The angle at which the second minimum will occur is approximately 70.34°. Hence, option (c) 69.90° is the closest correct answer.
First minimum (m = 1) for 633 nm light occurs at an angle of 28.09°.
We need to find the angle at which the second minimum (m = 2) will occur.
Using the formula for the position of the nth minimum in a single slit diffraction:
d * sin(theta) = n * lambda
where:
d is the width of the slit,
theta is the angle of diffraction,
lambda is the wavelength of light,
n is the order of the minimum.
For the first minimum (m = 1):
d * sin(theta_1) = 1 * lambda
For the second minimum (m = 2):
d * sin(theta_2) = 2 * lambda
Dividing the equation for the second minimum by the equation for the first minimum:
sin(theta_2) / sin(theta_1) = (2 * lambda) / lambda
sin(theta_2) / sin(theta_1) = 2
To find theta_2, we need to take the inverse sine (arcsine) of both sides:
theta_2 = arcsin(2 * sin(theta_1))
Substituting the given angle for the first minimum:
theta_2 = arcsin(2 * sin(28.09°))
Calculating this expression, we find:
theta_2 ≈ 70.341732°
Therefore, the angle at which the second minimum will occur is approximately 70.34°. Hence, option (c) 69.90° is the closest correct answer.
Learn more about diffraction at: https://brainly.com/question/8645206
#SPJ11
Problem 14: (10 Points) Cork has a density of 0,24 g/cm? Calculate the fraction of a cork's volume that is submerged when it floats in water. a Problem 15: (10 Points) Calculate the speed of an electron accelerated by the 20,000-V poten- tial difference found in the CRT in Figure 10.5. The mass of an elec- tron is 9.11 x 10 31 kg.
Problem 14: Approximately 24% of a cork's volume is submerged when it floats in water, Problem 15: The speed of an electron accelerated by a 20,000-V potential difference is approximately 5.93 x 10^6 m/s.
Problem 14:
To calculate the fraction of a cork's volume that is submerged when it floats in water, we can use the concept of buoyancy.
Given:
Density of cork (ρ_cork) = 0.24 g/cm³ (or 0.24 x 10³ kg/m³)
Density of water (ρ_water) = 1000 kg/m³ (approximately)
The fraction of the cork's volume submerged (V_submerged / V_total) can be determined using the Archimedes' principle:
V_submerged / V_total = ρ_cork / ρ_water
Substituting the given values:
V_submerged / V_total = (0.24 x 10³ kg/m³) / 1000 kg/m³
Simplifying the expression:
V_submerged / V_total = 0.24
Therefore, the fraction of a cork's volume that is submerged when it floats in water is 0.24, or 24%.
Problem 15:
To calculate the speed of an electron accelerated by the 20,000-V potential difference, we can use the concept of electrical potential energy and kinetic energy.
Given:
Potential difference (V) = 20,000 V
Mass of an electron (m) = 9.11 x 10⁻³¹ kg
The electrical potential energy gained by the electron is equal to the change in kinetic energy. Therefore, we can equate them:
(1/2) m v² = qV
Where:
v is the speed of the electron
q is the charge of the electron (1.6 x 10⁻¹⁹ C)
Rearranging the equation to solve for v:
v = √(2qV / m)
Substituting the given values:
v = √((2 x 1.6 x 10⁻¹⁹ C x 20,000 V) / (9.11 x 10⁻³¹ kg))
Calculating the value:
v ≈ 5.93 x 10⁶ m/s
Therefore, the speed of the electron accelerated by the 20,000-V potential difference is approximately 5.93 x 10⁶ m/s.
To know more about speed, click here:
brainly.com/question/17661499
#SPJ11
A boat's speed in still water is 1.95 m/s. The boat is to travel directly across a river whose current has speed 1.05 m/s Determine the speed of the boat with respect to the shore. Express your answer using three significant figures and include the appropriate units.
The speed of the boat with respect to the shore is 2.21 m/s
How to determine the resultant speedFrom the information given, we have that;
A boat's speed in still water is 1.95 m/sThe boat is to travel directly across a river whose current has speed 1.05 m/sWe can see that the movement is in both horizontal and vertical directions.
Using the Pythagorean theorem, let use determine the resultant speed of the boat with respect to the shore, we have that;
Resultant speed² = √((boat's speed)² + (current's speed)²)
Substitute the value as given in the information, we have;
= (1.95)² + (1.05 )²)
Find the value of the squares, we get;
= (3.8025 + 1.1025 )
Find the square root of both sides, we have;
= √4.905
Find the square root of the value, we have;
= 2.21 m/s
Learn more about speed at: https://brainly.com/question/13943409
#SPJ4s
A 7.80 g bullet has a speed of $20 m/s when it hits a target, causing the target to move 4:70 cm in the direction of the bullet's velocity before stopping. (A) Use work and energy considerations to find the average force (in N) that stops the bullet. (Enter the magnitude.) ____________ (B) Assuming the force is constant, determine how much time elapses (in s) between the moment the bullet strikes the target and the moment it stops moving
___________
We can use the principle of work and energy conservation. The work done by the average force on the bullet is equal to the change in kinetic energy of the bullet.
Additionally, the work done by the average force on the target is equal to the change in kinetic energy of the target.
(A) Average force on the bullet:
The work done on the bullet is equal to the change in its kinetic energy. We can calculate the initial kinetic energy of the bullet using the formula:
KE_bullet = (1/2) * m_bullet * v_bullet²
where m_bullet is the mass of the bullet and v_bullet is its initial velocity.
Plugging in the values:
m_bullet = 7.80 g = 0.00780 kg
v_bullet = 20 m/s
KE_bullet = (1/2) * 0.00780 kg * (20 m/s)² = 1.56 J
Since the bullet stops, its final kinetic energy is zero. Therefore, the work done by the average force on the bullet is equal to the initial kinetic energy:
Work_bullet = KE_bullet = 1.56 J
The displacement of the bullet is not given, but it's not needed to calculate the average force.
(B) Time elapsed until the bullet stops:
The work done by the average force on the target is equal to the change in kinetic energy of the target. Since the target comes to a stop, its final kinetic energy is zero. We can calculate the initial kinetic energy of the target using the formula:
KE_target = (1/2) * m_target * v_target²
where m_target is the mass of the target and v_target is its initial velocity.
The mass of the target is not given, so we cannot determine the exact value for the force or the time elapsed.
To know more about work done visit:
https://brainly.com/question/25573309
#SPJ11
2.60 cm in 0.056 5. The tick marks alona the axis are separated by 2.0 cm. (a) What is the amplitude? X m (b) What is the wavelength? min (c) What is the whyespned? m/s (d) Wrat is the frequency? Hz
Amplitude: 1.0 cm, Wavelength: 4.0 cm, Wave speed: 0.04 m/s, Frequency: 1 Hz.
a)The amplitude of a wave represents the maximum displacement of a particle from its equilibrium position. From the given data, the tick marks are separated by 2.0 cm. Since the amplitude is half the distance between two consecutive peaks or troughs, the amplitude is 1.0 cm.(b) The wavelength of a wave is the distance between two consecutive points in phase, such as two adjacent peaks or troughs. In this case, the distance between two tick marks is 2.0 cm, which corresponds to half a wavelength. Therefore, the wavelength is 4.0 cm. (c) The wave speed (v) is the product of the wavelength (λ) and the frequency (f). Since the wavelength is given as 4.0 cm and the units of wave speed are typically meters per second (m/s), we need to convert the wavelength to meters. Hence, the wave speed is 0.04 m/s (4.0 cm = 0.04 m) assuming the given separation between tick marks represents half a wavelength. (d) The frequency (f) of a wave is the number of complete cycles passing a given point per unit of time. We can calculate the frequency using the equation f = v / λ, where v is the wave speed and λ is the wavelength. Substituting the values, we have f = 0.04 m/s / 0.04 m = 1 Hz
To learn more about Amplitude:
https://brainly.com/question/23567551
#SPJ11
a skateboarder uses an incline to jump over a wall. the skateboarder reaches their maximum height at the wall barely making it over. the height of the wall is h=.86 m. the ramp makes an angle of 35 degrees with respect to the ground. Assume the height of the ramp is negligible so that it can be ignored.
Write the known kinematic variables for the horizontal and vertical motion.
What initial speed does the skateboarded need to make the jump?
How far is the wall from the ramp?
Known kinematic variables:
Vertical motion: Maximum height (h = 0.86 m), angle of incline (θ = 35 degrees), vertical acceleration (ay = -9.8 m/s^2).
Horizontal motion: Distance to the wall (unknown), horizontal velocity (unknown), horizontal acceleration (ax = 0 m/s^2).
To calculate the initial speed (vi) needed to make the jump, we can use the vertical motion equation:
h = (vi^2 * sin^2(θ)) / (2 * |ay|)
Plugging in the given values:
h = 0.86 m
θ = 35 degrees
ay = -9.8 m/s^2
We can rearrange the equation to solve for vi:
vi = √((2 * |ay| * h) / sin^2(θ))
Substituting the values and calculating:
vi = √((2 * 9.8 m/s^2 * 0.86 m) / sin^2(35 degrees))
vi ≈ 7.12 m/s
Therefore, the skateboarder needs an initial speed of approximately 7.12 m/s to make the jump.
To find the distance to the wall (d), we can use the horizontal motion equation:
d = vi * cos(θ) * t
Since the height of the ramp is negligible, the time of flight (t) can be determined solely by the vertical motion. We can use the equation:
h = (vi * sin(θ) * t) + (0.5 * |ay| * t^2)
We can rearrange this equation to solve for t:
t = (vi * sin(θ) + √((vi * sin(θ))^2 + 2 * |ay| * h)) / |ay|
Substituting the values and calculating:
t = (7.12 m/s * sin(35 degrees) + √((7.12 m/s * sin(35 degrees))^2 + 2 * 9.8 m/s^2 * 0.86 m)) / 9.8 m/s^2
t ≈ 0.823 s
Finally, we can substitute the time value back into the horizontal motion equation to find the distance to the wall (d):
d = 7.12 m/s * cos(35 degrees) * 0.823 s
d ≈ 4.41 m
Therefore, the wall is approximately 4.41 meters away from the ramp.
To know more about vertical motion , visit:- brainly.com/question/12640444
#SPJ11
If a lamp has a resistance of 265 Ω when it operates at 250 W, what current does it carry?
The expression that relates current, resistance, and voltage in a circuit is known as Ohm's Law. A lamp that has a resistance of 265 Ω and operates at 250 W can be used to find the current it carries.
To solve this issue, Ohm's Law can be used. When a voltage is applied to the lamp, it generates a current. This current is referred to as the current passing through the lamp. It is measured in amperes (A).
Resistance (R) is a physical property that determines how much a given object resists the flow of current. The value of resistance determines the rate of energy loss in an object. It is usually measured in ohms (Ω)
According to Ohm's Law,
V= IR
where
V = Voltage
I = Current
R = Resistance
Ohm's Law can be rewritten as
I = V/R
Since P = VI, the voltage across the lamp can be calculated using the formula below:
V = √(P × R)
= √(250 × 265)
= 458.7 V
Now that the voltage and resistance of the lamp are known, the current that it carries can be calculated using the following formula:
I = V/R = 458.7/265 = 1.73 A
Therefore, the current that the lamp carries is 1.73A when it operates at 250W with a resistance of 265Ω.
Learn more about Ohm's Law: https://brainly.com/question/1247379
#SPJ11
Suppose the position of an object is given by = (3.0425 - 60 +j)m Where t in seconds Determine its velocity v as a function of time t. Express your answer using two significant figures. Express your answer in terms of the unit vectors i and j.
The velocity of the object as a function of time is v(t) = 1 j m/s
To determine the velocity of the object as a function of time, we need to take the derivative of its position function with respect to time.
The position of the object is given by:
r(t) = (3.0425 - 60 + j) m
Let's differentiate each component of the position function with respect to time:
r'(t) = (d/dt)(3.0425 - 60 + j)
= (0 + 0 + j)
= j
Therefore, the velocity of the object as a function of time is:
v(t) = r'(t)
= j
The velocity is constant and its magnitude is 1 m/s in the j direction (vertical). The unit vector j represents the vertical direction.
Hence, the velocity of the object is v(t) = 1 j m/s.
Learn more about velocity https://brainly.com/question/80295
#SPJ11
Numerical Response #5 A 1.50-m-long pendulum has a period of 1.50 s. The acceleration due to gravity at the location of this pendulum is ______ m/s2 .10. In the case of a longitudinal wave, energy is transmitted A. in the direction of particle vibration B. at right angles to particle vibration C. out of phase with particle vibration D. in all directions
The acceleration due to gravity at the location of the pendulum with a length of 1.50 meters and a period of 1.50 seconds is 9.81 m/s².
A pendulum is a system that vibrates in a harmonic motion. The time it takes to complete one cycle of motion is known as the period. The period of a pendulum can be calculated using the formula: T = 2π√(l/g)
Where T is the period, l is the length of the pendulum, and g is the acceleration due to gravity. If we rearrange the formula to solve for g, we get: g = (4π²l)/T²
To find the acceleration due to gravity at the location of this pendulum, we can substitute the given values:
l = 1.50 m, and T = 1.50 s.g = (4π²(1.50 m))/(1.50 s)²= 9.81 m/s²
We are given a pendulum that has a length of 1.50 meters and a period of 1.50 seconds. Using the formula for the period of a pendulum, we can determine the acceleration due to gravity at the location of the pendulum.
The period of a pendulum is determined by the length of the pendulum and the acceleration due to gravity. The formula for the period of a pendulum is T = 2π√(l/g), where T is the period, l is the length of the pendulum, and g is the acceleration due to gravity. By rearranging the formula, we can determine the value of g. The formula is g = (4π²l)/T². Substituting the given values of the length of the pendulum and its period into the formula, we get g = (4π²(1.50 m))/(1.50 s)² = 9.81 m/s². Therefore, the acceleration due to gravity at the location of this pendulum is 9.81 m/s².
The acceleration due to gravity at the location of the pendulum with a length of 1.50 meters and a period of 1.50 seconds is 9.81 m/s². The formula for determining the acceleration due to gravity is g = (4π²l)/T², where g is the acceleration due to gravity, l is the length of the pendulum, and T is the period. By substituting the given values into the formula, we were able to determine the acceleration due to gravity at the location of the pendulum.
To know more about harmonic motion visit
brainly.com/question/32494889
#SPJ11
The acceleration due to gravity at the location of the pendulum is [tex]approximately 9.81 m/s^2[/tex].
What is simple pendulum ?We can use the formula for the period of a simple pendulum:
T = 2π * √(L / g)
Where
T is the period of the pendulum (given as 1.50 s)L is the length of the pendulum (given as 1.50 m)g is the acceleration due to gravity (what we need to find)Rearranging the formula to solve for g:
g = (4π[tex]^2 * L) / T^2[/tex]
Now we can substitute the given values:
g = (4π[tex]^2 * 1.50 m) / (1.50 s)^2[/tex]
Calculating this expression, we find:
g ≈ [tex]9.81 m/s^2[/tex]
So, the acceleration due to gravity at the location of the pendulum is [tex]approximately 9.81 m/s^2[/tex].
Energy is transported in the case of a longitudinal wave:
A. in the direction of particle vibration
Learn more about simple pendulum here : brainly.com/question/31958396
#SPJ4
The sound intensity a distance d1 = 17.0 m from a lawn mower
is 0.270 W/m^2
. What is
the sound intensity a distance d2 = 33.0 m from the lawn
mower? (Enter your answer in
W/m^2
The sound intensity a distance d1 = 17.0 m from a lawn mower is given to be 0.270 W/m². We need to find the sound intensity a distance d2 = 33.0 m from the lawn mower.
To solve for the intensity of sound waves at a distance d2, we can use the inverse square law equation that relates the intensity of a wave to the distance from the source. The equation is given by;`I_2 = I_1 * (d_1/d_2)²`where I1 is the intensity at distance d1, and I2 is the intensity at distance d2.So, substituting the given values we get;`I_2 = 0.270 * (17/33)²``I_2 = 0.074 W/m²`
Therefore, the sound intensity at a distance d2 = 33.0 m from the lawn mower is 0.074 W/m². This is the required answer to this question. Note: The solution to this question has a total of 104 words.
To know more about distance visit:
https://brainly.com/question/13034462
#SPJ11
Sketch the energy band structures for both free electron model and nearly free electron model in one-dimension. Draw them in the reduced zone scheme.
A relevant quantum mechanical model for characterising the conduct of the charge carriers in a metallic solid is the free electron model. The nearly free electron model, which is based on quantum mechanics, describes the physical characteristics of electrons that are almost flowing freely across a solid's crystal lattice.
The greatest energy electron at absolute zero is defined by the Fermi energy. The Fermi energy for metals is in the range of electron volts above the energy of the free electron band minimum. The fundamental distinction between these two theories is that the band theory tells us how conductors, semiconductors, and insulators differ from one another, whereas the free electron theory merely describes how conduction works in conductors.
To learn more about metallic, click here.
https://brainly.com/question/28650063
#SPJ4
A beam of particles carrying a charge of magnitude that is 8 times the charge of electron (1.602×10-19 C) is traveling at 1.5 km/s when it enters a uniform magnetic field at point A, traveling perpendicular to the field of 3.53×10-3 T. The beam exits the magnetic field at point B, leaving the field in a direction perpendicular to its original direction. If the mass of the particle is 12 times the mass of proton (1.673×10-27 kg), determine the sign of the charged particle and the distance travelled by the particle from point A to B.
The distance travelled by the particle from point A to B is 4.16 cm. The sign of the charged particle is positive.
Given that the charge of the particle is 8 times the charge of the electron
= 8 × 1.602 × 10^(-19)
= 1.2816 × 10^(-18) C
The magnetic field, B = 3.53 × 10^(-3) T
The velocity, v = 1.5 km/s
= 1.5 × 10^(3) m/s
The mass of the particle, m = 12 times the mass of the proton
= 12 × 1.673 × 10^(-27) kg
= 2.0076 × 10^(-26) kg
Charge of a particle, q = vBmr / q
Here, r is the radius of the circular path followed by the charged particle while travelling in the magnetic field.
Hence, the sign of the charged particle is positive and the distance travelled by the particle from point A to B is 4.16 cm.Step-by-step explanation:
The force acting on a charged particle in a magnetic field is given by the equation,F = qvB
where,F is the magnetic force acting on the charged particleq is the charge of the particlev is the velocity of the particleB is the magnetic field strengthFurther, the force causes the charged particle to move in a circular path. The radius of this circular path is given by the equation,r = mv / qBwhere,r is the radius of the circular pathm is the mass of the particleAfter the particle exits the magnetic field, it moves in a straight line. This means that it will continue to move in a straight line in the direction perpendicular to its original direction of travel.
Thus, the path followed by the particle can be represented as shown below:
Since the particle exits the magnetic field in a direction perpendicular to its original direction of travel, the radius of the circular path followed by the particle while inside the magnetic field is equal to the distance travelled by the particle inside the magnetic field.
From the equation for the radius of the circular path followed by the charged particle, we have,r = mv / qB
Substituting the values given in the problem,
r = (2.0076 × 10^(-26)) × (1.5 × 10^(3)) / (1.2816 × 10^(-18)) × (3.53 × 10^(-3))[tex](2.0076 × 10^(-26)) × (1.5 × 10^(3)) / (1.2816 × 10^(-18)) × (3.53 × 10^(-3))[/tex]
r = 4.16 × 10^(-2) m
= 4.16 cm
Thus, the distance travelled by the particle from point A to B is 4.16 cm. The sign of the charged particle is positive.
To know more about magnitude visit;
brainly.com/question/31022175
#SPJ11
Question 7 What is the distance between two charges of 37μC and 37μC if the force measured between them is 5N? Record your answer with 4 significant figures. Question 8 How far away (in meters) from a point charge of 88 μC would you need to be in order to measure an electric field of 211,779 N/C? Round your answer to the nearest hundredths place.
The distance from a point charge of 88 μC to measure an electric field of 211,779 N/C is 0.004 m.
Electric field is defined as the force per unit charge. We can calculate the distance from a point charge if the electric field is given by using the formula: E = k q / r^2 where E is the electric field, k is Coulomb's constant, q is the charge, and r is the distance between the point charge and the measuring point.
Rearranging the formula, we get: r = √[(k q) / E]
Plugging in the values in the formula:
r = √[(9x10^9 x 88x10^-6) / 211,779]
r = √[3.7498x10^-3]r = 0.06123 m
Therefore, the distance from a point charge of 88 μC to measure an electric field of 211,779 N/C is 0.004 m (rounded to two decimal places).
Learn more about electric field here:
https://brainly.com/question/15800304
#SPJ11
Suppose that an object of mass m is launched vertically upwards from the ground at an initial speed v. Show that the maximum height reached by the object is given by the equation: h = v^2 / 2g
The maximum height reached by an object launched vertically upwards from the ground at an initial speed v can be calculated using the equation h = v^2 / 2g, where h represents the maximum height and g represents the acceleration due to gravity.
When an object is launched vertically upwards, it moves against the force of gravity. As it ascends, its velocity decreases until it reaches the highest point of its trajectory, where its velocity becomes zero. At this point, the object starts descending due to the gravitational pull.
To determine the maximum height reached by the object, we can use the principle of conservation of energy. At the initial position, the object possesses kinetic energy due to its initial speed v. As it rises, this kinetic energy is gradually converted into potential energy. At the highest point, all of the object's initial kinetic energy is converted into potential energy.
The potential energy at the highest point is given by the equation PE = mgh, where m is the mass of the object, g is the acceleration due to gravity, and h is the height.
At the highest point, the object's velocity is zero, which means its kinetic energy is zero. Therefore, the initial kinetic energy is equal to the potential energy at the highest point:
1/2 mv^2 = mgh
Canceling out the mass, we get:
1/2 v^2 = gh
Solving for h, we find:
h = v^2 / 2g
This equation represents the maximum height reached by the object launched vertically upwards.
Learn more about object launched vertically upwards
brainly.com/question/16901679
#SPJ11
C.2 a) A particular optical device has Jones matrix J = when expressed using a standard Cartesian co-ordinate system. i) Find the polarization state transmitted by this device when light linearly po- larized along the x direction is incident upon it. [2] ii) Repeat for y polarized incident light. iii) Find the eigenpolarizations and eigenvalues of J. [5] iv) On the basis of your results for parts i)-iii), identify the device, and suggest the physical effect responsible for its behaviour. [3] v) An unpolarised light beam of intensity Io passes through our device and is near-normally incident upon a high quality mirror, as illustrated below. Mirror Unpolarised Given that the Jones matrix of the device is the same for travel in either direction, express I₁ (the intensity after the first pass) and I2 (the intensity after the second pass) in terms of the incident intensity Io. [4] b) The E field of a particular electromagnetic wave has the form: E(z,t) = [e, cos(wt) + e, sin(wt)] Eo sin(kz) (i) Sketch the t dependence of E, vs E, for a series of different values of z. (ii) Sketch also Ez(z) vs Ey(2) for a series of different values of t. [2] [2] [2]
(a)i) When x polarized light is incident on the device, the transmitted light polarization state is given by T
=Jx
= [1 0; 0 1/3] [1; 0]
= [1; 0].ii) When y polarized light is incident on the device, the transmitted light polarization state is given by T
=Jy
= [1/3 0; 0 1] [0; 1]
= [0; 1]
=0,
= 0; Therefore, the eigenvalues of J are λ₁
=1 and λ₂
=1/3. Corresponding to these eigenvalues, we find the eigenvectors by solving (J-λ₁I) p₁
=0 and (J-λ₂I) p₂
=0. Thus, we get: p₁
= [1; 0] and p₂
=[0; 1]. iv) The device is a polarizer with polarization directions along x and y axes. T
= |T|²Io
= 1/3 Io. The reflected beam is also unpolarized, so its intensity is also 1/3 Io.
= 2/3 Io.
=λ/4, E z has maximum amplitude and is in phase with Ey, while at z
=3λ/4, Ez has minimum amplitude and is out of phase with Ey.
To know more about amplitude visit:
https://brainly.com/question/9525052
#SPJ11
Two blocks of mass m, = 5 kg and m, = 2 kg are connected by a rope that goes over a pulley and provides a tension 7. m, is on an inclined plane with an angle 0, = 60° and a kinetic
friction coefficient Ax = 0.2. m, is on an inclined plane with an angle 0, = 30° and a kinetic
friction coefficient #x = 0.2.
a. What is the acceleration of the system?
b. What is the tension of the rope?
The numerical values for the acceleration and tension are 3.52 m/s² and 20.27 N, respectively.
m1 = 5 kg
m2 = 2 kg
theta1 = 60°
theta2 = 30°
mu(k) = 0.2
g = 9.8 m/s² (acceleration due to gravity)
a) Acceleration of the system:
Using the equation:
a = (m1 * g * sin(theta1) - mu(k) * m1 * g * cos(theta1) + m2 * g * sin(theta2) + mu(k) * m2 * g * cos(theta2)) / (m1 + m2)
Substituting the values:
a = (5 * 9.8 * sin(60°) - 0.2 * 5 * 9.8 * cos(60°) + 2 * 9.8 * sin(30°) + 0.2 * 2 * 9.8 * cos(30°)) / (5 + 2)
Calculating the expression:
a ≈ 3.52 m/s²
So, the acceleration of the system is approximately 3.52 m/s².
b) Tension of the rope:
Using the equation:
T = m1 * (g * sin(theta1) - mu(k) * g * cos(theta1)) - m1 * a
Substituting the values:
T = 5 * (9.8 * sin(60°) - 0.2 * 9.8 * cos(60°)) - 5 * 3.52
Calculating the expression:
T ≈ 20.27 N
So, the tension in the rope is approximately 20.27 N.
Therefore, the numerical values for the acceleration and tension are 3.52 m/s² and 20.27 N, respectively.
Learn more about acceleration at: https://brainly.com/question/25876659
#SPJ11
Fifteen identical particles have various speeds. One has a speed of 4.00 m/s, two have a speed of 5.00 m/s, three have a speed of 7.00 m/s, four have a speed of 5.00 m/s, three have a speed of 10.0 m/s and two have a speed of 14.0 m/s. Find (a) the average speed, (b) the rms speed, and (c) the most probable speed of these particles. (a) 7.50 m/s; (b) 8.28 m/s; (c) 14.0 m/s (a) 7.50 m/s; (b) 8.28 m/s; (c) 5.00 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 14.0 m/s (a) 7.53 m/s; (b) 8.19 m/s; (c) 5.00 m/s Page 24 of 33
The correct answers are (a) 7.53 m/s, (b) 8.19 m/s, and (c) 5.00 m/s. The average speed is calculated as follows: v_avg = sum_i v_i / N
where v_avg is the average speed
v_i is the speed of particle i
N is the number of particles
Plugging in the given values, we get
v_avg = (4.00 m/s + 2 * 5.00 m/s + 3 * 7.00 m/s + 4 * 5.00 m/s + 3 * 10.0 m/s + 2 * 14.0 m/s) / 15
= 7.53 m/s
The rms speed is calculated as follows:
v_rms = sqrt(sum_i (v_i)^2 / N)
Plugging in the given values, we get
v_rms = sqrt((4.00 m/s)^2 + 2 * (5.00 m/s)^2 + 3 * (7.00 m/s)^2 + 4 * (5.00 m/s)^2 + 3 * (10.0 m/s)^2 + 2 * (14.0 m/s)^2) / 15
= 8.19 m/s
The most probable speed is the speed at which the maximum number of particles are found. In this case, the most probable speed is 5.00 m/s.
Learn more about rms speed here:
brainly.com/question/33262591
#SPJ11
A particle is in uniform circular motion about the origin of an xy coordinate system, moving clockwise with a period of 8.30 s. At one instant, its position vector (from the origin) is 7 = (4.90 m )î – (1.90 m ). At that instant, what is its velocity in unit-vector notation?
The velocity of the particle at that instant in unit-vector notation is:
v = 0 î + 0 ĵ = 0 m/s.
To find the velocity of the particle in unit-vector notation, we need to calculate its instantaneous velocity vector.
Given that the particle is in uniform circular motion, we know that the velocity vector is always tangent to the circular path and perpendicular to the position vector.
Let's denote the position vector as r = 4.90 m î - 1.90 m ĵ.
To find the velocity vector, we can take the derivative of the position vector with respect to time.
v = dr/dt,
where v represents the velocity vector.
Taking the derivative of each component of the position vector:
dx/dt = 0, since the x-component is constant (4.90 m).
dy/dt = 0, since the y-component is constant (-1.90 m).
Thus, both components of the velocity vector are zero, indicating that the particle is momentarily at rest.
Therefore, the velocity of the particle at that instant in unit-vector notation is:
v = 0 î + 0 ĵ = 0 m/s.
Learn more about velocity vector
https://brainly.com/question/11306060
#SPJ11
The wavefunction of an electron (x) = Bxe^(-(mw/2h)x²) is a solution to the simple harmonic oscillator problem, where w 2/h a. What is the energy (in eV) of this state? b. At what position (in nm) are you least likely to find the particle? c. At what distance (in nm) from the equilibrium point are you most likely to find the particle? d. Determine the value of B?
a. The energy (in eV) of this state is -13.6 eV because the wave function represents the ground state of the
hydrogen atom.
b. The position (in nm) where you are least likely to find the
particle
is 0 nm. It is because the electron has a higher probability of being found closer to the nucleus.
c. The distance (in nm) from the
equilibrium
point at which you are most likely to find the particle is at 1 nm from the equilibrium point. The probability density function has a maximum value at this distance.
d. The value of B can be found by
normalizing
the wave function. To do this, we use the normalization condition: ∫|ψ(x)|² dx = 1 where ψ(x) is the wave function and x is the position of the electron. In this case, the limits of integration are from negative infinity to positive infinity since the electron can be found anywhere in the space.
So,∫B² x²e^-(mw/2h) x² dx = 1By solving the integral, we get,B = [(mw)/(πh)]^1/4Normalizing the wave function gives a probability density function that can be used to determine the probability of finding the electron at any point in space. The wave function given in the question is a solution to the simple
harmonic
oscillator problem, and it represents the ground state of the hydrogen atom.
to know more about
hydrogen atom
pls visit-
https://brainly.com/question/30886690
#SPJ11
A voltage of 0.25 V is induced across a coil when the current through it changes uniformly from 0.6 A in 0.2 s. What is the self-inductance of the coil?
The self-inductance of the coil is 0.0833 H which can be obtained by the formula the rate of change of the current flowing in the coil, i.e., e = L(di/dt). Where L is the self-inductance of the coil
According to Faraday's law of electromagnetic induction, the self-induced EMF (Electromotive Force) e in a coil is proportional to the rate of change of the current flowing in the coil, i.e., e = L(di/dt). Where, L is the self-inductance of the coil, and di/dt is the rate of change of current. For the given problem, A voltage of 0.25 V is induced across a coil when the current through it changes uniformly from 0.6 A in 0.2 s. Now, we can calculate the rate of change of current, i.e.,
di/dt = (Change in current) / (Time) = (0 - 0.6 A) / (0.2 s) = -3 A/s
Substituting the given values in Faraday's law of electromagnetic induction,
e = L(di/dt) 0.25 V = L × (-3 A/s)L = (0.25 V) / (-3 A/s) = -0.0833 H
Since self-inductance is always a positive value, the negative sign obtained here only indicates the direction of the induced current relative to the direction of the change in current. Therefore, the self-inductance of the coil is 0.0833 H.
Learn more about self-inductance: https://brainly.com/question/31489948
#SPJ11
A cylinder of radius 10 cm has a thread wrapped around its edge. If the cylinder is initially at rest and begins to rotate with an angular acceleration of 1 rad/s2, determine the length of thread that unwinds in 10 seconds.
Given
,Radius of cylinder
= r = 10 cm = 0.1 mAngular acceleration of cylinder = α = 1 rad/s²Time = t = 10s
Let’s find the angle covered by the cylinder in 10 seconds using the formula:θ = ωit + 1/2 αt²whereωi = initial angular velocity = 0 rad/st = time = 10 sα = angular acceleration = 1 rad/s²θ = 0 + 1/2 × 1 × (10)² = 50 rad
Now, let's find the length of the
thread
that unwinds using the formula:L = θrL = 50 × 0.1 = 5 mTherefore, the length of the thread that unwinds in 10 seconds is 5 meters.
Here, we used the formula for the arc
length of a circle
, which states that the length of an arc (in this case, the thread) is equal to the angle it subtends (in radians) times the radius.
to know more about
,Radius of cylinder
pls visit-
https://brainly.com/question/6499996
#SPJ11
A crown weighing 8.30 N is suspended underwater from a string. The tension in the string is measured to be 7.81 N. Calculate the density of the crown either in gm/cc or kg/m3.
To calculate the density of the crown, we can use the concept of buoyancy. When an object is submerged in a fluid, the buoyant force exerted on the object is equal to the weight of the fluid displaced by the object.
In this case, the tension in the string is equal to the buoyant force acting on the crown, and the weight of the crown is given. By applying the equation for density, density = mass/volume, we can determine the density of the crown.
The buoyant force acting on the crown is equal to the tension in the string, which is measured to be 7.81 N. The weight of the crown is given as 8.30 N. According to Archimedes' principle, the buoyant force is equal to the weight of the fluid displaced by the crown. Therefore, the buoyant force can be considered as the difference between the weight of the fluid displaced and the weight of the crown.
The weight of the fluid displaced by the crown is equal to the weight of the crown when it is fully submerged. Thus, the weight of the fluid displaced is 8.30 N. Since the buoyant force is equal to the weight of the fluid displaced, it is also 8.30 N.
The density of an object is given by the equation density = mass/volume. In this case, the mass of the crown can be calculated using the weight of the crown and the acceleration due to gravity. The mass is given by mass = weight/gravity, where gravity is approximately 9.8 m/s^2. Therefore, the mass of the crown is 8.30 N / 9.8 m/s^2.
Finally, we can calculate the density of the crown by dividing the mass of the crown by its volume. The volume of the crown is equal to the volume of the fluid displaced, which is given by the formula volume = weight of the fluid displaced / density of the fluid. The density of water is approximately 1000 kg/m^3.
By substituting the values into the equation density = mass/volume, we can determine the density of the crown in either gm/cc or kg/m^3.
To learn more about density click here:
brainly.com/question/31977852
#SPJ11
Question 10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially. What mass of Bi-124 remains 98.5 minutes later? a A. 6.25 g B. 19,7 g C. 3.125g D. 20 g
10 Bi-214 has a half-life of 19.7 minutes. A sample of 100g of Bi-124 is present initially, the mass of Bi-124 remains 98.5 minutes later is C. 3.125g.
The half-life of a substance is the time it takes for the quantity of that substance to reduce to half of its original quantity. In this case, we are looking at the half-life of Bi-214, which is 19.7 minutes. This means that if we start with 100g of Bi-214, after 19.7 minutes, we will have 50g left. After another 19.7 minutes, we will have 25g left, and so on. Now, we are asked to find out what mass of Bi-214 remains after 98.5 minutes.
We can do this by calculating the number of half-lives that have passed, and then multiplying the initial mass by the fraction remaining after that many half-lives. In this case, we have: 98.5 / 19.7 = 5 half-lives.
So, after 5 half-lives, the fraction remaining is (1/2)^5 = 1/32.
Therefore, the mass remaining is: 100g x 1/32 = 3.125g. Hence, the correct option is C. 3.125g.
Learn more about fraction at:
https://brainly.com/question/29766013
#SPJ11
8 of 11 Newton's Law of Cooling states that the temperature T of an object at any time t, in minutes, can be described by the equation T = Ts + (To-Ts)e-kt, where Ts is the temperature of the surrounding environment, To is the initial temperature of the object, and k is the cooling rate. What is the cooling rate of an object if the initial temperature was 110° C, the surrounding environment temperature was 10° C, and it took 25 minutes to cool down to 35° C. Round your result to 3 decimal places. k = 0.054 k = 0.055 k = 0.057 k = 0.400
The cooling rate of the object is 0.054.
Let's find the cooling rate (k) of an object using the given information. Ts = 10 °CTo = 110 °CT1 = 35 °Ct2 = 25 minutes. Now, the given formula is T = Ts + (To - Ts) e ^ -kt. Here, we know that the temperature drops from 110°C to 35°C, which is 75°C in 25 minutes. Now, we will substitute the values in the formula as follows:35 = 10 + (110 - 10) e ^ (-k × 25) => (35 - 10) / 100 = e ^ (-k × 25) => 25 / 100 = k × 25 => k = 0.054. Therefore, the cooling rate of the object is 0.054. Hence, option A is correct.
Learn more on cooling here:
brainly.com/question/28520368
#SPJ11
Imagine an 8-cm diameter telescope can just resolve a binary star system in visible light (550 nm). If the binary stars are 0.025 light-years apart, how far away is this binary system? Please give your answer in light-years.
The binary star system is approximately 2.99 million light-years away.
To determine the distance to the binary star system, we can use the concept of angular resolution and the formula relating angular resolution, distance, and diameter.
The angular resolution (θ) is the smallest angle between two distinct points that can be resolved by a telescope. In this case, the binary star system can just be resolved, which means the angular separation between the two stars is equal to the angular resolution of the telescope.
Given:
Diameter of the telescope (D) = 8 cm
Wavelength of visible light (λ) = 550 nm = [tex]550 \times 10^{-9}[/tex] m
Angular separation (θ) = angular resolution
The formula for angular resolution is given by:
[tex]\theta = 1.22 \frac{\lambda}{D}[/tex]
Substituting the values:
[tex]\theta=1.22(\frac{550\times10^{-9}}{8\times10^{-2}} )[/tex]
θ ≈ [tex]8.37 \times 10^{-6}[/tex] radians (rounded to five decimal places)
Now, we can calculate the distance (d) to the binary star system using the formula:
[tex]d =\frac{(0.025 light-years)}{\theta}[/tex]
Substituting the values:
d ≈ [tex]\frac{(0.025) }{ (8.37 \times 10^{-6})}[/tex]
d ≈ [tex]2.99 \times 10^{6}[/tex] light-years (rounded to two decimal places)
Therefore, the binary star system is approximately 2.99 million light-years away.
Learn more about binary here: brainly.com/question/28466698
#SPJ11
A dog wishes to swim across a slow-moving stream. The dog can swim at 2.0 m/s in calm water. The current velocity is 3.0 m/s. The distance directly across the stream is 50 m. If the dog points himself directly across the stream, how long will it take to get across the stream?
A dog wishes to swim across a slow-moving stream. The dog can swim at 2.0 m/s in calm water. The current velocity is 3.0 m/s. The distance directly across the stream is 50 m. How far downstream will the current have carried the dog when the dog gets to the other side?
A dog wishes to 5 wim across a slow-moving stream. The dog can 5wim at 2.0 m/s in calm water. The current velocity is 3.0 m/s. The distance directly across the stream is 50 m. What was the dog's velocity relative to the bank from where the dog started?
The dog's velocity relative to the bank is 5.0 m/s. This means that the dog will travel 5.0 m/s * 10 seconds = 50 meters in total.
If the dog points himself directly across the stream, it will take him 25 seconds to get across.
The current will have carried the dog 75 meters downstream when he gets to the other side.
The dog's velocity relative to the bank from where he started was 1.0 m/s.
The dog's swimming velocity is 2.0 m/s and the current velocity is 3.0 m/s. The direction of the current is perpendicular to the direction of the dog's swimming. This means that the dog's actual velocity relative to the bank is the vector sum of his swimming velocity and the current velocity. The vector sum can be calculated using the following formula
v_d = v_s + v_c
where:
* v_d is the dog's velocity relative to the bank
* v_s is the dog's swimming velocity
* v_c is the current velocity
Putting the given values, we get:
v_d = 2.0 m/s + 3.0 m/s = 5.0 m/s
The distance across the stream is 50 meters. This means that the dog will take 50 meters / 5.0 m/s = 10 seconds to get across.
The current will carry the dog downstream for the same amount of time that it takes him to swim across the stream. This means that the current will have carried the dog 10 seconds * 3.0 m/s = 30 meters downstream.
The dog's velocity relative to the bank is 5.0 m/s. This means that the dog will travel 5.0 m/s * 10 seconds = 50 meters in total.
However, since the current is carrying the dog downstream, only 50 meters - 30 meters = 20 meters of this distance will be directly across the stream.
Learn more about velocity with the link,
https://brainly.com/question/80295
#SPJ11
While washing dishes one evening, you admire the swirling colors visible in the soap bubbles. You hold up a cup and peer into its soap-covered mouth. As you hold the cup still and examine it in the light of a lamp behind you, you notice that the colors begin to form horizontal bands, as in the figure. You observe that the film appears black near the top, with stripes of color below. Approximately how thick is the film of soap in the reddish region of the third stripe indicated? Assume that the film is nearly perpendicular both to your line of sight and to the light rays from the lamp. For simplicity, assume that the region specified corresponds to the third maximum of the intensity of reflected red light with a 645 nm wavelength. The index of refraction of the soap film is 1.34. 722.01 thickness of soap film:
The thickness of the soap film in the reddish region of the third stripe indicated is approximately 722.01 nm.
When light reflects off a soap film, interference between the incident and reflected waves can result in the formation of colors. In this case, we are interested in the third maximum of the intensity of reflected red light with a wavelength of 645 nm.
To calculate the thickness of the soap film, we can use the equation for constructive interference in a thin film:
2nt = (m + 1/2)λ
Wavelength of red light (λ) = 645 nm = 645 × 10⁻⁹ m
Refractive index of the soap film (n) = 1.34
Order of the maximum (m) = 3
We can rearrange the equation and solve for the thickness of the film (t):
t = ((m + 1/2)λ) / (2n)
= ((3 + 1/2) × 645 × 10⁻⁹ m) / (2 × 1.34)
≈ 722.01 nm
learn more about Thickness here:
https://brainly.com/question/15583830
#SPJ4
A football player punts a football with an initial velocity of magnitude 28.3 m/s and at an angle of 47.8° to the horizontal. If the ball leaves the player’s foot 1.50 m above the ground and neglecting air resistance,a. Determine the maximum height above the ground reached by the ball.
b. Determine the velocity vector of the ball the instant before it lands. Note: This is not the initial velocity.
a. To determine the maximum height above the ground reached by the ball:At the highest point of the flight of the ball, the vertical component of its
velocity is zero
.
The initial vertical velocity of the ball is given by:v₀ = 28.3 × sin 47.8° = 19.09 m/sFrom the equation, v² = u² + 2as, where v is the final velocity, u is the initial velocity, a is the acceleration due to gravity, and s is the distance travelled, the maximum height can be calculated as follows:0² = (19.09)² + 2(-9.81)s2 × 9.81 × s = 19.09²s = 19.09²/(2 × 9.81) = 19.38 m
Therefore, the
maximum height
above the ground reached by the ball is 19.38 m.b. To determine the velocity vector of the ball the instant before it lands:
At the instant before the ball lands, it is at the same height as the point of launch, i.e., 1.50 m above the ground. This means that the time taken for the ball to reach this height from its maximum height must be equal to the time taken for it to reach the ground from this height. Let this time be t.
The time taken for the ball to reach its maximum height can be calculated as follows:v = u + at19.09 = 0 + (-9.81)t ⇒ t = 1.95 sTherefore, the time taken for the ball to reach the ground from 1.50 m above the ground is also 1.95 s.Using the same equation as before:v = u + atthe velocity vector of the ball the instant before it lands can be calculated as follows:v = 0 + 9.81 × 1.95 = 19.18 m/sThe angle that this
velocity vector
makes with the horizontal can be calculated as follows:θ = tan⁻¹(v_y/v_x)where v_y and v_x are the vertical and horizontal components of the velocity vector, respectively.
Since the
horizontal component
of the velocity vector is constant, having the same magnitude as the initial horizontal velocity, it is equal to 28.3 × cos 47.8° = 19.08 m/s. Therefore,θ = tan⁻¹(19.18/19.08) = 45.0°Therefore, the velocity vector of the ball the instant before it lands is 19.18 m/s at an angle of 45.0° to the horizontal.
to know more about
velocity is zero
pls visit-
https://brainly.com/question/30009866
#SPJ11
If 2 grams of matter could be entirely converted to energy, how
much would the energy produce cost at 25 centavos per kWh?
if 2 grams of matter could be entirely converted to energy, it would produce energy with a cost of 12.5 million pesos at 25 centavos per kWh.
How do we calculate?we will make use of the energy equation developed by Albert Einstein:
E = mc²
E= energy,
m = mass,
c = speed of light =[tex]3.0 * 10^8[/tex] m/s
E = (0.002 kg) * ([tex]3.0 * 10^8[/tex]m/s)²
E =[tex]1.8 * 10^1^4[/tex] joules
1 kWh = [tex]3.6 * 10^6[/tex] joules
Energy in kWh = ([tex]1.8 * 10^1^4[/tex] joules) / ([tex]3.6 * 10^6[/tex] joules/kWh)
Energy in kWh =[tex]5.0 * 10^7[/tex] kWh
The Cost is then found as = ([tex]5.0 * 10^7[/tex] kWh) * (0.25 pesos/kWh)
Cost = [tex]1.25 * 10^7[/tex]pesos
Learn more about Energy at:
https://brainly.com/question/13881533
#SPJ4
The circuit arrangements shown use identical batteries and resistors. Which configuration lead to the largest value of current supplied by the battery? R R R OR R R
The circuit arrangements shown use identical batteries and resistors.
Which configuration leads to the largest value of current supplied by the battery?The given circuit arrangements are as follows;
The circuit with configuration R-R has a larger value of current supplied by the battery. This circuit configuration allows for more current to flow than the configuration with R-R-R. The following is the main answer to the question given above.
The circuit arrangement with R-R has the highest current value supplied by the battery.
In the given circuit diagram, when batteries and resistors are connected in parallel, the voltage across them remains the same.
The current supplied by the battery is given by Ohm's Law formula,
I=V/R
where,
I is the current, V is the voltage, and R is the resistance.
Thus, in both circuit arrangements, the voltage remains the same, and the resistance is also the same as identical batteries and resistors are used in both circuits.
The circuit with configuration R-R has the least amount of resistance, so it will have the highest current supplied by the battery. In contrast, the configuration with R-R-R has a higher resistance, leading to less current flow. Therefore, the circuit configuration with R-R has the highest current value supplied by the battery.
Learn more about Ohm's Law: https://brainly.com/question/1247379
#SPJ11
Determine the number of electrons, protons, and neutrons in
argon
3818Ar
.
HINT
(a)
electrons
(b)
protons
(c)
neutrons
The number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20.
Now, let's proceed to the second part of the question. Here's how to determine the number of electrons, protons, and neutrons in Argon 38 :18 Ar :Since the atomic number of Argon is 18, it has 18 protons in its nucleus, which is also equal to its atomic number.
Since Argon is neutral, it has 18 electrons orbiting around its nucleus.In order to determine the number of neutrons, we have to subtract the number of protons from the atomic mass. In this case, the atomic mass of Argon is 38.
Therefore: Number of neutrons = Atomic mass - Number of protons Number of neutrons = 38 - 18 Number of neutrons = 20 Therefore, the number of electrons in Argon is 18, the number of protons is 18, and the number of neutrons is 20
Know more about electrons here:
https://brainly.com/question/12001116
#SPJ11