute. The specific heat of ice is 2100 J/kgk and the heat of fusion for ice is 334 x103 J/kg. How much time passes before the ice starts to melt? (8 pts)
The time it takes for the ice to start melting is approximately 8.22 minutes.
To calculate the time before the ice starts to melt, we need to consider the heat required to raise the temperature of the ice from -10°C to its melting point (0°C) and the heat of fusion required to convert the ice at 0°C to water at the same temperature.
First, we calculate the heat required to raise the temperature of 2 grams of ice from -10°C to 0°C using the specific heat formula Q = m * c * ΔT, where Q is the heat, m is the mass, c is the specific heat, and ΔT is the change in temperature. Substituting the given values, we get Q1 = 2 g * 2100 J/kg°C * (0°C - (-10°C)) = 42000 J.
Next, we calculate the heat of fusion required to convert the ice to water at 0°C using the formula Q = m * Hf, where Q is the heat, m is the mass, and Hf is the heat of fusion. Substituting the given values, we get Q2 = 2 g * 334 x 10³ J/kg = 668000 J.
Now, we sum up the heat required for temperature rise and the heat of fusion: Q_total = Q1 + Q2 = 42000 J + 668000 J = 710000 J.
Finally, we divide the total heat by the heat supplied per minute to obtain the time: t = Q_total / (2200 J/minute) ≈ 322.73 minutes ≈ 8.22 minutes.
Therefore, it takes approximately 8.22 minutes for the ice to start melting when heat is supplied at a constant rate of 2200 J/minute.
learn more about heat of fusion here:
https://brainly.com/question/30403515
#SPJ11
Generally, as you get further from the Earth and closer to the moon, what happens to your speed?
As you get further from Earth and closer to the Moon, your speed would generally decrease because the gravitational force exerted by the Earth becomes weaker as you move away from it, while the gravitational force exerted by the Moon becomes stronger.
In orbital motion, the speed required to maintain a stable orbit around a celestial body depends on the balance between the gravitational force and the centripetal force. The centripetal force required to keep an object in orbit is proportional to the square of its velocity.
As you move away from the Earth, the gravitational force decreases, requiring a lower centripetal force to maintain the orbit. Therefore, the velocity required for a stable orbit decreases, resulting in a lower speed.
However, it's important to note that the actual speed would depend on various factors such as the specific distance from Earth and the Moon, as well as the trajectory and specific conditions of the orbit.
Learn more about gravitational force -
brainly.com/question/27943482
#SPJ11
Question 13 (2 points) Listen A wave is described by y = 0.019 6 sin(kx - wt), where k = 2.0 rad/m, w = 4.0 rad/s, X and y are in meters, and t is in seconds. What is the speed of the wave? 0.25 m/s 4
The speed of the wave described by the equation is 2.0 m/s.
The equation of the wave is given by y = 0.0196 sin(kx - wt), where k = 2.0 rad/m and w = 4.0 rad/s.
The general equation for a wave is y = A sin(kx - wt), where A is the amplitude, k is the wave number, x is the position, w is the angular frequency, and t is the time.
Comparing the given equation with the general equation, we can see that the wave number (k) and the angular frequency (w) are provided.
The speed of a wave can be calculated using the formula:
v = w / k
Substituting the given values:
v = 4.0 rad/s / 2.0 rad/m
Simplifying:
v = 2.0 m/s
Therefore, the speed of the wave described by the equation is 2.0 m/s.
To know more about speed refer here:
https://brainly.com/question/3004254
#SPJ11
Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal.
In the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm, we need to experimentally determine the value of the unknown resistance Rx where Rc is 7.3.
If the point of balance of the Wheatstone bridge we built is reached when l2 is 1.8 cm, we have to calculate the experimental value for Rx.
The Wheatstone bridge circuit shown in Figure 3-2 is balanced when the potential difference across point B and D is zero.
This happens when R1/R2 = Rx/R3. Thus, the resistance Rx can be determined as:
Rx = (R1/R2) * R3, where R1, R2, and R3 are the resistances of the resistor in the circuit.
To find R2, we use the slide wire of total length 7.7 cm. We can say that the resistance of the slide wire is proportional to its length.
Thus, the resistance of wire of length l1 would be (R1 / 7.7) l1, and the resistance of wire of length l2 would be (R2 / 7.7) l2.
Using these formulas, the value of R2 can be calculated:
R1 / R2 = (l1 - l2) / l2 => R2
= R1 * l2 / (l1 - l2)
= 3.3 * 1.8 / (7.7 - 1.8)
= 0.905 Ω.
Now that we know the value of R2, we can calculate the value of Rx:Rx = (R1 / R2) * R3 = (3.3 / 0.905) * 7.3 = 26.68 Ω
Therefore, the experimental value for Rx is 26.7 Ω.
To know more about resistance visit:
https://brainly.com/question/32301085
#SPJ11
Required information Sheena can row a boat at 200 mihin still water. She needs to cross a river that is 1.20 mi wide with a current flowing at 1.80 mi/h. Not having her calculator ready, she guesses that to go straight across, she should head upstream at an angle of 25.0" from the direction straight across the river. What is her speed with respect to the starting point on the bank? mih
Sheena's speed with respect to the starting point on the bank is approximately 183.06 mph.
To find Sheena's speed with respect to the starting point on the bank, we can use vector addition.
Let's break down Sheena's velocity into two components: one component parallel to the river's current (upstream) and one component perpendicular to the river's current (crossing).
1. Component parallel to the river's current (upstream):
Since Sheena is heading upstream at an angle of 25.0° from the direction straight across the river, we can calculate the component of her velocity parallel to the current using trigonometry.
Component parallel = Sheena's speed * cos(angle)
Given Sheena's speed in still water is 200 mph, the component parallel to the river's current is:
Component parallel = 200 mph * cos(25.0°)
2. Component perpendicular to the river's current (crossing):
The component perpendicular to the river's current is equal to the current's speed because Sheena wants to cross the river directly.
Component perpendicular = Current's speed
Given the current's speed is 1.80 mph, the component perpendicular to the river's current is:
Component perpendicular = 1.80 mph
Now, we can calculate Sheena's speed with respect to the starting point on the bank by adding the two components together:
Sheena's speed = Component parallel + Component perpendicular
Sheena's speed = (200 mph * cos(25.0°)) + 1.80 mph
Calculating the values:
Sheena's speed = (200 mph * 0.9063) + 1.80 mph
Sheena's speed = 181.26 mph + 1.80 mph
Sheena's speed ≈ 183.06 mph
Therefore, Sheena's speed with respect to the starting point on the bank is approximately 183.06 mph.
Learn more about speed from the given link:
https://brainly.com/question/13943409
#SPJ11
A +5 nC charge is located at (0,8.62) cm and a -8nC charge is located (5.66, 0) cm.Where would a -2 nC charge need to be located in order that the electric field at the origin be zero? Find the distance r from the origin of the third charge.
Answer:
The -2 nC charge must be located at (2.83, 4.31) cm in order for the electric field at the origin to be zero.
The distance r from the origin of the third charge is 2.83 cm.
Explanation:
The electric field at the origin due to the +5 nC charge is directed towards the origin, while the electric field due to the -8 nC charge is directed away from the origin.
In order for the net electric field at the origin to be zero, the electric field due to the -2 nC charge must also be directed towards the origin.
This means that the -2 nC charge must be located on the same side of the origin as the +5 nC charge, and it must be closer to the origin than the +5 nC charge.
The distance between the +5 nC charge and the origin is 8.62 cm, so the -2 nC charge must be located within a radius of 8.62 cm of the origin.
The electric field due to a point charge is inversely proportional to the square of the distance from the charge, so the -2 nC charge must be closer to the origin than 4.31 cm from the origin.
The only point on the line connecting the +5 nC charge and the origin that is within a radius of 4.31 cm of the origin is the point (2.83, 4.31) cm.
Therefore, the -2 nC charge must be located at (2.83, 4.31) cm in order for the electric field at the origin to be zero.
The distance r from the origin of the third charge is 2.83 cm.
Learn more about Electric Field.
https://brainly.com/question/33261316
#SPJ11
When a glass rod is pulled along a silk cloth, the glass rod acquires a positive charge and the silk cloth acquires a negative charge. The glass rod has 0.19 C of charge per centimeter. Your goal is to transfer 2.4 % 1013 electrons to the silk cloth. How long would your glass rod need to be when you pull it across the silk? (Assume the rod is flat and thin). cm
A [tex]2.02\times10^{-5} cm[/tex] long glass rod is needed when you pull it across the silk.
To calculate the length of the glass rod required to transfer a specific number of electrons, we need to determine the total charge transferred and the charge per unit length of the rod.
Given that the glass rod has a charge of 0.19 C per centimeter, we can find the total charge transferred by multiplying the charge per unit length by the length of the rod.
Let's assume the length of the glass rod is L centimeters. The total charge transferred to the silk cloth would be (0.19 C/cm) × L cm.
We are aiming to transfer [tex]2.4 \times 10^{13}[/tex] electrons to the silk cloth. To convert this to coulombs, we need to multiply by the elementary charge ([tex]e = 1.6 \times 10^{-19} C[/tex]). Therefore, the total charge transferred is ([tex]2.4 \times 10^{13}[/tex] electrons) × ([tex]1.6 \times 10^{-19}[/tex] C/electron).
Setting the two expressions for the total charge transferred equal to each other, we can solve for the length of the rod:
[tex](0.19 C/cm) \times L cm = (2.4 \times 10^{13} electrons)\times (1.6 \times 10^{-19} C/electron)[/tex]
Simplifying and solving for L, we find:
[tex]L = \frac{(2.4 \times 10^{13} electrons) \times (1.6 \times 10^{-19} C/electron)}{ (0.19 C/cm)}\\L=2.02\times 10^{-5}cm[/tex]
Therefore,a [tex]2.02\times10^{-5} cm[/tex] long glass rod is needed when you pull it across the silk.
Learn more about rod here: brainly.com/question/30465865
#SPJ11
Inside a uniform 0.2-T magnetic field, a beam of charged particles moves in a circle with radius 0.3 m. How fast must the particles be moving? (in m/s) (charge-to-mass ratio of each particle =158 ) Your Answer: Answer
The particles must be moving at approximately 9.48 m/s to maintain a circular path inside the 0.2-T magnetic field.
Explanation:
To find the speed of the charged particles moving in a circle inside a magnetic field, we can use the equation for the centripetal force and the equation for the magnetic force.
The centripetal force required to keep an object moving in a circle is given by:
F_c = (m * v^2) / r,
where F_c is the centripetal force, m is the mass of the particle, v is the velocity of the particle, and r is the radius of the circle.
The magnetic force experienced by a charged particle moving in a magnetic field is given by:
F_m = q * v * B,
where F_m is the magnetic force, q is the charge of the particle, v is the velocity of the particle, and B is the magnetic field strength.
Since the charged particle moves in a circle, the centripetal force is provided by the magnetic force:
F_c = F_m.
Equating the two forces, we have:
(m * v^2) / r = q * v * B.
Rearranging the equation, we can solve for the velocity v:
v = (q * B * r) / m.
Given:
B = 0.2 T (magnetic field strength)
r = 0.3 m (radius of the circle)
q/m = 158 (charge-to-mass ratio of each particle)
Substituting the given values into the equation, we get:
v = (158 * 0.2 * 0.3) / 1.
Calculating the result:
v = 9.48 m/s.
Therefore, the particles must be moving at approximately 9.48 m/s to maintain a circular path inside the 0.2-T magnetic field.
To know more about magnetic field, visit:
https://brainly.com/question/19542022
#SPJ11
Can work ever be negative?
A© No, because it is a scalar and scalars only have magnitude, not direction
B© Yes, whenever the force and displacement are antiparallel to each other.
C© No, since kinetic energy is always positive, so must work always be positive
D. Yes, whenever the force and displacement are at right angles to each other
When the force and displacement are antiparallel, the work done is negative. This indicates that work is being done against the motion or energy is being taken away from the system. While work is a scalar quantity with no direction, the negative sign signifies the opposite direction of the displacement. Thus, the correct option is (B).
Work is defined as the product of the force applied to an object and the displacement of the object in the direction of the force. Mathematically, work (W) is given by:
W = F * d * cos(theta)
where F is the magnitude of the force, d is the magnitude of the displacement, and theta is the angle between the force vector and the displacement vector.
When the force and displacement are antiparallel, meaning they are in opposite directions, the angle theta between them is 180 degrees. In this case, the cosine of 180 degrees is -1. Substituting these values into the equation for work, we get:
W = F * d * cos(180°) = F * d * (-1) = -F * d
Therefore, when the force and displacement are antiparallel, the work done is negative. This negative sign indicates that the force is acting in the opposite direction of the displacement, resulting in work being done against the motion or energy being taken away from the system.
It's important to note that work is a scalar quantity, meaning it only has magnitude, not direction. However, the negative sign signifies the direction of the work done, indicating that work is being done in the opposite direction of the displacement.
Thus, the correct option is : (B).
To learn more about work visit : https://brainly.com/question/25573309
#SPJ11
"Two resistors-one with a resistance of 4Ω, the other with a resistance of 6 Ω—are in series in a circuit. If the voltage drop across the 4Ω resistor is 24 V, what is the voltage drop across the 6 Ω resistor? 36 V 24 V 18 V 16 V 12 V"
"The voltage drop across the 6Ω resistor is 60V." None of the given options (36V, 24V, 18V, 16V, 12V) match the correct answer of 60V. A resistor is an electronic component that is commonly used to restrict the flow of electric current in a circuit. It is designed to have a specific resistance value, measured in ohms (Ω).
To determine the voltage drop across the 6Ω resistor, we need to understand how resistors in series behave. When resistors are connected in series, the total resistance is the sum of their individual resistances. In this case, the total resistance is 4Ω + 6Ω = 10Ω.
The voltage drop across a resistor in a series circuit is proportional to its resistance. In other words, the voltage drop across a resistor is determined by the ratio of its resistance to the total resistance of the circuit.
To find the voltage drop across the 6Ω resistor, we can set up a proportion using the resistance values and voltage drops:
4Ω / 10Ω = 24V / X
Where X represents the voltage drop across the 6Ω resistor.
Simplifying the proportion, we get:
4/10 = 24/X
Cross-multiplying, we have:
4X = 10 * 24
4X = 240
Dividing both sides by 4:
X = 240 / 4
X = 60
Therefore, the voltage drop across the 6Ω resistor is 60V.
None of the given options (36V, 24V, 18V, 16V, 12V) match the correct answer of 60V.
To know more about resistor visit:
https://brainly.com/question/30901006
#SPJ11
Q6. Consider two sequences x[n] = {-2 4 1}; 0 ≤ n ≤ 2 y[n] = {1 2 3 4}; 0 ≤ n ≤ 3
(a) Find z[n] = x[n]y[n] using the DFT-based method (b) Verify the answer in part(a) with the Tabular method
x[n] = {-2, 4, 1} , 0 ≤ n ≤ 2, y[n] = {1, 2, 3, 4} , 0 ≤ n ≤ 3, z[n] = x[n]*y[n], we need to calculate the Discrete Fourier Transform (DFT) of both the sequences and then multiply them point by point.
Thus, let's begin by finding DFT of both the sequences. DFT of x[n]:
X[k] = ∑n=0N-1 x[n]e-j2πnk/N,
where N is the length of the sequence x[n].
Here, N = 3.
Thus, X[k] = x[0]e-j2π0k/3 + x[1]e-j2π1k/3 + x[2]e-j2π2k/3
By substituting the given values, we get,
X[0] = -2 + 4 + e-j2π(2/3)kX[1]
= -2 + 4e-j2π/3k + e-j4π/3kX[2]
= -2 + 4e-j4π/3k + e-j2π/3kDFT of y[n]:
Y[k] = ∑n=0N-1 y[n]e-j2πnk/N,
where N is the length of the sequence y[n].
Here, N = 4.
Thus, Y[k] = y[0]e-j2π0k/4 + y[1]e-j2π1k/4 + y[2]e-j2π2k/4 + y[3]e-j2π3k/4
By substituting the given values, we get,
Y[0]
= 10Y[1]
= 1 + 3e-jπ/2kY[2]
= 1 - 2e-jπkY[3]
= 1 + 3ejπ/2k
Now, to find the product z[n], we multiply X[k] and Y[k] point by point. We get,
Z[0] = X[0]Y[0] = -20Z[1] = X[1]Y[1]
= -4 + 4e-jπ/2k + e-j2π/3k + 6e-j4π/3kZ[2]
= X[2]Y[2]
= -2 + 8e-j2π/3k + 3e-j4π/3k + 4e-j2π/3kZ[3]
= X[3]Y[3] = 0
Thus, z[n] = IDFT(Z[k])= IDFT[-20, -4 + 4e-jπ/2k + e-j2π/3k + 6e-j4π/3k, -2 + 8e-j2π/3k + 3e-j4π/3k + 4e-j2π/3k, 0]
Hence, z[n] = {20 2 -2 0}, 0 ≤ n ≤ 3
(b) To verify the answer found in part(a) using Tabular method, let's construct the multiplication table:
y(n) x(n) {-2} {4} {1} 1 {-2} {-8} {-2} 2 {4} {16} {4} 3 {-2} {-4} {-3} 4 {0} {0} {0}
Now, let's find the IDFT of last row of the table to get the answer.
IDFT[0 0 0] = {0}IDFT[20 2 -2] = {20, 2, -2}IDFT[-2 4 -3] = {-1, -2, -1}IDFT[-8 16 -12] = {-1, -2, -1}Therefore, the z[n] values obtained through both the methods are same.
Learn more about Discrete Fourier Transform:
https://brainly.com/question/32065478
#SPJ11
A resistor and a capacitor are in series with an AC source. The
impedance Z = 5.4Ω at 450 Hz and Z = 16.1 Ω at 10 Hz. Find R and
C.
The resistor (R) is approximately 5.33 Ω and the capacitor (C) is approximately 0.0049 F To find the values of the resistor (R) and capacitor (C) in the given series circuit, we can use the impedance-frequency relationship for resistors and capacitors.
Impedance (Z) for a resistor is given by:
[tex]Z_R[/tex] = R
Impedance (Z) for a capacitor is given by:
[tex]Z_C[/tex]= 1 / (2πfC)
where f is the frequency and C is the capacitance.
Z = 5.4 Ω at 450 Hz
Z = 16.1 Ω at 10 Hz
From the information above, we can set up two equations as follows:
Equation 1: 5.4 Ω = R + 1 / (2π * 450 Hz * C)
Equation 2: 16.1 Ω = R + 1 / (2π * 10 Hz * C)
Simplifying the equations, we have:
Equation 1: R + 1 / (900πC) = 5.4
Equation 2: R + 1 / (20πC) = 16.1
To solve this system of equations, we can subtract Equation 2 from Equation 1:
1 / (900πC) - 1 / (20πC) = 5.4 - 16.1
Simplifying further:
(20πC - 900πC) / (900πC * 20πC) = -10.7
-880πC / (900πC * 20πC) = -10.7
Simplifying and canceling out πC terms:
-880 / (900 * 20) = -10.7
-880 / 18000 = -10.7
Solving for C:
C = -880 / (-10.7 * 18000)
C ≈ 0.0049 F (approximately)
Substituting the value of C into Equation 1, we can solve for R:
R + 1 / (900π * 0.0049 F) = 5.4
R + 1 / (900π * 0.0049 F) = 5.4
Simplifying:
R + 1 / (4.52π) = 5.4
R + 0.0696 = 5.4
R ≈ 5.4 - 0.0696
R ≈ 5.33 Ω (approximately)
Therefore, the resistor (R) is approximately 5.33 Ω and the capacitor (C) is approximately 0.0049 F.
Learn more about resistor here:
https://brainly.com/question/22718604
#SPJ11
If the Sun's radiated output power is 3.8 x 1020 W, and a mirror of area 4m² is held perpendicular to the Sun's rays at a distance 9.0 x 10¹0m from the Sun, what is the radiation force on the mirror
The radiation force on the mirror is 1.52x10⁻⁷ N.
The radiation force on an object can be calculated using the formula:
F=P/c
where F is the radiation force, P is the power radiated by the source, and c is the speed of light.
Step 1: Calculate the radiation force
Given: P=3.8x10²⁰W, c=3x10⁸m/s
Substituting the values into the formula:
F=(3.8x10²⁰) (3x10⁸)
F=1.27x10¹²N
Step 2: Convert the radiation force to the force on the mirror
Given: Mirror area=4m²
The force on the mirror can be calculated by multiplying the radiation force by the ratio of the mirror area to the area of a sphere with a radius equal to the distance from the Sun to the mirror.
The area of a sphere with radius r is given by:
A=4πr²
Given: Distance from the Sun to the mirror, r=9.0x10¹⁰ m
Substituting the values into the formula:
A = 4π(9.0 x 10¹⁰)²
A≈1.02x10⁴³m²
The force on the mirror is then given by:
Force on mirror = (Mirror area/ Sphere area)*Radiation force
Force on mirror =(4/1.02x10⁴³)*1.27x10¹²
Force on mirror ≈ 4.97x10⁻³²N
Therefore, the radiation force on the mirror is approximately 1.52x10⁻⁷N.
Learn more about radiation force
brainly.com/question/28203891
#SPJ11
Calculate the maximum acceleration (in m/s) of a car that is heading up a 2.0 slope (one that makes an angle of 2.9 with the horizontal) under the following road conditions. Assume the weight of the car is supported by the four drive wheels and that the coefficient of static friction is involved-that is, the tires are not allowed to vip during the acceleration (Ignere rolling Enter your answers to at least three significant figures) (a) On dry concrete. 44 (b) On wet concrete.() On ice, assuming that 0.100, the same as for shoes on ice
In order to calculate the maximum acceleration (in m/s) of a car that is heading up a 2.0 slope (one that makes an angle of 2.9 with the horizontal) under the following road conditions, we have to use the formula below:`
μ_s` is the coefficient of static friction and is given as 0.100 in case of ice and since the weight of the car is supported by the four drive wheels, `W = 4mg`.
(a) On dry concrete:
The formula for maximum acceleration is:`
a = g(sinθ - μ_s cosθ)`
= `9.81(sin2.9° - 0.6 cos2.9°)`
= `4.4 m/s²`
Therefore, the maximum acceleration of the car on dry concrete is 4.4 m/s².
(b) On wet concrete:
We know that wet concrete has a coefficient of static friction lower than that of dry concrete. Therefore, the maximum acceleration of the car will be lower than on dry concrete
.μ_s (wet concrete)
= 0.4μ_s (dry concrete)
Therefore, `a` (wet concrete) = `a` (dry concrete) × `0.4` = `1.76 m/s²`
Therefore, the maximum acceleration of the car on wet concrete is 1.76 m/s².
(c) On ice, assuming that `μ_s` is the same as for shoes on ice`μ_s` (ice) = 0.100
Therefore, the maximum acceleration of the car on ice is:`
a = g(sinθ - μ_s cosθ)` = `9.81(sin2.9° - 0.100 cos2.9°)` = `1.08 m/s²`
Therefore, the maximum acceleration of the car on ice is 1.08 m/s².
Learn more about coefficient of static friction: https://brainly.com/question/16859236
#SPJ11
both on you (a) What is the frequency of a light wave that has a wavelength of W nanometers? (h) A circular electric generator coil with Y loons has a radius of 0.05 meter and is
(a) The formula that relates the frequency, wavelength, and speed of light is c = λνwhere c is the speed of light, λ is the wavelength and ν is the frequency.
In order to determine the frequency of a light wave with a wavelength of W nanometers, we can use the formula ν = c/λ where c is the speed of light and λ is the wavelength. Once we convert the wavelength to meters, we can substitute the values into the equation and solve for frequency. The induced emf in a generator coil is given by the formula = N(d/dt), where N is the number of loops in the coil and is the magnetic flux.
To calculate the magnetic flux, we first need to calculate the magnetic field at the radius of the coil. This is done using the formula B = (0I/2r). Once we have the magnetic field, we can calculate the magnetic flux by multiplying the magnetic field by the area of the coil. Finally, we can substitute the values into the formula for induced emf and solve for the answer.
To learn more about wavelength, visit:
https://brainly.com/question/31143857
#SPJ11
You are sitting at a train station, and a very high speed train moves by you at a speed of (4/5)c.
A passenger sitting on the train throws a ball up in the air and then catches it, which takes 3/5 s according to the passenger’s wristwatch.
How long does this take according to you?
Group of answer choices
4/5 s
3/4 s
1/2 s
1 s
9/25 s
The time taken for throwing the ball up in the air and then catching it is 9/25 s. The correct option is 9/25 s.
To determine how long the ball takes according to you, we can use the concept of time dilation in special relativity.
Speed of the train relative to you: v = 4/5c (where c is the speed of light)
Time taken by the passenger (according to their wristwatch): t_p = 3/5 s
The time observed by you (t) can be calculated using the time dilation formula:
t = t_p / γ
where γ is the Lorentz factor, given by:
γ = 1 / sqrt(1 - (v² / c²))
Substituting the values:
v = 4/5c, c = speed of light
γ = 1 / sqrt(1 - (4/5)²)
Simplifying the expression:
γ = 5/3
Now, we can calculate the observed time (t):
t = (3/5) / (5/3)
t = (3/5) * (3/5)
t = 9/25 s
Therefore, according to you, it takes 9/25 s for the ball to be thrown up and caught.
So, the correct option is 9/25 s.
Learn more about time here:
https://brainly.com/question/479532
#SPJ11
Radon is a colorless, odorless, radioactive noble gas. Because it occurs naturally in soil, it can become trapped in homes and buildings. Despite a short half-life of only 3.83 days, high concentrations of radon indoors can pose a risk of lung cancer. (For this reason, many modern homes and buildings have radon reduction systems installed.)
Consider an enclosed space in a building which contains 3.01 g of radon gas at time
t = 0.
What mass of radon (in g) will remain in this space after 2.40 days have passed?
g
After 2.40 days have passed, there will be approximately 0.188 g (to three significant figures) of radon remaining in the enclosed space.
The initial mass of radon gas in the enclosed space is 3.01 g. The half-life of radon is 3.83 days, which means that after 3.83 days, half of the radon will have decayed. After another 3.83 days (a total of 7.66 days), half of what remains will have decayed, leaving 1/4 of the original amount. After another 3.83 days (a total of 11.49 days), half of that 1/4 will have decayed, leaving 1/8 of the original amount.
We can continue this process to find the amount of radon remaining after 2.40 days.
From t = 0 to t = 3.83 days, half of the radon has decayed.
This leaves 3.01 g / 2 = 1.505 g of radon.
From t = 3.83 days to t = 7.66 days, half of what remains will decay.
This leaves 1.505 g / 2 = 0.7525 g of radon.
From t = 7.66 days to t = 11.49 days, half of what remains will decay.
This leaves 0.7525 g / 2 = 0.37625 g of radon.
From t = 11.49 days to t = 15.32 days (a total of 2.40 days have passed), half of what remains will decay. This leaves 0.37625 g / 2 = 0.188125 g of radon.
To know more about enclosed space visit:-
https://brainly.com/question/8239893
#SPJ11
Find the center and radius of the sphere. xyz center , radius startfraction startroot 303 endroot over 6 endfraction (type exact answers, using radicals as needed.)
Therefore, the center of the sphere is (0, 0, 0), and the radius is √(303)/√(6). The center of the sphere is located at the origin (0, 0, 0), and the radius of the sphere is √(303)/√(6).
To find the center and radius of the sphere, we can use the equation of a sphere in standard form: (x - h)^2 + (y - k)^2 + (z - l)^2 = r^2, where (h, k, l) represents the center coordinates and r represents the radius.
Given the equation for the sphere: (x^2 + y^2 + z^2) = (303/6), we can rewrite it in the standard form:
(x - 0)^2 + (y - 0)^2 + (z - 0)^2 = (303/6)
From this equation, we can determine that the center of the sphere is at the point (0, 0, 0), since the values of (h, k, l) in the standard form equation are all zeros.
To find the radius, we take the square root of the right-hand side of the equation:
r = √(303/6) = √(303)/√(6)
Therefore, the center of the sphere is (0, 0, 0), and the radius is √(303)/√(6).
The center of the sphere is located at the origin (0, 0, 0), and the radius of the sphere is √(303)/√(6).
To know more about radius visit:
https://brainly.com/question/30295580
#SPJ11
A marble rolls on the track as shown in the picture with hb = 0.4 m and hc = 0.44 m. The ball is initially rolling with a speed of 4.4 m/s at point a.
What is the speed of the marble at point B?
What is the speed of the marble at point C?: B С hB hc 1 - А
The speed of the marble at point B is approximately 2.79 m/s, and the speed of the marble at point C is approximately 2.20 m/s.
To calculate the speed of the marble at point B, we can use the principle of conservation of mechanical energy, which states that the total mechanical energy (sum of kinetic energy and potential energy) remains constant in the absence of non-conservative forces like friction.
At point A, the marble has an initial speed of 4.4 m/s. At point B, the marble is at a higher height (hB = 0.4 m) compared to point A. Assuming negligible friction, the marble's initial kinetic energy at point A is converted entirely into potential energy at point B.
Using the conservation of mechanical energy, we equate the initial kinetic energy to the potential energy at point B: (1/2)mv^2 = mghB, where m is the mass of the marble, v is the speed at point B, and g is the acceleration due to gravity.
Simplifying the equation, we find v^2 = 2ghB. Substituting the given values, we have v^2 = 2 * 9.8 * 0.4, which gives v ≈ 2.79 m/s. Therefore, the speed of the marble at point B is approximately 2.79 m/s.
To determine the speed of the marble at point C, we consider the change in potential energy and kinetic energy between points B and C. At point C, the marble is at a higher height (hc = 0.44 m) compared to point B.
Again, assuming negligible friction, the marble's potential energy at point C is converted entirely into kinetic energy. Using the conservation of mechanical energy, we equate the potential energy at point B to the kinetic energy at point C: mghB = (1/2)mv^2, where v is the speed at point C.
Canceling the mass (m) from both sides of the equation, we find ghB = (1/2)v^2. Substituting the given values, we have 9.8 * 0.4 = (1/2)v^2. Solving for v, we find v ≈ 2.20 m/s. Therefore, the speed of the marble at point C is approximately 2.20 m/s.
Learn more about speed here; brainly.com/question/28224010
#SPJ11
If the wavelength of a wave of light is 4.57 x 10-9 m, what is
it's frequency? c = 3.0 x 108 m/s
a. 1.5 x 10-17 Hz
b. 1.37 Hz
c. 3.00 x 108 Hz
d. 6.56 x 1016 Hz
The frequency of a wave can be calculated using the formula f = c / λ, where f is the frequency, c is the speed of light, and λ is the wavelength. By plugging in the given values for the wavelength and speed of light, we can calculate the frequency of the wave. The correct answer is option d, 6.56 x 10^16 Hz.
The frequency of a wave can be calculated using the formula:
Frequency (f) = Speed of light (c) / Wavelength (λ)
The wavelength of the light wave is 4.57 x 10^-9 m and the speed of light is c = 3.0 x 10^8 m/s, we can substitute these values into the formula:
f = (3.0 x 10^8 m/s) / (4.57 x 10^-9 m)
Calculating this expression will give us the frequency of the wave.
f ≈ 6.56 x 10^16 Hz
Therefore, the correct answer is option d. 6.56 x 10^16 Hz.
learn more about "frequency ":- https://brainly.com/question/254161
#SPJ11
The electromagnetic wave propagating in a non-magnetic medium is described by: Ex 20 πcos (2πx10^8t +2πz). Which one of the following statements is NOT correct? (a) Frequency of wave is 10° Hz. (b) Wave propagates in +z direction. (c) Wave propagates in -z direction (d) Wave possesses zero Hz component in the propagation direction. (e) Wave possesses a non-zero Hy component.
The wavelength of the propagating wave described in above is: (a) 3 m (b) 2 m (c) 1 m (d) 4 m
The statement that is NOT correct is (c) Wave propagates in -z direction. Wavelength of the propagating wave described in the given expression is (a) 3 m.
The given expression describes an electromagnetic wave propagating in a non-magnetic medium. The electric field component, Ex, is given by Ex = 20 πcos (2πx10^8t +2πz), where t represents time and z represents the direction of propagation.
From the expression, we can deduce the following information:
(a) The frequency of the wave is 10^8 Hz, as seen from the coefficient of 't' in the argument of the cosine function.
(b) The wave propagates in the +z direction, as the z-term appears positively in the argument of the cosine function.
(d) The wave possesses zero Hz component in the propagation direction, as there is no term involving 't' only in the argument.
(e) The wave possesses a non-zero Hy component, even though it is not explicitly given in the expression. This is because in an electromagnetic wave, there is always a relationship between the electric field (Ex) and the magnetic field (Hy), and any non-zero Ex implies the existence of a non-zero Hy. Therefore, the statement that is NOT correct is (c) Wave propagates in -z direction.
The wavelength of the propagating wave can be determined by the relationship between wavelength, frequency, and the speed of light. The speed of light in a vacuum is approximately 3 x 10^8 meters per second. Since the given frequency is 10^8 Hz, we can use the equation v = λf, where v is the speed of light, λ is the wavelength, and f is the frequency. Solving for λ, we have λ = v/f. Substituting the values, we get λ = (3 x 10^8)/(10^8) = 3 meters.
Therefore, the wavelength of the propagating wave described in the given expression is (a) 3 m.
learn more about electromagnetic wave here:
https://brainly.com/question/29774932
#SPJ11
An RLC series circuit has a voltage source given by E(t) = 35 V, a resistor of 210 52, an inductor of 6 H, and a capacitor of 0.04 F. If the initial current is zero and the initial charge on the capacitor is 8 C, determine the current in the circuit for t>0. l(t)= (Type an exact answer, using radicals as needed.)
The current in the RLC series circuit for t > 0 is zero, regardless of the circuit parameters and initial conditions.
To determine the current in the RLC series circuit for t > 0, we can solve the differential equation that governs the circuit using the given circuit parameters. The differential equation is derived from Kirchhoff's voltage law (KVL) and is given by:
L(di/dt) + Ri + (1/C)q = E(t)
Where:
L = Inductance (6 H)
C = Capacitance (0.04 F)
R = Resistance (210 Ω)
E(t) = Voltage source (35 V)
q = Charge on the capacitor
Since the initial current is zero (i(0) = 0) and the initial charge on the capacitor is 8 C (q(0) = 8 C), we can substitute these values into the equation. Let's solve the differential equation step by step.
Differentiating the equation with respect to time, we have:
L(d²i/dt²) + R(di/dt) + (1/C)(dq/dt) = dE(t)/dt
Since E(t) = 35 V (constant), its derivative is zero:
L(d²i/dt²) + R(di/dt) + (1/C)(dq/dt) = 0
We also know that q = CV, where V is the voltage across the capacitor. In an RLC series circuit, the voltage across the capacitor is the same as the voltage across the inductor and resistor. Therefore, V = iR, where i is the current. Substituting this into the equation:
L(d²i/dt²) + R(di/dt) + (1/C)(d(CiR)/dt) = 0
Simplifying further:
L(d²i/dt²) + R(di/dt) + iR/C = 0
This is a second-order linear homogeneous differential equation. We can solve it by assuming a solution of the form i(t) = e^(st), where s is a complex constant. Substituting this into the equation, we get:
L(s²e^(st)) + R(se^(st)) + (1/C)(e^(st))(R/C) = 0
Factoring out e^(st):
e^(st)(Ls² + Rs + R/C) = 0
For a nontrivial solution, the expression in parentheses must be equal to zero:
Ls² + Rs + R/C = 0
Now we have a quadratic equation in s. We can solve it using the quadratic formula:
s = (-R ± √(R² - 4L(R/C))) / (2L)
Plugging in the values R = 210 Ω, L = 6 H, and C = 0.04 F:
s = (-210 ± √(210² - 4(6)(210/0.04))) / (2(6))
Simplifying further:
s = (-210 ± √(44100 - 84000)) / 12
s = (-210 ± √(-39900)) / 12
Since the discriminant (√(-39900)) is negative, the roots of the quadratic equation are complex conjugates. Let's express them in terms of radicals:
s = (-210 ± i√(39900)) / 12
Simplifying further:
s = (-35 ± i√(331)) / 2
Now that we have the values of s, we can write the general solution for i(t):
i(t) = Ae^((-35 + i√(331))t/2) + Be^((-35 - i√(331))t/2)
where A and
B are constants determined by the initial conditions.
To find the specific solution for the given initial conditions, we need to solve for A and B. Since the initial current is zero (i(0) = 0), we can substitute t = 0 and set i(0) = 0:
i(0) = A + B = 0
Since the initial charge on the capacitor is 8 C (q(0) = 8 C), we can substitute t = 0 and set q(0) = C * V(0):
q(0) = CV(0) = 8 C
Since V(0) = i(0)R, we can substitute the value of i(0):
CV(0) = 0 * R = 0
Therefore, A and B must be zero. The final solution for i(t) is:
i(t) = 0
So, the current in the circuit for t > 0 is zero.
Learn more about RLC series circuit
brainly.com/question/32069284
#SPJ11
Question 6 The planet Mercury spins on its axis with a period of 87.9691 days. The radius of Mercury is Mer~ 2439.7 km and it has a mass of MMer ≈ 3.3011 × 1023 kg. a. (4) There are no natural satellites of Mercury, but suppose someone wanted to put an artificial satellite into a geosynchronous orbit about the planet. Determine the height above the surface of Mercury at which such a satellite would need to orbit. b. (2) Determine the orbit speed of Mercury around the Sun in kms¹ give that Mercury is currently located 63.022 million km from the Sun.
a. Geosynchronous orbit is an orbit at an altitude of 6.6 Mercurian radii (about 15,800 kilometers) above the surface of Mercury. An artificial satellite in geosynchronous orbit would have a period of one Mercurian day (87.9691 Earth days) and appear to be stationary above the same point on Mercury's surface.
Such a satellite can be used to monitor the planet for an extended period of time. Hence, if someone wanted to put an artificial satellite into a geosynchronous orbit about the planet Mercury, it would need to orbit at an altitude of 6.6 Mercurian radii (about 15,800 kilometers) above the surface of Mercury.
b. The orbit speed of Mercury around the Sun is determined using the equation:v = (GM / r)¹/²Where v is the orbit speed, G is the gravitational constant, M is the mass of the Sun, and r is the distance between Mercury and the Sun. Using the given values, we get:v = (6.6743 × 10⁻¹¹ m³ kg⁻¹ s⁻² × 1.989 × 10³⁰ kg / 6.3022 × 10¹⁰ m)¹/²v ≈ 47.36 km/sHence, the orbit speed of Mercury around the Sun is approximately 47.36 km/s.
to know more about Geosynchronous orbit pls visit-
https://brainly.com/question/29173617
#SPJ11
A 2.0-m long wire carries a 5.0-A current due north. If there is a 0.010T magnetic field pointing west, what is the magnitude of the magnetic force on the wire?
Answer: N
Which direction (N-S-E-W-Up-Down) is the force on the wire?
The magnitude of the magnetic force on the wire is 0.10 N.
To calculate the magnitude of the magnetic force on the wire,
F = I * L * B * sin(θ)
Where:
F is the magnetic force,
I is the current in the wire,
L is the length of the wire,
B is the magnetic field strength,
θ is the angle between the wire and the magnetic field.
then,
the current in the wire is 5.0 A,
the length of the wire is 2.0 m, and
the magnetic field strength is 0.010 T.
Since the wire carries current due north and the magnetic field is pointing west, the angle between them is 90 degrees.
Plugging in the values into the formula:
F = (5.0 A) * (2.0 m) * (0.010 T) * sin(90°)
F = (5.0 A) * (2.0 m) * (0.010 T) * 1
F = 0.10 N
The magnitude of the magnetic force on the wire is 0.10 N.
To determine the direction of the force on the wire, you can use the right-hand rule. Point your right thumb in the direction of the current (north) and curl your fingers in the direction of the magnetic field (west). Your palm will indicate the direction of the magnetic force, which is downward.
Therefore, the direction of the force on the wire is Down.
Learn more about direction of the force on the given link:
https://brainly.in/question/11141476
#SPJ11
On a low-friction track, a 0.36-kg cart initially moving to the right at 4.05 m/s collides elastically with a 0.12 kg cart initially moving to the left at 0.13 m/s. The 0.12-kg cart bounces off the 0.36-kg cart and then compresses a spring attached to the right end of the track.
The elastic potential energy stored in the spring at the instant of maximum compression is 0.726 J.
From the question above, After the collision, the first cart moves to the right with a velocity of 1.08 m/s and the second cart moves to the left with a velocity of -3.49 m/s.
Considering only the second cart and the spring, we can use conservation of mechanical energy. The initial energy of the second cart is purely kinetic. At maximum compression of the spring, all of the energy of the second cart will be stored as elastic potential energy in the spring.
Thus, we have:
elastic potential energy = kinetic energy of second cart at maximum compression of the spring= 0.5mv2f2= 0.5(0.12 kg)(-3.49 m/s)2= 0.726 J
Therefore, the elastic potential energy stored in the spring at the instant of maximum compression is 0.726 J.
Your question is incomplete but most probably your full question was:
On a low-friction track, a 0.36-kg cart initially moving to the right at 4.05 m/s collides elastically with a 0.12-kg cart initially moving to the left at 0.13 m/s. The 0.12-kg cart bounces off the 0.36-kg cart and then compresses a spring attached to the right end of the track.
At the instant of maximum compression of the spring, how much elastic potential energy is stored in the spring?
Learn more about elastic collision at
https://brainly.com/question/15003349
#SPJ11
In the circuit below, the switch is closed after it had been open a long time. If the EMF, resistances, and capacitance are ϵ=9 V,R1=16Ω,R2=6Ω, and C=35μF, what is the charge stored on the capacitor a long time after the switch is closed? (in microC) Your Answer:
When the switch in the circuit is closed after being open for a long time, the circuit becomes steady, and a current of
i = ϵ / (R1 + R2) flows through the circuit. the charge stored on the capacitor a long time after the switch is closed is 85.75 μC. Answer: 85.75 μC.
The charge stored on the capacitor is given by the formula Q = CV, where Q is the charge, C is the capacitance, and V is the voltage across the capacitor.
Let's first calculate the voltage across the capacitor. Since the switch has been open for a long time, the capacitor would have been discharged and would act as a short circuit. Therefore, the voltage across the capacitor after the switch is closed is given by the following equation:
Vc = (R2 / (R1 + R2)) * ϵ
= (6 / 22) * 9
= 2.45V
Now, using the formula Q = CV, we can calculate the charge stored on the capacitor.
Q = C * Vc
= 35 * 10^-6 * 2.45
= 85.75 μC
Therefore, the charge stored on the capacitor a long time after the switch is closed is 85.75 μC. Answer: 85.75 μC.
To know more about circuit visit :
https://brainly.com/question/12608516
#SPJ11
After+how+many+generations+can+we+expect+the+allele+frequency+of+the+recessive+mutant+to+have+dropped+under+1%+of+its+value+in+generation+f0?
We can estimate the number of generations required as:
Number of generations ≈ 1 / (2p * 0.01)
Keep in mind that this is a simplified estimate based on the assumptions mentioned earlier. In reality, the number of generations required can vary significantly based on the specific circumstances of the population, including factors such as selection pressure, genetic drift, and mutation rate.
To determine the number of generations required for the allele frequency of a recessive mutant to drop under 1% of its value in generation F0, we need additional information, such as the initial allele frequency, the mode of inheritance, and the selection pressure acting on the recessive mutant allele. Without these details, it is not possible to provide a specific answer.
The rate at which an allele frequency changes over generations depends on several factors, including the mode of inheritance (e.g., dominant, recessive, co-dominant), selection pressure, genetic drift, mutation rate, and migration.
If we assume a simple scenario where there is no selection pressure, genetic drift, or mutation rate, and the mode of inheritance is purely recessive, we can estimate the number of generations required for the recessive mutant allele frequency to drop below 1% of its value.
Let's denote the initial allele frequency as p and the frequency of the recessive mutant allele as q. Since the mode of inheritance is recessive, the frequency of homozygous recessive individuals would be q^2.
To estimate the number of generations required for q^2 to drop below 1% of its value, we can use the Hardy-Weinberg equilibrium equation:
p^2 + 2pq + q^2 = 1
Assuming that the initial allele frequency p is relatively high (close to 1) and q^2 is very small (less than 0.01), we can simplify the equation to:
2pq ≈ 1
Solving for q:
q ≈ 1 / (2p)
To drop below 1% of its value, q needs to be less than 0.01 * q0, where q0 is the initial allele frequency.
Therefore, we can estimate the number of generations required as:
Number of generations ≈ 1 / (2p * 0.01)
Keep in mind that this is a simplified estimate based on the assumptions mentioned earlier. In reality, the number of generations required can vary significantly based on the specific circumstances of the population, including factors such as selection pressure, genetic drift, and mutation rate.
To learn more about, genetic drift, click here, https://brainly.com/question/12086252
#SPJ11
The magnetic field of an electromagnetic wave is given by B(x, t) = (0.60 µT) sin [(7.00 × 106 m¯¹) x x- Calculate the amplitude Eo of the electric field. Eo = Calculate the speed v. V= Calculate the frequency f. f = Calculate the period T. T = (2.10 × 10¹5 s-¹) t] N/C m/s Hz Question Source: Freedman Co Calculate the speed v. Calculate the frequency f. f = Calculate the period T. T = Calculate the wavelength 2. λ = m/s Hz S m
The magnetic field of an electromagnetic wave is given by B(x, t) = (0.60 µT) sin [(7.00 × 10^6 m¯¹) x - (2.10 × 10¹5 s-¹) t]
Calculate the amplitude Eo of the electric field:Eo = B(x, t) * c = (0.60 µT) * 3.00 × 10^8 m/s = 1.80 × 10^-4 NC^-1
Calculate the speed v:v = 1/√(μ * ε)where, μ = 4π × 10^-7 T m/ε = 8.854 × 10^-12 F/mv = 1/√(4π × 10^-7 T m/ 8.854 × 10^-12 F/m)v = 2.998 × 10^8 m/s
Calculate the frequency f:f = (2.10 × 10¹5 s-¹) / 2πf = 3.34 × 10^6 Hz
Calculate the period T:T = 1/fT = 3.00 × 10^-7 s
Calculate the wavelength 2. λ:λ = v / fλ = 2.998 × 10^8 m/s / 3.34 × 10^6 Hzλ = 89.8 m
Thus, the amplitude Eo of the electric field is 1.80 × 10^-4 NC^-1, the speed of the electromagnetic wave is 2.998 × 10^8 m/s, the frequency is 3.34 × 10^6 Hz, the period is 3.00 × 10^-7 s and the wavelength is 89.8 m.
to know more about electromagnetic wave here:
brainly.com/question/29774932
#SPJ11
1. The current in two straight, parallel, fixed wires are in the same direction. If currents in the both wires are doubled, the magnitude of the magnetic force between the two wires A) decreases, B) r
the magnetic force between two parallel wires in the same direction increases as the current passing through them is doubled. Therefore, the correct option is D) increases.
When two straight, parallel, fixed wires have current passing through them in the same direction, the magnitude of the magnetic force between the two wires is given by the equation: F = μ₀I₁I₂ℓ/2πd, where F is the magnetic force, I₁ and I₂ are the currents in the wires, d is the distance between the wires, ℓ is the length of the wires, and μ₀ is the permeability of free space. If the currents in both wires are doubled, the magnetic force between the wires will increase since the force is directly proportional to the product of the currents.
we can summarize the concept of magnetic force between two straight, parallel, fixed wires as follows.When two straight, parallel, fixed wires have current passing through them in the same direction, a magnetic force acts between them. The magnetic force between two wires is given by the equation: F = μ₀I₁I₂ℓ/2πd, where F is the magnetic force, I₁ and I₂ are the currents in the wires, d is the distance between the wires, ℓ is the length of the wires, and μ₀ is the permeability of free space. If the currents in both wires are doubled, the magnetic force between the wires will increase since the force is directly proportional to the product of the currents.
To know more about wires visit:
brainly.com/question/31253325
#SPJ11