Solve for x: x + 17 = 34 Enter the number only, without "x=". Solve for k: 4(2k + 6) = 41 Round the answer to 1 decimal place. Enter the number only. The first equation of motion is V = u + at If v = 97, u = 52 and a = 14, determine the value of t, correct to 1 decimal place. Enter the number only. One of the equations of motion is v² u² + 2as = What is the correct answer if we change the subject to s. Find the simultaneous solution for 3x - y = 3 and y = 2x - 1 What is the equation of the straight line with a gradient of 2 and going through the point (-5,7) Find the equation of a line that is going through the point (2,5) and is perpendicular to the line y=/5/2x- - 3 Rewrite the equation in general form: y = 1/2 x + 7 Determine the distance between the two points (2,-5) and (9, 5) Round the answer to 1 decimal place.

Answers

Answer 1

Here are the solutions to the given equations:

1) x + 17 = 34

x = 17

2) 4(2k + 6) = 41

Simplifying the equation: 8k + 24 = 41

Solving for k: k = (41 - 24)/8 = 1.625 (rounded to 1 decimal place)

3) The first equation of motion is V = u + at

Given: v = 97, u = 52, a = 14

We need to find the value of t.

Rearranging the equation: t = (v - u)/a = (97 - 52)/14 = 3.214 (rounded to 1 decimal place)

4) One of the equations of motion is v² - u² = 2as

We want to change the subject to s.

Rearranging the equation: s = (v² - u²)/(2a)

5) Simultaneous solution for 3x - y = 3 and y = 2x - 1

Substituting y = 2x - 1 into the first equation:

3x - (2x - 1) = 3

Simplifying: x + 1 = 3

Solving for x: x = 2

Substituting x = 2 into y = 2x - 1:

y = 2(2) - 1

Simplifying: y = 3

The simultaneous solution is x = 2, y = 3.

6) Equation of the straight line with a gradient of 2 and going through the point (-5, 7)

Using the point-slope form of a line: y - y₁ = m(x - x₁)

Substituting the values: y - 7 = 2(x - (-5))

Simplifying: y - 7 = 2(x + 5)

Expanding: y - 7 = 2x + 10

Rearranging to the slope-intercept form: y = 2x + 17

The equation of the line is y = 2x + 17.

7) Equation of a line perpendicular to y = (5/2)x - 3 and going through the point (2, 5)

The given line has a gradient of (5/2).

The perpendicular line will have a negative reciprocal gradient, which is -2/5.

Using the point-slope form: y - y₁ = m(x - x₁)

Substituting the values: y - 5 = (-2/5)(x - 2)

Simplifying: y - 5 = (-2/5)x + 4/5

Rearranging to the slope-intercept form: y = (-2/5)x + 29/5

The equation of the line is y = (-2/5)x + 29/5.

8) Rewriting the equation y = (1/2)x + 7 in general form:

Multiply both sides by 2 to eliminate the fraction:

2y = x + 14

Rearranging and putting the variables on the same side:

x - 2y = -14

The equation in general form is x - 2y = -14.

9) Distance between the two points (2, -5) and (9, 5)

Using the distance formula: √[(x₂ - x₁)² + (y₂ - y₁)²]

Substituting the values: √[(9 - 2)² + (5 - (-5))²]

Simplifying: √[49 + 100]

Calculating: √149 ≈ 12.2 (rounded to 1 decimal place)

Learn more about equation here

https://brainly.com/question/649785

#SPJ11


Related Questions

3. Write as a single logarithm: 4log3A−(log3B+3log3C) a) log3 A^4/log3BC^3 b) log3(A^4/BC^3) c) log3(A^4C^3/B^3) d) log3(4x/3BC)

Answers

Given information: 4log3A − (log3B + 3log3C)

The correct option is (c) log3(A⁴C³/B³).

We need to write the given expression as a single logarithm.

Therefore, using the following log identities:

loga - logb = log(a/b)

loga + logb = log(ab)

n(loga) = log(a^n)

Taking 4log3A as log3A⁴ and (log3B + 3log3C) as log3B(log3C)³, we get:

log3A⁴ − log3B(log3C)³

Now using the following log identity,

loga - logb = log(a/b), we get:

log3(A⁴/(B(log3C)³))

The above expression can be further simplified as:

log3(A⁴C³/B³)

Thus, the answer is option (c) log3(A⁴C³/B³).

Conclusion: Therefore, the correct option is (c) log3(A⁴C³/B³).

To know more about logarithm visit

https://brainly.com/question/8657113

#SPJ11

The simplified expression is log3(A^4/BC^3).

The correct choice is b) log3(A^4/BC^3).

Given equation is:

4log3A−(log3B+3log3C).

The logarithmic rule that will be used here is:

loga - logb = log(a/b)

Using this formula we get:

4log3A−(log3B+3log3C) = log3A4 - (log3B + log3C³)

Now, using the formula that is:

loga + logb = log(ab)

Here, log3B + log3C³ can be written as log3B.C³

Putting this value, we get;

log3A4 - log3B.C³= log3 (A^4/B.C³)

Therefore, the correct option is (c) log3(A^4C^3/B^3).

Hence, option (c) is the correct answer.

To simplify the expression 4log3A - (log3B + 3log3C) as a single logarithm, we can use logarithmic properties. Let's simplify it step by step:

4log3A - (log3B + 3log3C)

= log3(A^4) - (log3B + log3C^3)   (applying the power rule of logarithms)

= log3(A^4) - log3(B) - log3(C^3)   (applying the product rule of logarithms)

= log3(A^4/BC^3)   (applying the quotient rule of logarithms)

Therefore, the simplified expression is log3(A^4/BC^3).

The correct choice is b) log3(A^4/BC^3).

To know more about logarithmic, visit:

https://brainly.com/question/30226560

#SPJ11

need asap if you can pls!!!!!

Answers

Answer:  16

Step-by-step explanation:

Vertical Angles:When you have 2 intersecting lines the angles across they are equal

65 = 4x + 1                    >Subtract 1 from sides

64 = 4x                         >Divide both sides by 4

x = 16

Answer:

16

Step-by-step explanation:

4x + 1 = 64. Simplify that and you get 16.

need help please this is plato recovery

Answers

[tex]3\leqslant |x+2|\leqslant 6\implies \begin{cases} 3\leqslant |x+2|\\\\ |x+2|\leqslant 6 \end{cases}\implies \begin{cases} 3 \leqslant \pm (x+2)\\\\ \pm(x+2)\leqslant 6 \end{cases} \\\\[-0.35em] ~\dotfill[/tex]

[tex]3\leqslant +(x+2)\implies \boxed{3\leqslant x+2}\implies 1\leqslant x \\\\[-0.35em] ~\dotfill\\\\ 3\leqslant -(x+2)\implies \boxed{-3\geqslant x+2}\implies -5\geqslant x \\\\[-0.35em] ~\dotfill\\\\ +(x+2)\leqslant 6\implies \boxed{x+2\leqslant 6}\implies x\leqslant 4 \\\\[-0.35em] ~\dotfill\\\\ -(x+2)\leqslant 6\implies \boxed{x+2\geqslant -6}\implies x\geqslant -8[/tex]

What's the answer to ∛a b

Answers

Answer:

∛a * ∛b

Step-by-step explanation:

The expression ∛(a * b) represents the cube root of the product of a and b.

To simplify this expression further, we can rewrite it as the product of the cube root of a and the cube root of b:

∛(a * b) = ∛a * ∛b

So, the answer to ∛(a * b) is ∛a * ∛b.

Answer:

Step-by-step explanation:

∛a * ∛b

Step-by-step explanation:

The expression ∛(a * b) represents the cube root of the product of a and b.

To simplify this expression further, we can rewrite it as the product of the cube root of a and the cube root of b:

∛(a * b) = ∛a * ∛b

So, the answer to ∛(a * b) is ∛a * ∛b.

One of the walls of Georgia’s room has a radiator spanning the entire length, and she painted a mural covering the portion of that wall above the radiator. Her room has the following specification: ● Georgia’s room is a rectangular prism with a volume of 1,296 cubic feet. ● The floor of Georgia’s room is a square with 12-foot sides. ● The radiator is one-third of the height of the room. Based on the information above, determine the area, in square feet, covered by Georgia’s mural.

Answers

The area covered by Georgia's mural is 144 square feet.

To determine the area, we need to find the height of the room first. Since the volume of the room is given as 1,296 cubic feet and the floor is a square with 12-foot sides, we can use the formula for the volume of a rectangular prism (Volume = length x width x height).

Substituting the values, we have 1,296 = 12 x 12 x height. Solving for height, we find that the height of the room is 9 feet.

Since the radiator is one-third of the height of the room, the height of the radiator is 9/3 = 3 feet.

The portion of the wall above the radiator will have a height of 9 - 3 = 6 feet.

Since the floor is a square with 12-foot sides, the area of the portion covered by the mural is 12 x 6 = 72 square feet.

However, the mural spans the entire length of the wall, so the total area covered by Georgia's mural is 72 x 2 = 144 square feet.

For more similar questions on radiator

brainly.com/question/29013702

#SPJ8

Find the Fourier series of the function defined by f(x)={ 8+x,
0,
​ −8≤x<0
0≤x<8
​ ;f(x+16)=f(x) (17 marks) Question 2: A function f(x) is defined by f(x)=5 for 0≤x≤π. (a) Find the half range sine series expansion of the function f(x). (b) Sketch the graph of the odd extension of the function f(x) for −3π≤x≤4π. [Total : 30 marks]

Answers

The final Fourier series for the function f(x) is given by:

f(x) = a0 + Σ(ancos(nπx/8) + bnsin(nπx/8))

To find the Fourier series of the function defined by f(x) = {8 + x, -8 ≤ x < 0; 0 ≤ x < 8}, we need to determine the coefficients of the series.

Since the function is periodic with a period of 16 (f(x + 16) = f(x)), we can express the Fourier series as:

f(x) = a0 + Σ(ancos(nπx/8) + bnsin(nπx/8))

To find the coefficients an and bn, we need to calculate the following integrals:

an = (1/8) * ∫[0, 8] (8 + x) * cos(nπx/8) dx

bn = (1/8) * ∫[0, 8] (8 + x) * sin(nπx/8) dx

Let's calculate these integrals step by step:

For the calculation of an:

an = (1/8) * ∫[0, 8] (8 + x) * cos(nπx/8) dx

= (1/8) * (∫[0, 8] 8cos(nπx/8) dx + ∫[0, 8] xcos(nπx/8) dx)

Now, we evaluate each integral separately:

∫[0, 8] 8cos(nπx/8) dx = [8/nπsin(nπx/8)] [0, 8]

= (8/nπ)*sin(nπ)

= 0 (since sin(nπ) = 0 for integer values of n)

∫[0, 8] xcos(nπx/8) dx = [8x/(n^2π^2)*cos(nπx/8)] [0, 8] - (8/n^2π^2)*∫[0, 8] cos(nπx/8) dx

Again, evaluating each part:

[8*x/(n^2π^2)*cos(nπx/8)] [0, 8] = [64/(n^2π^2)*cos(nπ) - 0]

= 64/(n^2π^2) * cos(nπ)

∫[0, 8] cos(nπx/8) dx = [8/(nπ)*sin(nπx/8)] [0, 8]

= (8/nπ)*sin(nπ)

= 0 (since sin(nπ) = 0 for integer values of n)

Plugging the values back into the equation for an:

an = (1/8) * (∫[0, 8] 8cos(nπx/8) dx + ∫[0, 8] xcos(nπx/8) dx)

= (1/8) * (0 - (8/n^2π^2)*∫[0, 8] cos(nπx/8) dx)

= -1/(n^2π^2) * ∫[0, 8] cos(nπx/8) dx

Similarly, for the calculation of bn:

bn = (1/8) * ∫[0, 8] (8 + x) * sin(nπx/8) dx

= (1/8) * (∫[0, 8] 8sin(nπx/8) dx + ∫[0, 8] xsin(nπx/8) dx)

Following the same steps as above, we find:

bn = -1/(nπ) * ∫[0, 8] sin(nπx/8) dx

The final Fourier series for the function f(x) is given by:

f(x) = a0 + Σ(ancos(nπx/8) + bnsin(nπx/8))

Learn more about Fourier series from the given link!

https://brainly.com/question/14949932

#SJP11

5b) Use your equation in part a to determine the closet for 60 minutes.

Answers

The cost for 60 minutes from the equation is 280

How to determine the cost for 60 minutes.

from the question, we have the following parameters that can be used in our computation:

Slope, m = 4

y-intercept, b = 40

A linear equation is represented as

y = mx + b

Where,

m = Slope = 4

b = y-intercept = 40

using the above as a guide, we have the following:

y = 4x + 40

For the cost for 60 minutes, we have

x = 60

So, we have

y = 4 * 60 + 40

Evaluate

y = 280

Hence, the cost is 280

Read more about linear relation at

https://brainly.com/question/30318449

#SPJ1

(a). A conservative vector field is given by F ​ (x,y,z)=(x^2 +y) i ​ +(y^2 +x) j ​ +(ze^z ) k ​ . (i). Determine a potential function ϕ such that F ​ =∇ϕ. (ii). Hence, evaluate the line integral (7 mark ∫ C ​ F ​ ⋅dr along the curve C with parameterization r ​ (t)=(cost) i ​ +(sint) j ​ +( t/2π ) k ​ ,0≤t≤2π.

Answers

The potential function ϕ for the given conservative vector field F and its line integral along the curve C can be determined as ϕ(x, y, z) = (1/3) x^3 + xy + (1/3) y^3 + (z - 1) e^z, and the line integral ∫C F · dr evaluates to 2π(1/2 eπ - 1/2 e^(-π) + 1/6).

Given the conservative vector field F(x, y, z) = (x^2 + y)i + (y^2 + x)j + (ze^z)k. To determine a potential function ϕ such that F = ∇ϕ, the potential function ϕ can be found as follows:

ϕ(x, y, z) = ∫ Fx(x, y, z) dx + G(y, z) ...............(1)

ϕ(x, y, z) = ∫ Fy(x, y, z) dy + H(x, z) ...............(2)

ϕ(x, y, z) = ∫ Fz(x, y, z) dz + K(x, y) ...............(3)

Here, G(y, z), H(x, z), and K(x, y) are arbitrary functions of the given variables, which are constants of integration. The partial derivatives of ϕ(x, y, z) are:

∂ϕ/∂x = Fx

∂ϕ/∂y = Fy

∂ϕ/∂z = Fz

Comparing the partial derivatives of ϕ(x, y, z) with the given components of the vector field F(x, y, z), we can write:

ϕ(x, y, z) = ∫ Fx(x, y, z) dx + G(y, z) = ∫ (x^2 + y) dx + G(y, z) = (1/3) x^3 + xy + G(y, z) ...............(4)

ϕ(x, y, z) = ∫ Fy(x, y, z) dy + H(x, z) = ∫ (y^2 + x) dy + H(x, z) = xy + (1/3) y^3 + H(x, z) ...............(5)

ϕ(x, y, z) = ∫ Fz(x, y, z) dz + K(x, y) = ∫ z*e^z dz + K(x, y) = (z - 1) e^z + K(x, y) ...............(6)

Comparing Equations (4) and (5), we have:

G(y, z) = (1/3) x^3

H(x, z) = (1/3) y^3

K(x, y) = constant

Evaluating the line integral ∫C F · dr along the curve C with parameterization r(t) = (cos t)i + (sin t)j + (t/2π)k, 0 ≤ t ≤ 2π, we substitute the given values in the equation and apply the derived value of the potential function:

ϕ(x, y, z) = (1/3) x^3 + xy + (1/3) y^3 + (z - 1) e^z + K(x, y)

Along the curve C with parameterization r(t) = (cos t)i + (sin t)j + (t/2π)k, we get:

F(r(t)) = F(x(t), y(t), z(t)) = [(cos^2(t) + sin(t))i + (sin^2(t) + cos(t))j + [(t/2π) e^(t/2π)]k

∴ F(r(t)) · r′(t) = [(cos^2(t) + sin(t))(-sin t)i + (sin^2(t) + cos(t))cos

Learn more about conservative vector field: https://brainly.com/question/33068022

#SPJ11



Use a half-angle identity to find the exact value of each expression.

cos 22.5°

Answers

The exact value of cos 22.5° using a half-angle identity is ±√(2 + √2) / 2.To find the exact value of cos 22.5° using a half-angle identity, we can use the formula for cosine of half angle: cos(θ/2) = ±√((1 + cos θ) / 2).

In this case, we need to find cos 22.5°. Let's consider the angle 45°, which is double of 22.5°. So, cos 45° = √2/2.

Using the half-angle identity, we have:

cos(22.5°/2) = ±√((1 + cos 45°) / 2)
cos(22.5°/2) = ±√((1 + √2/2) / 2)

Simplifying further, we get:

cos(22.5°/2) = ±√((2 + √2) / 4)
cos(22.5°/2) = ±√(2 + √2) / 2

Therefore, the exact value of cos 22.5° using a half-angle identity is ±√(2 + √2) / 2.

To know more about half-angle identity refer here:

https://brainly.com/question/30760526

#SPJ11

Note: Correct answer to calculations-based questions will only be awarded full mark if clearly stated numerical formula (including the left-hand side of the equation) is provided. Correct answer without calculations support will only receive a tiny fraction of mark assigned for the question.
Magnus, just turned 32, is a freelance web designer. He has just won a design project contract from AAA Inc. that would last for 3 years. The contract offers two different pay packages for Magnus to choose from:
Package I: $30,000 paid at the beginning of each month over the three-year period.
Package II: $26,000 paid at the beginning of each month over the three years, along with a $200,000 bonus (more commonly known as "gratuity") at the end of the contract.
The relevant yearly interest rate is 12.68250301%. a) Which package has higher value today?
[Hint: Take a look at the practice questions set IF you have not done so yet!]
b) Confirm your decision in part (a) using the Net Present Value (NPV) decision rule. c) Continued from part (a). Suppose Magnus plans to invest the amount of income he accumulated at the end of the project (exactly three years from now) in a retirement savings plan that would provide him with a perpetual stream of fixed yearly payments starting from his 60th birthday.
How much will Magnus receive every year from the retirement plan if the relevant yearly interest rate is the same as above (12.68250301%)?

Answers

a) To determine which package has a higher value today, we need to compare the present values of the two packages. The present value is the value of future cash flows discounted to the present at the relevant interest rate.

For Package I, Magnus would receive $30,000 at the beginning of each month for 36 months (3 years). To calculate the present value of this cash flow stream, we can use the formula for the present value of an annuity:

PV = C * [1 - (1 + r)^(-n)] / r

Where PV is the present value, C is the cash flow per period, r is the interest rate per period, and n is the number of periods.

Plugging in the values for Package I, we have:
PV(I) = $30,000 * [1 - (1 + 0.1268250301/12)^(-36)] / (0.1268250301/12)

Calculating this, we find that the present value of Package I is approximately $697,383.89.

For Package II, Magnus would receive $26,000 at the beginning of each month for 36 months, along with a $200,000 bonus at the end of the contract. To calculate the present value of this cash flow stream, we need to calculate the present value of the monthly payments and the present value of the bonus separately.

Using the same formula as above, we find that the present value of the monthly payments is approximately $604,803.89.

To calculate the present value of the bonus, we can use the formula for the present value of a single amount:
PV = F / (1 + r)^n

Where F is the future value, r is the interest rate per period, and n is the number of periods.

Plugging in the values for the bonus, we have:
PV(bonus) = $200,000 / (1 + 0.1268250301)^3

Calculating this, we find that the present value of the bonus is approximately $147,369.14.

Adding the present value of the monthly payments and the present value of the bonus, we get:
PV(II) = $604,803.89 + $147,369.14 = $752,173.03

Therefore, Package II has a higher value today compared to Package I.

b) To confirm our decision in part (a) using the Net Present Value (NPV) decision rule, we need to calculate the NPV of each package. The NPV is the present value of the cash flows minus the initial investment.

For Package I, the initial investment is $0, so the NPV(I) is equal to the present value calculated in part (a), which is approximately $697,383.89.

For Package II, the initial investment is the bonus at the end of the contract, which is $200,000. Therefore, the NPV(II) is equal to the present value calculated in part (a) minus the initial investment:
NPV(II) = $752,173.03 - $200,000 = $552,173.03

Since the NPV of Package II is higher than the NPV of Package I, the NPV decision rule confirms that Package II has a higher value today.

c) Continued from part (a). To calculate the amount Magnus will receive every year from the retirement plan, we can use the formula for the present value of a perpetuity:

PV = C / r

Where PV is the present value, C is the cash flow per period, and r is the interest rate per period.

Plugging in the values, we have:
PV = C / (0.1268250301)

We need to solve for C, which represents the amount Magnus will receive every year.

Rearranging the equation, we have:
C = PV * r

Substituting the present value calculated in part (a), we have:
C = $697,383.89 * 0.1268250301

Calculating this, we find that Magnus will receive approximately $88,404.44 every year from the retirement plan.

To know more about "Cash Flow":

https://brainly.com/question/24179665

#SPJ11

Which of the following functions has an inverse? a. f: Z → Z, where f(n) = 8 b. f: R→ R, where f(x) = 3x² - 2 c. f: R→ R, where f(x) = x - 4 d. f: Z → Z, where f(n) = |2n| + 1

Answers

The function f: R → R, where f(x) = x - 4 has an inverse.

To determine if a function has an inverse, we need to check if the function is one-to-one or injective. A function is one-to-one if it satisfies the horizontal line test, which means that no two distinct inputs map to the same output.

Looking at the given options:

a. f: Z → Z, where f(n) = 8 is not one-to-one because all inputs in the set of integers (Z) map to the same output (8), so it does not have an inverse.

b. f: R → R, where f(x) = 3x² - 2 is not one-to-one because different inputs can produce the same output, violating the horizontal line test. Therefore, it does not have an inverse.

c. f: R → R, where f(x) = x - 4 is one-to-one because for any two distinct real numbers, their outputs will also be distinct. Thus, it has an inverse.

d. f: Z → Z, where f(n) = |2n| + 1 is not one-to-one because both n and -n can produce the same output, violating the horizontal line test. Therefore, it does not have an inverse.

In conclusion, only the function f: R → R, where f(x) = x - 4 has an inverse.

Learn more about: Function

brainly.com/question/28303908

#SPJ11

The table below represents an object thrown into the air.

A 2-column table with 7 rows. Column 1 is labeled Seconds, x with entries 0.5, 1, 1.5, 2, 2.5, 3, 3.5. Column 2 is labeled Meters, y with entries 28, 48, 60, 64, 60, 48, 28.

Is the situation a function?

Answers

Answer:

Yes

Step-by-step explanation:

You can tell because X does not have a number that repeats it self 2 or more times. I hope this helps.



Solve each quadratic system.

x²+64 y²64

x²+y²=64

Answers

The solution to the quadratic system is (x, y) = (8, 0) and (x, y) = (-8, 0).

To solve the quadratic system, we have the following equations:
1) x² + 64y² = 64
2) x² + y² = 64
To solve the system, we can use the method of substitution. Let's solve equation 2) for x²:
x² = 64 - y²
Now substitute this value of x² into equation 1):
(64 - y²) + 64y² = 64
Combine like terms:
64 - y² + 64y² = 64
Combine the constant terms on one side:
64 - 64 = y² - 64y²
Simplify:
0 = -63y²
To solve for y, we divide both sides by -63:
0 / -63 = y² / -63
0 = y²
Since y² is equal to 0, y must be equal to 0.
Now substitute the value of y = 0 back into equation 2) to solve for x:
x² + 0² = 64
x² = 64
To solve for x, we take the square root of both sides:
√(x²) = ±√(64)
x = ±8

Read more about substitution here:
https://brainly.com/question/22340165

#SPJ11

PLEASE HELP ASAP 50 POINTS!!!!!!!

Look at image

Answers

(a). The graph of y = f(½x) is shown in the image below.

(b). The graph of y = 2g(x) is shown in the image below.

How to draw the graph of the transformed functions?

In Mathematics and Geometry, the point-slope form of a straight line can be calculated by using the following mathematical equation (formula):

y - y₁ = m(x - x₁)

Where:

x and y represent the data points.m represent the slope.

First of all, we would determine the slope of this line;

Slope (m) = rise/run

Slope (m) = -2/4

Slope (m) = -1/2

At data point (0, -3) and a slope of -1/2, a linear equation for this line can be calculated by using the point-slope form as follows:

y - y₁ = m(x - x₁)

y + 3 = -1/2(x - 0)

f(x) = -x/2 - 3, -2 ≤ x ≤ 2.

y = f(½x)

y = -x/4 - 3, -2 ≤ x ≤ 2.

Part b.

By applying a vertical stretch with a factor of 2 to the parent absolute value function g(x), the transformed absolute value function can be written as follows;

y = a|x - h} + k

y = 2g(x), 0 ≤ x ≤ 4.

Read more on absolute value function here: brainly.com/question/28308900

#SPJ1

Let A = {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7} and define a relation R on A as follows: For all x, y EA, x Ry 31(x - y). It is a fact that R is an equivalence relation on A. Use set-roster notation to write the equivalence classes of R.
[0] = [1] = [2] = [3] =

Answers

The equivalence classes of the relation R on set A = {-2, -1, 0, 1, 2, 3, 4, 5, 6, 7} can be represented as [0] = {0}, [1] = {1, 2}, [2] = {2, 3, 4}, and [3] = {3, 4, 5, 6, 7}.

In this problem, the relation R on set A is defined as x Ry if and only if 3(x - y) = 1. To determine the equivalence classes, we need to find all elements in A that are related to each other under R.

Starting with [0], the equivalence class of 0, we find that 3(0 - 0) = 0, which satisfies the condition. Therefore, [0] = {0}.

Moving on to [1], the equivalence class of 1, we need to find all elements in A that satisfy 3(x - 1) = 1. Solving this equation, we find x = 2. Therefore, [1] = {1, 2}.

Similarly, for [2], the equivalence class of 2, we solve 3(x - 2) = 1, which gives x = 3. Hence, [2] = {2, 3}.

Finally, for [3], the equivalence class of 3, we solve 3(x - 3) = 1, which gives x = 4. Thus, [3] = {3, 4}.

Since there are no more elements in A to consider, the equivalence classes [0], [1], [2], and [3] represent all the distinct equivalence classes of the relation R on set A.

Learn more about equivalence relations.

brainly.com/question/30901467

#SPJ11



Make a table of second differences for each polynomial function. Using your tables, make a conjecture about the second differences of quadratic functions.


e. y=7 x²+1 .

Answers

The second difference of a quadratic function is 14

Given function is y = 7x² + 1

Now let's find out the second difference of the given function by following the below steps.

First, write the function in the general form of a quadratic function, which is f(x) = ax² + bx + c2. Next, find the first derivative of the quadratic function by differentiating f(x) with respect to x.3. Then, find the second derivative of the quadratic function by differentiating f'(x) with respect to x.Finally, take the second difference of the function. The second difference will always be the same for quadratic functions. Thus, by using this pattern, we can easily find the second difference of any quadratic function.

The second difference formula for a quadratic function is 2a. Table of second differences for the given quadratic function

:xy7x²+11 (7) 2(7)= 14 3(7) = 21

The first difference between 7 and 14 is 7

The first difference between 14 and 21 is 7.

Now find the second difference, which is the first difference between the first differences:7

The second difference for the quadratic function y = 7x² + 1 is 7. The conjecture about the second difference of quadratic functions is as follows: The second differences for quadratic functions are constant, and this constant value is always equal to twice the coefficient of the x² term in the quadratic function. Thus, in this case, the coefficient of x² is 7, so the second difference is 2 * 7 = 14.

To know more about second difference refer here:

https://brainly.com/question/29204641

#SPJ11

The population of a city was 101 thousand in 1992. The exponential growth rate was 1.8% per year. a) Find the exponential growth function in terms of t, where t is the number of years since 1992. P(t)=

Answers

The population of a city was 101 thousand in 1992. The exponential growth rate was 1.8% per year. We need to find the exponential growth function in terms of t, where t is the number of years since 1992.So, the formula for exponential growth is given by;[tex]P(t)=P_0e^{rt}[/tex]

Where;P0 is the population at time t = 0r is the annual rate of growth/expansiont is the time passed since the start of the measurement period101 thousand can be represented in scientific notation as 101000.Using the above formula, we can write the population function as;[tex]P(t)=101000e^{0.018t}[/tex]

So, P(t) is the population of the city t years since 1992, where t > 0.P(t) will give the city population for a given year if t is equal to that year minus 1992. Example, To find the population of the city in 2012, t would be 2012 - 1992 = 20.P(20) = 101,000e^(0.018 * 20)P(20) = 145,868.63 Rounded to the nearest whole number, the population in 2012 was 145869. Therefore, the exponential growth function in terms of t, where t is the number of years since 1992 is given as:[tex]P(t)=101000e^{0.018t}[/tex]

To know more about thousand visit:

https://brainly.com/question/1847329

#SPJ11

3. Given f(x) = 2x-3 and g(x) = 5x + 4, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (f° g)(x) =
B. Find composite (g° f)(x) =
C. Find composite (f° g)(-3)=
4. Given f(x) = x2 - 8x - 9 and g(x) = x^2+6x + 5, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (fog)(0) =
B. Find composite (fog)(1) =
C. Find composite (g° f)(1) =
5. An envelope is 4 cm longer than it is wide. The area is 96 cm². Find the length & width.
6. Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.

Answers

The three consecutive even integers are -38, -36, and -34.

Given f(x) = 2x-3 and g(x) = 5x + 4, the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (f° g)(x):f(x) = 2x - 3 and g(x) = 5x + 4

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(5x + 4)

= 2(5x + 4) - 3

= 10x + 5

B. Composite (g° f)(x):f(x)

= 2x - 3 and g(x)

= 5x + 4

Let's substitute the value of f(x) in g(x) to obtain the composite of g° f(x) = g(f(x))g(f(x))

= g(2x - 3)

= 5(2x - 3) + 4

= 10x - 11

C. Composite (f° g)(-3):

Let's calculate composite of f° g(-3)

= f(g(-3))f(g(-3))

= f(5(-3) + 4)

= -10 - 3

= -13

Given f(x) = x² - 8x - 9 and

g(x) = x²+ 6x + 5,

the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (fog)(0):f(x) = x² - 8x - 9 and g(x)

= x² + 6x + 5

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(x² + 6x + 5)

= (x² + 6x + 5)² - 8(x² + 6x + 5) - 9

= x⁴ + 12x³ - 31x² - 182x - 184

B. Composite (fog)(1):

Let's calculate composite of f° g(1) = f(g(1))f(g(1))

= f(1² + 6(1) + 5)= f(12)

= 12² - 8(12) - 9

= 111

C. Composite (g° f)(1):

Let's calculate composite of g° f(1) = g(f(1))g(f(1))

= g(2 - 3)

= g(-1)

= (-1)² + 6(-1) + 5= 0

The length and width of an envelope can be calculated as follows:

Solution: Let's assume the width of the envelope to be x.

The length of the envelope will be (x + 4) cm, as per the given conditions.

The area of the envelope is given as 96 cm².

So, the equation for the area of the envelope can be written as: x(x + 4) = 96x² + 4x - 96

= 0(x + 12)(x - 8) = 0

Thus, the width of the envelope is 8 cm and the length of the envelope is (8 + 4) = 12 cm.

Three consecutive even integers whose square difference is 76 can be calculated as follows:

Solution: Let's assume the three consecutive even integers to be x, x + 2, and x + 4.

The square of the third integer is 76 more than the square of the second integer.x² + 8x + 16

= (x + 2)² + 76x² + 8x + 16

= x² + 4x + 4 + 76x² + 4x - 56

= 0x² + 38x - 14x - 56

= 0x(x + 38) - 14(x + 38)

= 0(x - 14)(x + 38)

= 0x = 14 or

x = -38

To know more about integers visit:

https://brainly.com/question/490943

#SPJ11

£15,000 was deposited in a savings account that pays simple interest.
After 13 years, the account contains £19,875.
Work out the annual interest rate of the account.
Give your answer as a percentage (%) to 1 d.p.

Answers

Answer:

2.5%

Step-by-step explanation:

£19,875 - £15,000 = £4,875

I = prt

4875 = 15000 × r × 13

r = 4875/(15000 × 13)

r = 0.025

r = 2.5%

Answer:

the annual interest rate of the account is 2.5%

Step-by-step explanation:

Simple Interest = Principal × Interest Rate × Time

Simple Interest = £19,875 - £15,000 = £4,875

Principal = £15,000

Time = 13 years

Simple Interest = £19,875 - £15,000 = £4,875

Principal = £15,000

Time = 13 years

£4,875 = £15,000 × Interest Rate × 13

Interest Rate = £4,875 / (£15,000 × 13)

Calculating the interest rate:

Interest Rate = 0.025

Interest Rate = 0.025 × 100% = 2.5%

Witch expression is equal to 1/tan x + tan x
A 1/sin x
B sin x cos x
C 1/cos x
D1/sin x cos x

Answers

The expression 1/tan(x) + tan(x) is equal to cos(x) + sin(x). Therefore, option B. Sin(x)cos(x) is correct.

To simplify the expression 1/tan(x) + tan(x), we need to find a common denominator for the two terms.

Since tan(x) is equivalent to sin(x)/cos(x), we can rewrite the expression as:

1/tan(x) + tan(x) = 1/(sin(x)/cos(x)) + sin(x)/cos(x)

To simplify further, we can multiply the first term by cos(x)/cos(x) and the second term by sin(x)/sin(x):

1/(sin(x)/cos(x)) + sin(x)/cos(x) = cos(x)/sin(x) + sin(x)/cos(x)

Now, to find a common denominator, we multiply the first term by sin(x)/sin(x) and the second term by cos(x)/cos(x):

(cos(x)/sin(x))(sin(x)/sin(x)) + (sin(x)/cos(x))(cos(x)/cos(x)) = cos(x)sin(x)/sin(x) + sin(x)cos(x)/cos(x)

Simplifying the expression further, we get:

cos(x)sin(x)/sin(x) + sin(x)cos(x)/cos(x) = cos(x) + sin(x)

Therefore, the expression 1/tan(x) + tan(x) is equal to cos(x) + sin(x).

From the given choices, the best answer that matches the simplified expression is:

B. sin(x)cos(x)

for such more question on equivalent

https://brainly.com/question/9657981

#SPJ8

Venus Company developed the trend equation, based on the 4 years of the quarterly sales (in S′000 ) is: y=4.5+5.6t where t=1 for quarter 1 of year 1 The following table gives the adjusted seasonal index for each quarter. Using the multiplicative model, determine the trend value and forecast for each of the four quarters of the fifth year by filling in the below table.

Answers

The forecasted sales for each quarter of the fifth year are as follows:
- Quarter 1: 83.4
- Quarter 2: 79.5
- Quarter 3: 81.3
- Quarter 4: 95.8

To determine the trend value and forecast for each quarter of the fifth year, we need to use the trend equation and the adjusted seasonal indices provided in the table.

The trend equation given is: y = 4.5 + 5.6t, where t represents the quarters.

First, let's calculate the trend value for each quarter of the fifth year.

Quarter 1:
Substituting t = 13 into the trend equation:
y = 4.5 + 5.6(13) = 4.5 + 72.8 = 77.3

Quarter 2:
Substituting t = 14 into the trend equation:
y = 4.5 + 5.6(14) = 4.5 + 78.4 = 82.9

Quarter 3:
Substituting t = 15 into the trend equation:
y = 4.5 + 5.6(15) = 4.5 + 84 = 88.5

Quarter 4:
Substituting t = 16 into the trend equation:
y = 4.5 + 5.6(16) = 4.5 + 89.6 = 94.1

Now let's calculate the forecast for each quarter of the fifth year using the trend values and the adjusted seasonal indices.

Quarter 1:
Multiplying the trend value for quarter 1 (77.3) by the adjusted seasonal index for quarter 1 (1.08):
Forecast = 77.3 * 1.08 = 83.4

Quarter 2:
Multiplying the trend value for quarter 2 (82.9) by the adjusted seasonal index for quarter 2 (0.96):
Forecast = 82.9 * 0.96 = 79.5

Quarter 3:
Multiplying the trend value for quarter 3 (88.5) by the adjusted seasonal index for quarter 3 (0.92):
Forecast = 88.5 * 0.92 = 81.3

Quarter 4:
Multiplying the trend value for quarter 4 (94.1) by the adjusted seasonal index for quarter 4 (1.02):
Forecast = 94.1 * 1.02 = 95.8


To know more about forecasted sales, refer to the link below:

https://brainly.com/question/16556020#

#SPJ11

If \( D \) is the region enclosed by \( y=\frac{x}{2}, x=2 \), and \( y=0 \), then: \[ \iint_{D} 96 y^{2} d A=16 \] Select one: True False

Answers

False.

The given integral is \(\iint_{D} 96 y^{2} dA\), where \(D\) is the region enclosed by \(y=\frac{x}{2}\), \(x=2\), and \(y=0\).

To evaluate this integral, we need to determine the limits of integration for \(x\) and \(y\). The region \(D\) is bounded by the lines \(y=0\) and \(y=\frac{x}{2}\). The line \(x=2\) is a vertical line that intersects the region \(D\) at \(x=2\) and \(y=1\).

Since the region \(D\) lies below the line \(y=\frac{x}{2}\) and above the x-axis, the limits of integration for \(y\) are from 0 to \(\frac{x}{2}\). The limits of integration for \(x\) are from 0 to 2.

Therefore, the integral becomes:

\(\int_{0}^{2} \int_{0}^{\frac{x}{2}} 96 y^{2} dy dx\)

Evaluating this integral gives a result different from 16. Hence, the statement " \(\iint_{D} 96 y^{2} dA=16\) " is false.

Learn more about region enclosed

brainly.com/question/32672799

#SPJ11

what is the completely factored form of 6X squared -13 X -5

Answers

Answer:

(3x + 1)(2x - 5)

Step-by-step explanation:

6x² - 13x - 5

consider the factors of the product of the coefficient of the x² term and the constant term which sum to give the coefficient of the x- term , that is

product = 6 × - 5 = - 30 and sum = - 13

the factors are + 2 and - 15

use these factors to split the x- term

6x² + 2x - 15x - 5 ( factor the first/second and third/fourth terms )

= 2x(3x + 1) - 5(3x + 1) ← factor out (3x + 1) from each term

= (3x + 1)(2x - 5) ← in factored form



Solve each equation in the interval from 0 to 2π . Round your answers to the nearest hundredth.

tan θ=2

Answers

The equation tan(θ) = 2 has two solutions in the interval from 0 to 2π. The approximate values of these solutions, rounded to the nearest hundredth, are θ ≈ 1.11 and θ ≈ 4.25.

The tangent function is defined as the ratio of the sine to the cosine of an angle. In the given equation, tan(θ) = 2, we need to find the values of θ that satisfy this equation within the interval from 0 to 2π.

To solve for θ, we can take the inverse tangent (arctan) of both sides of the equation. However, we need to be cautious of the periodicity of the tangent function. Since the tangent function has a period of π (or 180 degrees), we need to consider all solutions within the interval from 0 to 2π.

The inverse tangent function gives us the principal value of the angle within a specific range. In this case, we're interested in the values within the interval from 0 to 2π. By using a calculator or trigonometric tables, we can find the approximate values of the solutions.

In the interval from 0 to 2π, the equation tan(θ) = 2 has two solutions. Rounded to the nearest hundredth, these solutions are θ ≈ 1.11 and θ ≈ 4.25.

Therefore, the solutions to the equation tan(θ) = 2 in the interval from 0 to 2π are approximately θ ≈ 1.11 and θ ≈ 4.25.

Learn more about  inverse tangent here:

brainly.com/question/30761580

#SPJ11

The mean of four numbers is10. Three of the numbers are10,14 and8. Then find the value of the other number

Answers

If mean of four numbers is10. Three of the numbers are10,14 and8The value of the fourth number is 8.

To find the value of the fourth number, we can use the concept of the mean.

The mean of a set of numbers is calculated by adding up all the numbers and then dividing the sum by the total number of values.

Given that the mean of four numbers is 10 and three of the numbers are 10, 14, and 8, we can substitute these values into the mean formula and solve for the fourth number.

Let's denote the fourth number as "x".

Mean = (Sum of all numbers) / (Total number of values)

10 = (10 + 14 + 8 + x) / 4

Now, let's solve the equation for "x".

Multiply both sides of the equation by 4 to eliminate the denominator:

40 = 10 + 14 + 8 + x

Combine like terms:

40 = 32 + x

Subtract 32 from both sides:

40 - 32 = x

Simplifying:

8 = x

Learn more about value here :-

https://brainly.com/question/30145972

#SPJ11

xcosa + ysina =p and x sina -ycosa =q​

Answers

We have the value of 'y' in terms of 'x', 'p', 'q', and the trigonometric functions 'sina' and 'cosa'.

To solve the system of equations:

xcosa + ysina = p

xsina - ycosa = q

We can use the method of elimination to eliminate one of the variables.

To eliminate the variable 'sina', we can multiply equation 1 by xsina and equation 2 by xcosa:

x²sina*cosa + xysina² = psina

x²sina*cosa - ycosa² = qcosa

Now, we can subtract equation 2 from equation 1 to eliminate 'sina':

(x²sinacosa + xysina²) - (x²sinacosa - ycosa²) = psina - qcosa

Simplifying, we get:

2xysina² + ycosa² = psina - qcosa

Now, we can solve this equation for 'y':

ycosa² = psina - qcosa - 2xysina²

Dividing both sides by 'cosa²':

y = (psina - qcosa - 2xysina²) / cosa²

So, using 'x', 'p', 'q', and the trigonometric functions'sina' and 'cosa', we can determine the value of 'y'.

for such more question on trigonometric functions

https://brainly.com/question/25618616

#SPJ8



​is a + b equal to b + a ? give reason

Answers

The expression a + b is equal to b + a by the commutative property of addition

How to determine if the expressions are equal

From the question, we have the following parameters that can be used in our computation:

a + b

Also, we have

b + a

The commutative property of addition states that

a + b = b + a

This means that the expression a + b is equal to b + a by the commutative property of addition

Read more about expression at

https://brainly.com/question/31819389

#SPJ1

Due to the commutative principle, a+b will always equal b+a. Anything will not be true if it violates the commutative property.

If a+b = b+a then it follows commutative property.

The commutative property holds true in math

if a and b are integers the

a+b=b+a

example a = 3 and b = 4

a+b = 3+4 = 7

and b+a = 4+3 = 7

a+b =b+a

When two integers are added, regardless of the order in which they are added, the sum is the same because integers are commutative. Two integer integers can never be added together differently.

if a and b are variable then

a+b = b+a

let a = x and b = y

then a+b = x+y and b+a = y+x

x+y = y+x

the commutative property also applies to variables.

if a and b are vectors then also

a+b= b+a

a = 2i

b = 3i

a+b = 5i

b+a = 5i

5i=5i

The Commutative law asserts that in vectors, the order of addition is irrelevant, therefore A+B is identical to B+A.

know more about Commutative law click here;

https://brainly.in/question/5867466

Divide. Simplify your answer. 2/x÷(x+5)/2x
please explain like you are teaching me

Answers

Answer:

the simplified form of the expression 2/x ÷ (x+5)/2x.

Step-by-step explanation:

To divide the expression 2/x ÷ (x+5)/2x, we can simplify the process by using the reciprocal (or flip) of the second fraction and then multiplying.

Let's break it down step by step:

Step 1: Flip the second fraction:

(x+5)/2x becomes 2x/(x+5).

Step 2: Multiply the fractions:

Now we have 2/x multiplied by 2x/(x+5).

To multiply fractions, we multiply the numerators together and the denominators together:

Numerator: 2 * 2x = 4x

Denominator: x * (x+5) = x^2 + 5x

So, the expression becomes 4x / (x^2 + 5x).

This is the simplified form of the expression 2/x ÷ (x+5)/2x.

(a) Find the work done by a force 5 i^ +3 j^ +2 k^ acting on a body which moves from the origin to the point (3,−1,2). (b) Given u =− i^ +2 j^ −1 k^and v = 2l −1 j^​ +3 k^ . Determine a vector which is perpendicular to both u and v .

Answers

a) The work done by the force F = 5i + 3j + 2k on a body moving from the origin to the point (3, -1, 2) is 13 units.

b) A vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k is -6i - 7j - 3k.

a) The work done by a force F = 5i + 3j + 2k acting on a body that moves from the origin to the point (3, -1, 2) can be determined using the formula:

Work done = ∫F · ds

Where F is the force and ds is the displacement of the body. Displacement is defined as the change in the position vector of the body, which is given by the difference in the position vectors of the final point and the initial point:

s = rf - ri

In this case, s = (3i - j + 2k) - (0i + 0j + 0k) = 3i - j + 2k

Therefore, the work done is:

Work done = ∫F · ds = ∫₀ˢ (5i + 3j + 2k) · (ds)

Simplifying further:

Work done = ∫₀ˢ (5dx + 3dy + 2dz)

Evaluating the integral:

Work done = [5x + 3y + 2z]₀ˢ

Substituting the values:

Work done = [5(3) + 3(-1) + 2(2)] - [5(0) + 3(0) + 2(0)]

Therefore, the work done = 13 units.

b) To find a vector that is perpendicular to both u = -i + 2j - k and v = 2i - j + 3k, we can use the cross product of the two vectors:

u × v = |i j k|

|-1 2 -1|

|2 -1 3|

Expanding the determinant:

u × v = (-6)i - 7j - 3k

Therefore, a vector that is perpendicular to both u and v is given by:

u × v = -6i - 7j - 3k.

Learn more about force

https://brainly.com/question/30507236

#SPJ11

can someone check this question for me

Answers

The value of x in the expression for the interior angle QRT is 7.

What is the value of x?

Given the diagram in the question:

Line QR is parallel to line ST. transversal line TR intersects the two parallel lines.

Note that:

If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.

Hence:

Angle QRT + Angle STR = 180

Plug in the values and solve for x:

( 11x + 8 ) + 95 = 180

11x + 8 + 95 = 180

11x + 103 = 180

11x = 180 - 103

11x = 77

Divide both sides by 11.

x = 77/11

x = 7

Therefore, x has a value of 7.

Option B) 7 is the correct answer.

Learn more about supplementary angles here:

https://brainly.com/question/18362240

#SPJ1

Other Questions
An electron and a proton are a distancer -8.5 x 10 m apart. How much energy is required to increase their separation by a factor of 4? 25. After infants complete participation in a research study, caregivers often ask, "How did my baby do?" Although most researchers avoid saying anything diagnostic to caregivers regardless of the paradigm, in which type of studies do researchers have sufficient information to make definitive statements about a single baby's performance? a. Visual habituation and violation of expectation. b. Forced-choice preferential looking and operant conditioning. c. Remote eye tracking and head-mounted eye tracking. d. Preferential looking and cross-modal preferential looking. Suppose a firm is producing in the short run with a fixed amount of capital. Also the firm knows that each extra worker produces an extra unit of output up to six workers. After six no extra output is produced. Draw the total product, average product of labour and marginal productof labour curves in three separate diagrams. Each scenario illustrates a principle of economics. Classify each scenario according to the principle that best fits it.a. An educational software company wants to expand the number of economics questions that it offers and is considering hiring another economist. The company compares how much adding another worker will improve the product to the additional cost.b. Ava finds that there is not enough time after work to have dinner, exercise, and watch TV, and she must make choices about how to use her limited time.c. On Black Friday, there are huge sales for electronics at many retailers. David must decide between buying a new iPhone or a new Apple watch.WORD BANK- opportunity cost- marginal analysis- resource scarcity a/4 - 3 =2. Need help cuz Please help fill in "An air-track glider attached to a spring oscillates between the16 cm mark and the 57 cm mark on the track. The glider completes 10oscillations in 40 s.What is the period of the oscillations? 1. Three married couples are seated in a row. How many different seating arrangements are possible: a) if there is no restriction on the order? (anyone can sit next to anyone) b) if married couples sit together? c) Suppose that A and B are disjoint sets. If there are 5 elements in A and 3 elements in B, how many elements are in the union of the two sets? 1, Two parallel disks, 80 cm in diameter, are separated by a distance of 10 cm and completely enclosed by a large room at 20C. The properties of the surfaces are T, = 620C, E1=0.9, T2 = 220C. 2 = 0.45. What is the net radiant heat transfer with each surface? (Do not include back side exchange, only that from the surfaces facing each other.) Answers 1. Hot disk watts a) b) c) Cold disk watts Room watts Directions: Write a 5 paragraph expository essay on a topic of your choice. Place the paragraphs in the format below. 1. Paragraph 1 Introduction 2. Paragraph 2 Transition to body 3. Paragraph 3 Details and support 4. Paragraph 4 Details and support 5. Paragraph 5 Conclusion Part 3 - Kai NielsonWhy does Nielson say that capitalism involves "the dominationof the many by the few" and so undermine (except for those few) thefreedom and autonomy praised by libertarians In the story about the cop and the anthem, soapy: explain the way soapy tried to get arrested using 50-75 words What are the personal and social effects of the perpetuated childhood about woman in traditional african society and relate this to a theological critique of power and it's misuse to woman and children. Critically evaluate why Functionalist theories are more useful when trying to understand crime and deviance in society than other sociological theories like Marxism and Labelling Theory? And mention the relevant sociologist theories relating to the evidence? For the trust attitudes scale (labeled trust), the highestnumber, _____ , represents strongly agree. The lowestnumber,_______, represents strongly disagree. Heat is sometimes lost from a house through cracks around windows and doors. What mechanism of heat transfer is involve O A radiation O B. convection o C transmission OD.conduction An older relative who manages a team of 10 including primarilymillennial and GenZ has asked for some advice on managing cellphones in their call center during work hours. 2 PARAGRAPHPLEASE Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options Stimulated G protein coupled-receptors may: A. Increase the activity of protein kinase C by increasing CAMP B. Decrease intracellular Ca+2 by the action of phospholipase C C. Decrease intracellular CAMP by the action of phospholipase C D. Decrease the activity of protein kinase A by decreasing 5'AMP E. Increase intracellular CAMP by the action of adenylyl cyclase interpret the following findings, if noted on a urinanlysis result: Urine has a specific gravity of 1.080.- urine contains sugar-urine contains protein-urine contains cell casts Steam Workshop Downloader