Solve the given system of differential equations by systematic elimination. dy dt 2dx dt dx dt (x(t), y(t)) 4x + X + dy dt = et 4et Solve the given system of differential equations by systematic elimination. dx dy 2- dt dt dx dy dt dt 4x + x + = = et 4et (x(t), y(t)) = ( Ce³t+³2e¹,4² + (1-C) e³² + €₁ ‚4e² 3t X )

Answers

Answer 1

The solution to the given system of differential equations is:

[tex]\(x(t) = \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\)\\\(y(t) = 5e^t - \frac{5}{3}e^{2t} + 3C_1t + C_2\)[/tex]

To solve the given system of differential equations by systematic elimination, we can eliminate one variable at a time to obtain a single differential equation. Let's begin by eliminating [tex]\(x(t)\)[/tex].

Differentiating the second equation with respect to [tex]\(t\)[/tex], we get:

[tex]\[\frac{d^2x}{dt^2} = e^t\][/tex]

Substituting this expression into the first equation, we have:

[tex]\(\frac{dy}{dt} - 2e^t \frac{dx}{dt} = 4x + x + e^t\)[/tex]

Simplifying the equation, we get:

[tex]\(\frac{dy}{dt} - 2e^t \frac{dx}{dt} = 5x + e^t\)[/tex]

Next, differentiating the above equation with respect to [tex]\(t\)[/tex], we have:

[tex]\(\frac{d^2y}{dt^2} - 2e^t \frac{d^2x}{dt^2} = 5 \frac{dx}{dt}\)[/tex]

Substituting [tex]\(\frac{d^2x}{dt^2} = e^t\)[/tex], we have:

[tex]\(\frac{d^2y}{dt^2} - 2e^{2t} = 5 \frac{dx}{dt}\)[/tex]

Now, let's eliminate [tex]\(\frac{dx}{dt}\)[/tex]. Differentiating the second equation with respect to [tex]\(t\),[/tex] we get:

[tex]\(\frac{d^2y}{dt^2} = 4e^t\)[/tex]

Substituting this expression into the previous equation, we have:

[tex]\(4e^t - 2e^{2t} = 5 \frac{dx}{dt}\)[/tex]

Simplifying the equation, we get:

[tex]\(\frac{dx}{dt} = \frac{4e^t - 2e^{2t}}{5}\)[/tex]

Integrating on both sides:

[tex]\(\int \frac{dx}{dt} dt = \int \frac{4e^t - 2e^{2t}}{5} dt\)[/tex]

Integrating each term separately, we have:

[tex]\(x = \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\)[/tex]

where [tex]\(C_1\)[/tex] is the constant of integration.

Now, we can substitute this result back into one of the original equations to solve for [tex]\(y(t)\)[/tex]. Let's use the second equation:

[tex]\(\frac{dy}{dt} = 4x + x + e^t\)[/tex]

Substituting the expression for [tex]\(x(t)\)[/tex], we have:

[tex]\(\frac{dy}{dt} = 4 \left(\frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\right) + \left(\frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\right) + e^t\)[/tex]

Simplifying the equation, we get:

[tex]\(\frac{dy}{dt} = \frac{16}{5} e^t - \frac{8}{3} e^{2t} + 2C_1 + \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1 + e^t\)[/tex]

Combining like terms, we have:

[tex]\(\frac{dy}{dt} = \left(\frac{20}{5} + \frac{4}{5} + 1\right)e^t - \left(\frac{8}{3} + \frac{2}{3}\right)e^{2t} + 3C_1\)[/tex]

Simplifying further, we get:

[tex]\(\frac{dy}{dt} = 5e^t - \frac{10}{3}e^{2t} + 3C_1\)[/tex]

Integrating both sides with respect to \(t\), we have:

[tex]\(y = 5 \int e^t dt - \frac{10}{3} \int e^{2t} dt + 3C_1t + C_2\)[/tex]

Evaluating the integrals and simplifying, we get:

[tex]\(y = 5e^t - \frac{5}{3}e^{2t} + 3C_1t + C_2\)[/tex]

where [tex]\(C_2\)[/tex] is the constant of integration.

Therefore, the complete solution to the system of differential equations is:

[tex]\(x(t) = \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\)\\\(y(t) = 5e^t - \frac{5}{3}e^{2t} + 3C_1t + C_2\)[/tex]

To know more about systematic elimination, refer here:

https://brainly.com/question/29847467#

#SPJ11


Related Questions

Probatatiry a Trper a fractich. Sirpief yous arawer.\} Um 1 contains 5 red and 5 white balls. Um 2 contains 6 red and 3 white balls. A ball is drawn from um 1 and placed in urn 2 . Then a ball is drawn from urn 2. If the ball drawn from um 2 is red, what is the probability that the ball drawn from um 1 was red? The probability is (Type an integer or decimal rounded to three decimal places as needed.) (Ty:e at desmal Recund to tithe decmal pisces it meededt)

Answers

A. The probability that the ball drawn from urn 1 was red given that the ball drawn from urn 2 is red is 0.625.

B. To calculate the probability, we can use Bayes' theorem. Let's denote the events:

R1: The ball drawn from urn 1 is red

R2: The ball drawn from urn 2 is red

We need to find P(R1|R2), the probability that the ball drawn from urn 1 was red given that the ball drawn from urn 2 is red.

According to Bayes' theorem:

P(R1|R2) = (P(R2|R1) * P(R1)) / P(R2)

P(R1) is the probability of drawing a red ball from urn 1, which is 5/10 = 0.5 since there are 5 red and 5 white balls in urn 1.

P(R2|R1) is the probability of drawing a red ball from urn 2 given that a red ball was transferred from urn 1.

The probability of drawing a red ball from urn 2 after one red ball was transferred is (6+1)/(9+1) = 7/10, since there are now 6 red balls and 3 white balls in urn 2.

P(R2) is the probability of drawing a red ball from urn 2, regardless of what was transferred.

The probability of drawing a red ball from urn 2 is (6/9)*(7/10) + (3/9)*(6/10) = 37/60.

Now we can calculate P(R1|R2):

P(R1|R2) = (7/10 * 0.5) / (37/60) = 0.625

Therefore, the probability that the ball drawn from urn 1 was red given that the ball drawn from urn 2 is red is 0.625.

Learn more about Bayes' theorem:

brainly.com/question/29598596

#SPJ11

Find zx for the given implicit function xyz³ + x²y³z = x+y+z Find the derivative fz at the point P ( 1, 0, −3 ) for the function Z-X f(x, y, z) = z+y
Implicit Derivative:
Depending on how the function is given implicitly or explicitly, it will be how the partial derivatives of a function of several variables will be calculated.
For the case of the implicit functions, when calculating the partial derivatives with respect to the whole equation, we will calculate the derivatives with respect to one of the variables, considering the rest of the independent variables as constants.

Answers

To find the value of z sub x (dz/dx) for the given implicit function xyz³ + x²y³z = x+y+z, we need to differentiate the equation implicitly with respect to x. This involves taking the partial derivative of each term in the equation with respect to x while treating y and z as independent variables. After calculating the derivative, we can substitute the values of x, y, and z to find z sub x.

To find the derivative fz at the point P(1, 0, -3) for the function Z-X f(x, y, z) = z+y, we can differentiate the function with respect to z. Since the function only depends on z and y, the derivative with respect to z will be 1. Therefore, fz at the point P is equal to 1.

To find zx for the given implicit function xyz³ + x²y³z = x+y+z, we differentiate the equation implicitly with respect to x. Treating y and z as independent variables, we calculate the partial derivative of each term with respect to x.

Taking the derivative of the first term, we have (3xyz² + 2xy³z) dx/dx. Since dx/dx is equal to 1, this term simplifies to 3xyz² + 2xy³z.

The second term, x²y³z, has a partial derivative of (2xy³z) dx/dx, which simplifies to 2xy³z.

The derivative of the right-hand side, x + y + z, with respect to x is simply 1.

Setting up the equation, we have 3xyz² + 2xy³z + 2xy³z = 1.

Simplifying further, we get 3xyz² + 4xy³z = 1.

Substituting the values of x, y, and z at the point P(1, 0, -3), we can calculate the value of zx.

To find fz at the point P(1, 0, -3) for the function Z-X f(x, y, z) = z+y, we differentiate the function with respect to z.

Since the function only depends on z and y, the derivative with respect to z is simply 1.

Therefore, fz at the point P is equal to 1.

To learn more about implicit function visit:

brainly.com/question/30482202

#SPJ11

Write in roster notation, (xy: x = {0,1)3 and ye (0.1) U (0,1}²}| E

Answers

The roster notation for the given expression is {xy | x ∈ {0, 1}³, y ∈ (0, 1) ∪ (0, 1)²}.

In roster notation, we represent a set by listing its elements within curly braces. Each element is separated by a comma. In this case, the set is defined as {(0, y) : y ∈ (0, 1) U (0, 1]}, which means it consists of ordered pairs where the first element is always 0 and the second element (denoted as y) can take any value within the interval (0, 1) or (0, 1].

To understand this notation, let's break it down further. The interval (0, 1) represents all real numbers between 0 and 1, excluding both endpoints. The interval (0, 1] includes the number 1 as well. So, the set contains all ordered pairs where the first element is 0, and the second element can be any real number between 0 and 1, including 1.

For example, some elements of this set would be (0, 0.5), (0, 0.75), (0, 1), where the first element is fixed at 0, and the second element can be any value between 0 and 1, including 1.

Learn more about roster notation

brainly.com/question/29082396

#SPJ11

1. Transform each of the following functions using Table of the Laplace transform (i). (ii). t²t³ cos 7t est 2. (a) Find Fourier Series representation of the function with period 27 defined by f(t)= sin (t/2). (b) Find the Fourier Series for the function as following -1 -3

Answers

(i) The Laplace transform of t² is (2/s³), the Laplace transform of t³ is (6/s⁴), the Laplace transform of cos(7t) is (s/(s²+49)), and the Laplace transform of [tex]e^(^s^t^)[/tex] is (1/(s-[tex]e^(^-^s^t^)[/tex])))). Therefore, the transformed function is (2/s³) + (6/s⁴) * (s/(s²+49)) + (1/(s-[tex]e^(^-^s^t^)[/tex])).

(ii) The Fourier series representation of the function f(t) = sin(t/2) with period 27 is given by f(t) = (4/π) * (sin(t/2) + (1/3)sin(3t/2) + (1/5)sin(5t/2) + ...).

In the first step, we are asked to transform each of the given functions using the Table of the Laplace transform. For function (i), we have to find the Laplace transforms of t² , t³, cos(7t), and  [tex]e^(^s^t^)[/tex]. Using the standard formulas from the Laplace transform table, we can find their respective transforms. The transformed function is the sum of these individual transforms.

For  t² its (2/s³),

For t³ its (6/s⁴),

For cos(7t) its (s/(s²+49)),

For [tex]e^(^s^t^)[/tex] its (1/(s-[tex]e^(^-^s^t^)[/tex])))).

the transformed function is (2/s³) + (6/s⁴) * (s/(s²+49)) + (1/(s-[tex]e^(^-^s^t^)[/tex])).

In the second step, we are asked to find the Fourier series representation of the function f(t) = sin(t/2) with a period of 27. The Fourier series representation of a function involves expressing it as a sum of sine and cosine functions with different frequencies and amplitudes.

For the given function, the Fourier series representation can be obtained by using the formula for a periodic function with a period of 27. The formula allows us to find the coefficients of the sine terms, which are then multiplied by the respective sine functions with different frequencies to obtain the final representation.

The function f(t) = sin(t/2) with a period of 27 can be represented by its Fourier series as f(t) = (4/π) * (sin(t/2) + (1/3)sin(3t/2) + (1/5)sin(5t/2) + ...).

Learn more about Laplace transform

brainly.com/question/30759963

#SPJ11

Please type in the answer as Empirical (E) or Theoretical (T)
1. According to worldometers.info on June 24, 2020 at 3:40 pm Vegas Time, COVID-19 has already taken 124,200 lives
2. CDC anticipates a 2nd wave of COVID cases during the flue season.
3. Older adults and people who have severe underlying medical conditions like heart or lung disease or diabetes seem to be at higher risk for developing serious complications from COVID-19 illness
4. ASU predicts lower enrollment in the upcoming semester

Answers

Empirical (E)

Theoretical (T)

Theoretical (T)

Theoretical (T)

The statement about COVID-19 deaths on a specific date is empirical because it is based on actual recorded data from worldometers.info.

The CDC's anticipation of a second wave of COVID cases during the flu season is a theoretical prediction. It is based on their understanding of viral transmission patterns and historical data from previous pandemics.

The statement about older adults and individuals with underlying medical conditions being at higher risk for serious complications from COVID-19 is a theoretical observation. It is based on analysis and studies conducted on the impact of the virus on different populations.

The prediction of lower enrollment in the upcoming semester by ASU is a theoretical projection. It is based on their analysis of various factors such as the ongoing pandemic's impact on student preferences and decisions.

Learn more about: Differentiating between empirical data and theoretical predictions

brainly.com/question/3055623

#SPJ11

4. Before making your selection, you need to ensure you are choosing from a wide variety of groups. Make sure your query includes the category information before making your recommendations. Guiding Questions and Considerations: Should you only include groups from the most popular categories?

Answers

Before making your selection, you need to ensure you are choosing from a wide variety of groups. Make sure your query includes the category information before making your recommendations. Guiding Questions and Considerations, popular categories do not always mean they are the best option for your selection.

When making a selection, it is important to choose from a wide variety of groups. Before making any recommendations, it is crucial to ensure that the query includes category information. Thus, it is important to consider the following guiding questions before choosing the groups: Which categories are the most relevant for your query? Are there any categories that could be excluded? What are the group options within each category?

It is important to note that categories should not be excluded based on their popularity or lack thereof. Instead, it is important to select the groups based on their relevance and diversity to ensure a wide range of options. Therefore, the selection should be made based on the specific query and not the popularity of the categories.

Learn more about diversity at:

https://brainly.com/question/26794205

#SPJ11



List the possible rational roots of P(x) given by the Rational Root Theorem.

P(x)=4 x⁴-2 x³ + x²-12

Answers

The possible rational roots of P(x) given by the Rational Root Theorem are ±1/4, ±1/2, ±3/4, ±1, ±2, ±3, ±6, and ±12.

The Rational Root Theorem states that if a polynomial has integer coefficients, then any rational roots of the polynomial are of the form: ± (factor of the constant term) / (factor of the leading coefficient)

Given the polynomial P(x) = 4x⁴ − 2x³ + x² − 12

To find the possible rational roots, we need to first identify the factors of both the constant term and leading coefficient of P(x).Constant term: 12 (factors: ±1, ±2, ±3, ±4, ±6, ±12)Leading coefficient: 4 (factors: ±1, ±2, ±4)

So, the possible rational roots of P(x) can be found by taking any combination of the factors of the constant term divided by the factors of the leading coefficient as:±1/4, ±1/2, ±3/4, ±1, ±2, ±3, ±6, ±12

Therefore, the possible rational roots of P(x) given by the Rational Root Theorem are ±1/4, ±1/2, ±3/4, ±1, ±2, ±3, ±6, and ±12.

Know more about rational roots here,

https://brainly.com/question/29551180

#SPJ11

what is the codes for matlab
3. Write a function named 'age' that takes the year of birth from a user and output the age in years.

Answers

MATLAB is a high-level programming language used for numerical computing, data analysis, and visualization. It includes built-in functions that can help users to solve a variety of problems. In MATLAB, codes can be written in the editor and then run in the command window.

To write a MATLAB function named 'age' that takes the year of birth from a user and outputs the age in years, you can follow these steps:

Open the MATLAB editor and create a new function by clicking on "New" and selecting "Function."

Name the function 'age' and specify the input argument, which in this case is the year of birth.

Write the function code that calculates the age in years using the current year (which can be obtained using the built-in function 'year') and the input year of birth.

Use the 'disp' function to output the age in years to the command window.

The complete function code would look like this:

function [age] = age(year_of_birth)

   current_year = year(datetime('now'));

   age = current_year - year_of_birth;

   disp(['The age is ' num2str(age) ' years.']);

end

The input argument 'year_of_birth' is used to store the year of birth entered by the user. The 'year' function is used to get the current year. The age is then calculated by subtracting the year of birth from the current year. Finally, the 'disp' function is used to output the age in years to the command window.

This explanation of writing a MATLAB function named 'age' that calculates and displays the age in years based on the year of birth

Learn more about MATLAB

https://brainly.com/question/30763780

#SPJ11

2. Given h(t)=21³-31²-121+1, find the critical points and determine whether minimum or maximum.

Answers

The function h(t) = 21t³ - 31t² - 121t + 1 has a maximum at t ≈ -0.833 and a minimum at t ≈ 2.139.

To find the critical points of the function h(t) = 21t³ - 31t² - 121t + 1, we need to find the values of t where the derivative of h(t) equals zero or is undefined.

First, let's find the derivative of h(t):

h'(t) = 63t² - 62t - 121

To find the critical points, we set h'(t) equal to zero and solve for t:

63t² - 62t - 121 = 0

Unfortunately, this equation does not factor easily. We can use the quadratic formula to find the solutions for t:

t = (-(-62) ± √((-62)² - 4(63)(-121))) / (2(63))

Simplifying further:

t = (62 ± √(3844 + 30423)) / 126

t ≈ -0.833 or t ≈ 2.139

These are the two critical points of the function h(t).

To determine whether each critical point corresponds to a minimum or maximum, we can examine the second derivative of h(t).

Taking the derivative of h'(t):

h''(t) = 126t - 62

For t = -0.833:

h''(-0.833) ≈ 126(-0.833) - 62 ≈ -159.458

For t = 2.139:

h''(2.139) ≈ 126(2.139) - 62 ≈ 168.414

Since h''(-0.833) is negative and h''(2.139) is positive, the critical point at t ≈ -0.833 corresponds to a maximum, and the critical point at t ≈ 2.139 corresponds to a minimum.

To know more about function:

https://brainly.com/question/30721594


#SPJ4

(PLEASE HELP IM STUCK AND THIS IS OVERDUE) What percentage of Americans would you predict wear glasses?

Answers

The percentage of Americans predicted to wear glasses is given as follows:

63.8%.

How to obtain a percentage?

Two parameters are used to calculate a percentage, as follows:

Number of desired outcomes a.Number of total outcomes b.

The proportion is given by the number of desired outcomes divided by the number of total outcomes, while the percentage is the proportion multiplied by 100%.

Hence the equation is given as follows:

P = a/b x 100%.

638 out of 1000 people sampled wear glasses, and the estimate of the percentage can be obtained as follows:

638/1000 x 100% = 63.8%.

More can be learned about proportions at brainly.com/question/24372153

#SPJ1



Find the tangent of the greater acute angle in a triangle with side lengths of 3,4 , and 5 centimeters.

Answers

The tangent of the greater acute angle in the triangle is 4/3.

In a right triangle, the tangent of an acute angle is defined as the ratio of the length of the side opposite the angle to the length of the side adjacent to the angle.

Given that the side lengths of the triangle are 3, 4, and 5 centimeters, we can identify the greater acute angle as the angle opposite the side with length 4.

To find the tangent of this angle, we divide the length of the side opposite the angle (4) by the length of the side adjacent to the angle (3).

Tangent = Opposite / Adjacent = 4/3.

Therefore, the tangent of the greater acute angle in the triangle with side lengths of 3, 4, and 5 centimeters is 4/3.

Learn more about trigonometry

brainly.com/question/11016599

#SPJ11

Determine wo, R, and 6 so as to write the given expression in the form u R cos(wot - 6). = NOTE: Enter exact answers. R Wo 8 || u =–4cos(t) — 5sin(at) - =

Answers

To write the given expression, -4cos(t) - 5sin(at), in the form u R cos(wot - 6), the values are as follows:

R = √41

wo = a

6 = tan^(-1)(5/4)

To write the given expression, -4cos(t) - 5sin(at), in the form u R cos(wot - 6), we need to determine the values of wo, R, and 6.

The expression -4cos(t) - 5sin(at) can be rewritten as R cos(wot - 6), where R represents the amplitude, wo represents the angular frequency, and 6 represents the phase shift.

Comparing the given expression with the form u R cos(wot - 6), we can determine the values as follows:

Amplitude (R) = √((-4)^2 + (-5)^2) = √(16 + 25) = √41

Angular Frequency (wo) = a

Phase Shift (6) = tan^(-1)(-5/-4) = tan^(-1)(5/4)

Therefore, the values are:

R = √41

wo = a

6 = tan^(-1)(5/4)

To know more about phase shift, refer here:

https://brainly.com/question/33363464#

#SPJ11

Explain the role of statistical analysis in the field of modeling, simulation and numerical methods applied to chemical engineering. Give at least five exambles of specific parameters and tests that are calculated and used in statistical analysis of mathematical models and explain their usefulness.

Answers

Statistical analysis is critical in chemical engineering because it allows modeling and simulation in a system to be performed effectively.

Chemical engineers use statistical analysis to describe and quantify the relationships between process variables. Statistical analysis aids in determining how a particular variable affects the process and the variability in the process, as well as the effect of one variable on another.

Here are five specific parameters and tests that are calculated and used in statistical analysis of mathematical models and explain their usefulness.

1. Regression Analysis: It is a statistical technique used to identify and analyze the relationship between one dependent variable and one or more independent variables. Its usefulness is to identify the best-fit line between a set of data points.

2. ANOVA (Analysis of Variance): It is a statistical method that is used to compare two or more groups to determine if there is a significant difference between them. Its usefulness is to determine if two or more sets of data are significantly different.

3. Hypothesis Testing: It is used to determine whether a statistical hypothesis is true or false. Its usefulness is to confirm or reject the null hypothesis in the modeling, simulation and numerical methods applied to chemical engineering.

4. Confidence Intervals: It is used to determine the degree of uncertainty associated with an estimate. Its usefulness is to measure the precision of a statistical estimate.

5. Principal Component Analysis: It is used to identify the most important variables in a set of data. Its usefulness is to simplify complex data sets by identifying the variables that have the most significant impact on the process.

Learn more about Statistical analysis:

https://brainly.com/question/14724376

#SPJ11

Given two vectors AB = 3î + ĵ-k and AC =î - 3ĵ+ k. Determine the area of the parallelogram spanned by AB and AC. (Hints: Area = |AB x AC )

Answers

The area of the parallelogram spanned by AB and AC is 2√22 square units.

There are two vectors AB = 3î + ĵ - k and AC = î - 3ĵ + k. Determine the area of the parallelogram spanned by AB and AC. Using the cross-product of vectors AB and AC will help us to calculate the area of the parallelogram spanned by vectors AB and AC.

Area of the parallelogram spanned by two vectors AB and AC is equal to the magnitude of the cross-product of AB and AC. Mathematically, it can be represented as:

Area = |AB x AC|

Where AB x AC represents the cross-product of vectors AB and AC. Now let's calculate the cross-product of vectors AB and AC. 

AB x AC =| i  j  k |3  1  -13 -3  1|

= i [(1) - (-3)] - j [(3) - (-9)] + k [(3) - (-3)] 

AB x AC = 4î + 6ĵ + 6k

Now, the magnitude of

AB x AC is:|AB x AC| = √(4² + 6² + 6²)

|AB x AC| = √(16 + 36 + 36)

|AB x AC| = √88

|AB x AC| = 2√22

You can learn more about parallelograms at: brainly.com/question/28854514

#SPJ11

Which transformations can be used to carry ABCD onto itself? The point of
rotation is (3, 2). Check all that apply.
3
A
C

A. Reflection across the line y = 2
OB. Translation two units down
OC. Rotation of 90°
D. Reflection across the line x = 3

Answers

The correct answer is C. Rotation of 90°, as it can carry ABCD onto itself with a point of rotation at (3, 2).

To determine which transformations can carry ABCD onto itself with a point of rotation at (3, 2), we need to consider the properties of the given transformations.

A. Reflection across the line y = 2: This transformation would not carry ABCD onto itself because it reflects the points across a horizontal line, not the point (3, 2).

B. Translation two units down: This transformation would not carry ABCD onto itself because it moves all points in the same direction, not rotating them.

C. Rotation of 90°: This transformation can carry ABCD onto itself with a point of rotation at (3, 2). A 90° rotation around (3, 2) would preserve the shape of ABCD.

D. Reflection across the line x = 3: This transformation would not carry ABCD onto itself because it reflects the points across a vertical line, not the point (3, 2).

Because ABCD may be carried onto itself with a point of rotation at (3, 2), the right response is C. Rotation of 90°.

for such more question on transformations

https://brainly.com/question/24323586

#SPJ8

There are two more quizzes before the end of the marking period. If Karen scores an 89 on one of these quizzes. What grade must she get on the other quiz so her mean score doesn't change

Answers

Karen got an 89 on one quiz and must take two more quizzes to maintain her current average score.

To maintain the current average score, we have to first determine the current average score. The average of scores is calculated by dividing the total of all scores by the number of scores.

To get the current average score, we need to add Karen's score to the total score of the previous quizzes and divide by the number of quizzes.

The following formula is used to find the mean or average score:

Mean score = (Total score of all quizzes) / (Number of quizzes)

Let's say Karen took n quizzes before the current quiz. Therefore, to find the current mean score, we would add up the previous n scores and Karen's current quiz score.

The sum is then divided by n + 1 as there are n + 1 scores, including the current quiz score. That is, the formula becomes:

Mean score = (Total score of all quizzes) / (Number of quizzes)

Mean score = (Score of Quiz 1 + Score of Quiz 2 + … + Score of Quiz n + Karen's current score) / (n + 1)

We are given that Karen got an 89 on one of the quizzes. If the current average is 85, then the sum of all Karen's scores must be 85 × (2 + n) (since there are two more quizzes remaining after the quiz where she got 89).

Thus, the following equation can be written:

Mean score = (85 × (2 + n) + 89) / (n + 3)

We are looking for Karen's next score that will maintain her current mean score. In other words, we need to find the score Karen must obtain in the next quiz so that her current mean score of 85 remains the same. So, we equate the current mean score and the new mean score (when the new score is included) and solve for the new quiz score as follows:(85 × (2 + n) + 89) / (n + 3) = (85 × (2 + n) + x) / (n + 3)Where x is Karen's next score.

Therefore:(85 × (2 + n) + 89) / (n + 3) = (85 × (2 + n) + x) / (n + 3) 85 × (2 + n) + 89 = 85 × (2 + n) + x x = 89

Thus, the score Karen needs to get on the second quiz is 89.

Therefore, Karen needs to get 89 on the other quiz to maintain her current average. The total score of the three quizzes would be:

85 × (2 + n) + 89 + 89 = 85 × (4 + n) + 89.

Hence, the answer is:

Karen needs to get an 89 on the second quiz to maintain her average score.

Learn more about average scorehere:-

https://brainly.com/question/7471517

#SPJ11

if the symbol denotes the greatest integer function defined in this section, evaluate the following. (if an answer does not exist, enter dne.) (a) find each limit. (i) lim x→−6 x (ii) lim x→−6 x (iii) lim x→−6.2 x (b) if n is an integer, evaluate each limit. (i) lim x→n− x (ii) lim x→n x (c) for what values of a does lim x→a x exist? the limit exists only for a

Answers

(a) (i) dne (ii) -6 (iii) -6

(b) (i) n-1 (ii) n

(c) The limit exists only for whole number values of 'a.'

(a) (i) In this case, the limit does not exist because the function is not defined for x approaching -6 from the left side. Therefore, the answer is "dne" (does not exist).

(a) (ii) When approaching -6 from either the left or the right side, the value of x remains -6. Thus, the limit is -6.

(a) (iii) Similar to the previous case, when approaching -6.2 from either the left or the right side, the value of x remains -6.2. Therefore, the limit is -6.2.

(b) (i) When approaching a whole number n from the left side, the value of x approaches n-1. Hence, the limit is n-1.

(b) (ii) When approaching a whole number n from either the left or the right side, the value of x approaches n. Therefore, the limit is n.

(c) The limit of x exists only for whole number values of 'a.' This is because the greatest integer function is defined only for whole numbers, and as x approaches any whole number, the value of x remains the same. For non-whole number values of 'a,' the function is not defined, and therefore, the limit does not exist.

Learn more about: Function

brainly.com/question/30721594

#SPJ11

If you were given a quadratic function and a square root function, would the quadratic always be able to exceed the square root function? Explain your answer and offer mathematical evidence to support your claim.

Answers

No, a quadratic function does not always exceed a square root function. Whether a quadratic function exceeds a square root function depends on the specific equations of the functions and their respective domains. To provide a mathematical explanation, let's consider a specific example. Suppose we have the quadratic function f(x) = x^2 and the square root function g(x) = √x. We will compare these functions over a specific domain.

Let's consider the interval from x = 0 to x = 1. We can evaluate both functions at the endpoints and see which one is larger:

For f(x) = x^2:

f(0) = (0)^2 = 0

f(1) = (1)^2 = 1

For g(x) = √x:

g(0) = √(0) = 0

g(1) = √(1) = 1

As we can see, in this specific interval, the quadratic function and the square root function have equal values at both endpoints. Therefore, the quadratic function does not exceed the square root function in this particular case.

However, it's important to note that there may be other intervals or specific equations where the quadratic function does exceed the square root function. It ultimately depends on the specific equations and the range of values being considered.

Answer:

No, a quadratic function will not always exceed a square root function. There are certain values of x where the square root function will be greater than the quadratic function.

Step-by-step explanation:

The square root function is always increasing, while the quadratic function can be increasing, decreasing, or constant.

When the quadratic function is increasing, it will eventually exceed the square root function.

However, when the quadratic function is decreasing, it will eventually be less than the square root function.

Here is a mathematical example:

Quadratic function:[tex]f(x) = x^2[/tex]

Square root function: [tex]g(x) = \sqrt{x[/tex]

At x = 0, f(x) = 0 and g(x) = 0. Therefore, f(x) = g(x).

As x increases, f(x) increases faster than g(x). Therefore, f(x) will eventually exceed g(x).

At x = 4, f(x) = 16 and g(x) = 4. Therefore, f(x) > g(x).

As x continues to increase, f(x) will continue to increase, while g(x) will eventually decrease.

Therefore, there will be a point where f(x) will be greater than g(x).

In general, the quadratic function will exceed the square root function for sufficiently large values of x.

However, there will be a range of values of x where the square root function will be greater than the quadratic function.

Yesterday, between noon and midnight, the temperature decreased by 25. 2°F. If the temperature was -0. 7°F at midnight, what was it at noon?

Answers

To find the temperature at noon, we need to subtract the decrease in temperature from the temperature at midnight. the temperature at noon was -25.9°F.

Temperature decrease: 25.2°F

Temperature at midnight: -0.7°F

To find the temperature at noon, we subtract the decrease in temperature from the temperature at midnight:

Temperature at noon = Temperature at midnight - Temperature decrease

Temperature at noon = -0.7°F - 25.2°F

Now, let's calculate the temperature at noon:

Temperature at noon = -0.7°F - 25.2°F

Temperature at noon = -25.9°F

Therefore, the temperature at noon was -25.9°F.

Learn more about temperature here

https://brainly.com/question/24746268

#SPJ11

Use the procedures developed in this chapter to find the general solution of the differential equation. y′′−2y′+y=x^2e^x
y=

Answers

To find the general solution of the given differential equation, let's follow the procedures developed in this chapter. The differential equation is y′′−2y′+y=x^2e^x.



Step 1: Solve the homogeneous equation
To start, let's find the solution to the homogeneous equation y′′−2y′+y=0. The characteristic equation is r^2-2r+1=0, which can be factored as (r-1)^2=0. This gives us a repeated root of r=1.

The general solution to the homogeneous equation is y_h=c_1e^x+c_2xe^x, where c_1 and c_2 are constants.

Step 2: Find a particular solution
To find a particular solution to the non-homogeneous equation y′′−2y′+y=x^2e^x, we can use the method of undetermined coefficients. Since the right side of the equation is a polynomial multiplied by an exponential function, we assume a particular solution of the form y_p=(Ax^2+Bx+C)e^x, where A, B, and C are constants to be determined.

Differentiating y_p twice, we have y_p′′=(2A+2Ax+B)e^x and y_p′=(2A+2Ax+B)e^x+(Ax^2+Bx+C)e^x.

Substituting these derivatives into the original differential equation, we get:
(2A+2Ax+B)e^x-2[(2A+2Ax+B)e^x+(Ax^2+Bx+C)e^x]+(Ax^2+Bx+C)e^x=x^2e^x.

Simplifying the equation, we have 2Ax^2e^x+(2B-4A+2A)x+(B-2B+C+2A)=x^2e^x.

By comparing coefficients, we can determine the values of A, B, and C:
2A=1 (from the coefficient of x^2e^x)
2B-4A+2A=0 (from the coefficient of xe^x)
B-2B+C+2A=0 (from the constant term)

Solving these equations, we find A=1/2, B=1, and C=-2.

Therefore, a particular solution to the non-homogeneous equation is y_p=(1/2)x^2e^x+x^e^x-2e^x.

Step 3: Write the general solution
The general solution to the non-homogeneous equation is the sum of the homogeneous solution and the particular solution:
y=y_h+y_p=c_1e^x+c_2xe^x+(1/2)x^2e^x+x^e^x-2e^x.

So, the general solution of the given differential equation is y=c_1e^x+c_2xe^x+(1/2)x^2e^x+x^e^x-2e^x.

To learn more about "Differential Equation" visit: https://brainly.com/question/1164377

#SPJ11

A right rectangular prism has a surface area of 348in. . Its height is 9in, and its width is 6in. . Which equation can be used to find the prism’s length, p, in inches?

Answers

The equation that can be used to find the length of the prism is 108 + 15p = 348. Option D.

To find the equation that can be used to find the length of the right rectangular prism, we can analyze the surface area formula for a rectangular prism.

The surface area of a right rectangular prism can be calculated using the formula:

Surface Area = 2lw + 2lh + 2wh,

where l is the length, w is the width, and h is the height of the prism.

Given that the height is 9 inches and the width is 6 inches, we can substitute these values into the surface area formula:

348 = 2l(6) + 2l(9) + 2(6)(9),

348 = 12l + 18l + 108,

348 = 30l + 108.

Now, we need to simplify the equation to isolate the length, l.

Subtracting 108 from both sides:

348 - 108 = 30l,

240 = 30l.

Finally, dividing both sides by 30:

240 / 30 = l,

8 = l.

Therefore, the equation that can be used to find the length of the prism is D.) 108 + 15p = 348. By substituting the given values, the equation simplifies to 108 + 15(6) = 348, which yields 108 + 90 = 348, confirming that the length of the prism is indeed 8 inches. So Option D is correct.

For more question on equation visit:

https://brainly.com/question/17145398

#SPJ8

The indicated function y₁(x) is a solution of the given differential equation. Use reduction of order or formula (5) in Section 4.2, e-/P(x) dx V₂ = V₁(x) = x²(x) (5) dx as instructed, to find a second solution y₂(x). Y₂ = x²y" - xy + 17y=0; y₁ = x cos(4 In(x))

Answers

The second solution to the differential equation is: y₂ = c₁x y cos(4 ln(x)) + c₂x y sin(4 ln(x))

The given differential equation is y₂ = x²y" - xy + 17y = 0. A solution to this differential equation is given by y₁ = x cos(4 ln(x)). To find a second solution, we'll use reduction of order.

Let's assume that y₂ = v(x)y₁. So, we get:

y₂′ = v′y₁ + vy₁′ = v′xy cos(4 ln(x)) − 4vxy sin(4 ln(x))

Now, we substitute this into the differential equation:

y₂′′ = v′′xy cos(4 ln(x)) − 4v′xy sin(4 ln(x)) + v′′y cos(4 ln(x)) − 8v′y sin(4 ln(x)) + vxy′′ cos(4 ln(x)) − 16vxy′ sin(4 ln(x)) − 8vxy′ ln(x) cos(4 ln(x)) + 16vxy′ ln(x) sin(4 ln(x)) − 16vx sin(4 ln(x))

We can write this as:

y₂′′ + py₂′ + qy₂ = 0

where:

p(x) = −(1/x) − 4 sin(4 ln(x))/cos(4 ln(x))

q(x) = −(1/x²)(8 tan(4 ln(x)) − 17)

Now, we can solve this differential equation using the method of variation of parameters.

Using formula (5) in Section 4.2,

e^(-P(x)) dx V₂ = V₁(x)

we can write the general solution as:

y₂ = c₁y₁ + c₂y₁ ∫ e^(-∫P(x)dx) dx

We can integrate e^(-∫P(x)dx) as follows:

∫ e^(-∫P(x)dx) dx = e^(-∫P(x)dx)

We need to find -∫P(x)dx. We have:

p(x) = −(1/x) − 4 sin(4 ln(x))/cos(4 ln(x))

So, -P(x) = ∫p(x)dx = −ln(x) + 4 ln(cos(4 ln(x)))

Therefore, e^(-∫P(x)dx) = x e^(-4 ln(cos(4 ln(x)))) = x cos^4( ln(x))

Now, we can write the second solution as:

y₂ = c₁x y cos(4 ln(x)) + c₂x y sin(4 ln(x))

Learn more about differential equation

https://brainly.com/question/32645495

#SPJ11

John predicted that his project would require, in effort, 25 person-days (d/p) for plan development, 75 d/p for software development, 20 d/p for reviews, 30 d/p for tests, 20 d/p for training and 5 d/p for methodology. His project cost 250 days/p, because he had to redo several modules following the test results.
a) Calculate the costs of non-compliance, enforcement, prevention and evaluation.
Show your calculations below.
b) Calculate the percentage of effort, out of the total cost, devoted to each component:

Answers

a. the costs of non-compliance, enforcement, prevention and evaluation are -75 d/p, -$7500, $17500 and $5000 respectively

b. The percentage of effort devoted to each component is:

Plan development: 10%Software development: 30%Reviews: 8%Tests: 12%Training: 8%Methodology: 2%

a) To calculate the costs of non-compliance, enforcement, prevention, and evaluation, we need to determine the deviations in effort for each component and multiply them by the corresponding cost per person-day.

Non-compliance cost:

Non-compliance cost = Actual effort - Predicted effort

To calculate the actual effort, we need to sum up the effort for each component mentioned:

Actual effort = Plan development + Software development + Reviews + Tests + Training + Methodology

Actual effort = 25 + 75 + 20 + 30 + 20 + 5 = 175 d/p

Non-compliance cost = Actual effort - Predicted effort = 175 - 250 = -75 d/p

Enforcement cost:

Enforcement cost = Non-compliance cost * Cost per person-day

Assuming a cost of $100 per person-day, we can calculate the enforcement cost:

Enforcement cost = -75 * $100 = -$7500 (negative value indicates a cost reduction due to underestimation)

Prevention cost:

Prevention cost = Predicted effort * Cost per person-day

Assuming a cost of $100 per person-day, we can calculate the prevention cost for each component:

Plan development prevention cost = 25 * $100 = $2500

Software development prevention cost = 75 * $100 = $7500

Reviews prevention cost = 20 * $100 = $2000

Tests prevention cost = 30 * $100 = $3000

Training prevention cost = 20 * $100 = $2000

Methodology prevention cost = 5 * $100 = $500

Total prevention cost = Sum of prevention costs = $2500 + $7500 + $2000 + $3000 + $2000 + $500 = $17500

Evaluation cost:

Evaluation cost = Total project cost - Prevention cost - Enforcement cost

Evaluation cost = $25000 - $17500 - (-$7500) = $5000

b) To calculate the percentage of effort devoted to each component out of the total cost, we can use the following formula:

Percentage of effort = (Effort for a component / Total project cost) * 100

Percentage of effort for each component:

Plan development = (25 / 250) * 100 = 10%

Software development = (75 / 250) * 100 = 30%

Reviews = (20 / 250) * 100 = 8%

Tests = (30 / 250) * 100 = 12%

Training = (20 / 250) * 100 = 8%

Methodology = (5 / 250) * 100 = 2%

Learn more about  non-compliance from

brainly.com/question/17306620

#SPJ11

Find the value of x cosec 3x = (cot 30° + cot 60°) / (1 + cot 30° cot 60° cot 30°)

Answers

The value of x for the given expression cosec3x = (cot 30°+ cot 60°) / (1 + cot 30° cot 60°) is 20°.

The given expression is  cosec 3x = (cot 30° + cot 60°) / (1 + cot 30° cot 60°).

It is required to find the value of x from the given expression.

For solving this expression, we use the values from the trigonometric table and simplify it to get the value of x.

We know that

cos 30° = √3 and cot 60° = 1/√3

Take the RHS side of the expression and simplify

(cot 30° + cot 60°) / (1 + cot 30° cot 60°)

[tex]=\frac{\sqrt{3}+\frac{1}{\sqrt{3} } }{1 + \sqrt{3}*\frac{1}{\sqrt{3} }} \\\\=\frac{ \frac{3+1}{\sqrt{3} } }{1 + 1} \\\\=\frac{ \frac{4}{\sqrt{3} } }{2} \\\\={ \frac{2}{\sqrt{3} } \\\\[/tex]

The value of RHS is 2/√3.

Now, equating this with the LHS, we get

cosec 3x = 2/√3

cosec 3x = cosec60°

3x = 60°

x = 60°/3

x = 20°

Therefore, the value of x is 20°.

To know more about the trigonometric table:

https://brainly.com/question/28997088

The correct question is -

Find the value of x, when cosec 3x = (cot 30° + cot 60°) / (1 + cot 30° cot 60°)

Suppose that the trace of a 2 x 2 matrix A is tr(A) = 6 and the determinant is det(A) = 5. Find the eigenvalues of A.
The eigenvalues of A are ______. (Enter your answers as a comma separated list.)
The trace of a matrix is the sum of its diagonal entries.

Answers

The eigenvalues of a 2x2 matrix with trace 6 and determinant 5 are 3 and 2. This is because the sum of the eigenvalues is equal to the trace of the matrix, and their product is equal to the determinant of the matrix.

To find the eigenvalues of a 2x2 matrix, we can use the characteristic equation. Let A be a 2x2 matrix with eigenvalues λ1 and λ2. Then the characteristic equation is given by det(A - λI) = 0, where I is the identity matrix.

Substituting A = [a b; c d], we have det(A - λI) = det([a - λ b; c d - λ]) = (a - λ)(d - λ) - bc = λ^2 - (a + d)λ + ad - bc.

Setting this equal to zero and solving for λ, we get λ^2 - tr(A)λ + det(A) = 0. Substituting tr(A) = 6 and det(A) = 5, we have λ^2 - 6λ + 5 = 0.

Factoring this quadratic equation, we get (λ - 5)(λ - 1) = 0. Therefore, the eigenvalues of A are λ1 = 5 and λ2 = 1. However, we must check that the sum of the eigenvalues is equal to the trace of A and their product is equal to the determinant of A.

Indeed, λ1 + λ2 = 5 + 1 = 6, which is equal to the trace of A. Also, λ1λ2 = 5 * 1 = 5, which is equal to the determinant of A. Therefore, the eigenvalues of A are 3 and 2.

To know more about eigenvalues refer here:

https://brainly.com/question/29861415

#SPJ11

[–(3 + 2) + (–4)] – {–1 + [–(–4) + 1]}

Answers

Answer:

-13

Step-by-step explanation:

[–(3 + 2) + (–4)] – {–1 + [–(–4) + 1]}

[–(5) + (–4)] – {–1 + [–(–4) + 1]}

[–5 + (–4)] – {–1 + [–(–4) + 1]}

[–9] – {–1 + [–(–4) + 1]}

[–9] – {–1 + [4 + 1]}

[–9] – {–1 + 5}

[–9] – {4}

-13

9 type the correct answer in each box. spell all words correctly. use the product rules to complete these statements. if you multiply six positive numbers, the product’s sign will be . if you multiply six negative numbers, the product’s sign will be .

Answers

If you multiply six positive numbers, the product's sign will be positive.

If you multiply six negative numbers, the product's sign will be negative.

1. If you multiply six positive numbers, the product's sign will be positive:

When multiplying positive numbers, the product will always be positive. This is a result of the product rule for positive numbers, which states that when you multiply two or more positive numbers together, the resulting product will also be positive. This rule holds true regardless of the number of positive numbers being multiplied. Therefore, if you multiply six positive numbers, the product's sign will always be positive.

For example:

2 * 3 * 4 * 5 * 6 * 7 = 20,160 (positive product)

2. If you multiply six negative numbers, the product's sign will be negative:

When multiplying negative numbers, the product's sign will depend on the number of negative factors involved. According to the product rule for negative numbers, if there is an odd number of negative factors, the product will be negative. Conversely, if there is an even number of negative factors, the product will be positive.

In the case of multiplying six negative numbers, we have an even number of negative factors (6 is even), so the product's sign will be negative. Each negative factor cancels out another negative factor, resulting in a negative product.

For example:

(-2) * (-3) * (-4) * (-5) * (-6) * (-7) = -20,160 (negative product)

Remember, the product's sign is determined by the number of negative factors involved in the multiplication, and even factors yield a negative product.

To know more about factors refer to:

https://brainly.com/question/14549998

#SPJ11

a triangle whose angles have measures 3x, 4x, and x-20

Answers

Answer:

All equal 180

Step-by-step explanation:

(i) The sum of all the 3 angles of a triangle is always equal to 180 degrees.

(ii) If we are given 3 angles of a triangle in terms of a variable, then we set up their sum to be 180 degrees and solve for the variable.

(iii) We substitute the value of the variable back into the given angles to find their measurements.

the square root of: 600666, 9092, 3456 ,847236 and of 92034

Answers

Answer:

Step-by-step explanation:

The square root of 600666 is approximately 774.93.

The square root of 9092 is approximately 95.38.

The square root of 3456 is exactly 58.

The square root of 847236 is approximately 920.08.

The square root of 92034 is approximately 303.36.

Justin obtained a loan of $32,500 at 6% compounded monthly. How long (rounded up to the next payment period) would it take to settle the loan with payments of $2,810 at the end of every month? year(s) month(s) Express the answer in years and months, rounded to the next payment period

Answers

Justin obtained a loan of $32,500 at 6% compounded monthly. He wants to know how long it will take to settle the loan with payments of $2,810 at the end of every month. So, it would take approximately 1 year and 2 months (rounded up) to settle the loan with payments of $2,810 at the end of every month.


To find the time it takes to settle the loan, we can use the formula for the number of payments required to pay off a loan. The formula is:

n = -(log(1 - (r * P) / A) / log(1 + r))

Where:
n = number of payments
r = monthly interest rate (annual interest rate divided by 12)
P = monthly payment amount
A = loan amount

Let's plug in the values for Justin's loan:

Loan amount (A) = $32,500
Monthly interest rate (r) = 6% / 12 = 0.06 / 12 = 0.005
Monthly payment amount (P) = $2,810

n = -(log(1 - (0.005 * 2810) / 32500) / log(1 + 0.005))

Using a calculator, we find that n ≈ 13.61.

Since the question asks us to round up to the next payment period, we will round 13.61 up to the next whole number, which is 14.

Therefore, it would take approximately 14 payments to settle the loan. Now, we need to express this in years and months.

Since Justin is making monthly payments, we can divide the number of payments by 12 to get the number of years:

14 payments ÷ 12 = 1 year and 2 months.

Therefore, if $2,810 was paid at the end of each month, it would take approximately 1 year and 2 months (rounded up) to pay off the loan.

To learn more about "Loan" visit: https://brainly.com/question/25696681

#SPJ11

Other Questions
Consider a parallel-plate capacitor with empty space between its plates, which are separated by a distance of 2 mm. If the charge on the positive plate is 4 uC, and the electrical potential energy stored in this capacitor is 12 n), what is the magnitude of the electric field in the region between the plates? O 2 V/m O I V/m 04 V/m O 6 V/m O 3 V/m 6. How many ways can you order the letters of the word BREATHING so that all the vowels are grouped together? (You do not need simplify your answer). Consider a one-dimensional monatomic lattice. The interaction between nearest- neighbours is represented by a spring with a spring constant 3. Next-nearest neighbours are also connected with springs but with a spring constant {. Determine the dispersion relation w(k) for this lattice. ( The provider prescribed vancomycin 25 mg/kg/day PO for a child who weighs 54 lbs. What is the correct daily dosage for this child in milligrams? Enter your answer as a whole number. Enter only the number. Use Desired-Over-Have method to show work. Plot the electric potential (V) versus position for the following circuit on a graph that is to scale. Make sure to label the locations on your horizontal axis. Here V0=10 V and R=Ik What are the following values Vab,Vcd,Vef. ? If the profit function for a product is P(x)=6400x+80x^2x^3230, do0 doliars, selling how many items, x, will produce a maximum proft? x= items Find the maximum profit. $ 3. Define a deficient and abundant number. Prove that the product of two distinct odd primes is deficient. In an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 11.2C. The temperature at the inside surface of the wall is 19.4C. The wall is 0.20 m thick and has an area of 8.6 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall? A puck moves on a horizontal air table. It is attached to a string that passes through a hole in the center of the table. As the puck rotates about the hole, the string is pulled downward very slowly and shortens the radius of rotation, so the puck gradually spirals in towards the center. By what factor will the puck's angular speed have changed when the string's length has decreased to one-third of its original length? As the HIM director, you would like to migrate all or most of your in-house coding to remotely home-based. In anticipation of concerns that IT might raise about remote access, you have been evaluating best practices for remote security. Your recommendations would be to provide each coder with a laptop for remote access to your organizations information.Report why this is your choice in view of HIPAA security provisions. Be sure to research the security provisions so you are clear in your answer.Discover at least five other recommendations that you feel would control remote access and promote security. Why is Procurement Management important? Please provide with a practical example based on your personal experience. Why is it important to measure and monitor the supplier performance over time?Why is it important to include labor and human rights in supply management? Briefly discuss whehter it is easy or not to monitor supplier's violation of labor and human right, and why? Why are the impacts of increasing worldwide risks on supply management and the need to work closely with suppliers and other functions? Why? Select one of the five environmental forces (social, economic, technological, competitive, and regulatory), discuss an actual trend that fits into that particular environmental force, and describe the marketing opportunity it creates. 1a) Some psychologists would say that the fears of heights and snakes are so common because they are adaptive. In other words, earlier humans that were afraid of heights and snakes were more likely to survive than those who were not afraid, and as a result, many modern day humans have such fears.What types of psychologists would be most likely to explain the fears of heights and snakes in this way?Group of answer choicespsychoanalyticevolutionaryfeministhumanistic1b) Alonzo created a new study technique. He got 60 students to test out his new technique. Half of them were taught the new technique, while the other half were not. All of the students were then given a psychology exam.What group were the students who learned the technique in?comparison groupexperimental groupconstant groupcontrol group1c) The overall group of people that a researcher is interested in, intends to generalize the results of their study to, and draws their participants from is referred to as what?Group of answer choicesexperimental groupindependent variablepopulationsample1d) process in which researchers seek to confirm the results other researchers have found by repeating the original study1e) A researcher interested in factors that lead to employee satisfaction would most likely identify as what type of psychologist?Group of answer choicesclinicaldevelopmentalindustrial/organizationalsocial1f) A researcher is conducting an experiment on the effects of a new drug intended to treat symptoms of depression. In order to ensure the research assistants interacting with the participants in the study do not introduce bias into the study's results, the researcher uses a certain technique. With use of this technique, neither the research assistants nor the participants will know which of the participants will be given the drug or the placebo.What is this technique called?Group of answer choicessingle-blindingdouble-blindingdouble deceptionsingle deception1g) A correlation coefficient tells us about the direction of the relationship between two variables. What else does it tell us about the relationship between the two variables?Group of answer choicesthe strengththe reliabilitythe validitythe basis1h) Dione is interested in the viewpoints of at least 20,000 Californians on the topic of poverty in California. What may be the best research method for her to use in an effort to collect this information?Group of answer choicesobservationexperimentalsurveycase study What is the effective annual rate of interest if $1300.00 grows to $1800.00 in five years compounded semi-annually? The effective annual rate of interest as a percent is%. Two soccer players start from rest, 40 m apart. They run directly toward each other, both players accelerating. The first player's acceleration has a magnitude of 0.47 m/s2. The second player's acceleration has a magnitude of 0.47 m/s2. (a) How much time passes before the players collide? (b) At the instant they collide, how far has the first player run? Select the correct answer.Before a collision, the x-momentum of an object is 8.0 103 kilogram meters/second, and its y-momentum is 1.2 104 kilogram meters/second. What is the magnitude of its total momentum after the collision? A. 1.4 104 kilogram meters/second B. 2.0 104 kilogram meters/second C. 3.2 104 kilogram meters/second D. 5.7 104 kilogram meters/second Suppose the demand function of a product is: QD = 300 - 3P and its supply function is QS = -50+2P, where QD and QS are respectively the quantity demanded and supplied of the product and P is its price. i) Algebraically calculate and graph the equilibrium price, equilibrium quantity, and consumer surplus and producer surplus at the equilibrium point.Next, suppose that the government imposes a maximum selling price of the product, which is less than the equilibrium price (P) by 10 euros. ii) Explain and illustrate diagrammatically, what will be the effect of this government action on the quantity of the product. iii) Calculate the change in total market surplus for the product (ie the sum of consumer surplus and producer surplus) due to the imposition of the price ceiling. iv) Illustrate diagrammatically and calculate the total surplus in the market for the product after the price ceiling is imposed. The pH reading of a sample of each substance is given. Calculate the hydrogen ion concentration of the substance. (Give your answers in scientific notation, correct to one decimal place Calculate each of the following values: a) (5 pts) (200 mod 27 +99 mod 27) mod 27 The function f(x) = a^x -4 will never cross the x-axis if a is positive. Steam Workshop Downloader