The following limit
limn→[infinity] n∑i=1 xicos(xi)Δx,[0,2π] limn→[infinity] n∑i=1 xicos⁡(xi)Δx,[0,2π]
is equal to the definite integral ∫baf(x)dx where a = , b = ,
and f(x) =

Answers

Answer 1

The given limit is equal to the definite integral: ∫[0, 2π] x cos(x) dx. So, a = 0, b = 2π, and f(x) = x cos(x).

To evaluate the limit using the Riemann sum, we need to express it in terms of a definite integral. Let's break down the given expression:

lim n→∞ n∑i=1 xi cos(xi)Δx,[0,2π]

Here, Δx represents the width of each subinterval, which can be calculated as (2π - 0)/n = 2π/n. Let's rewrite the expression accordingly:

lim n→∞ n∑i=1 xi cos(xi) (2π/n)

Now, we can rewrite this expression using the definite integral:

lim n→∞ n∑i=1 xi cos(xi) (2π/n) = lim n→∞ (2π/n) ∑i=1 n xi cos(xi)

The term ∑i=1 n xi cos(xi) represents the Riemann sum approximation for the definite integral of the function f(x) = x cos(x) over the interval [0, 2π].

Therefore, we can conclude that the given limit is equal to the definite integral:

∫[0, 2π] x cos(x) dx.

So, a = 0, b = 2π, and f(x) = x cos(x).

To learn more about Riemann sum visit:

brainly.com/question/32525875

#SPJ11


Related Questions

6
PROBLEM 1 Compute the following integrals using u-substitution as seen in previous labs. dy notes dr 11 C. xe dx O

Answers

The integral ∫xe dx using u-substitution is (1/2)|x| + c.

to compute the integral ∫xe dx using u-substitution, we can let u = x². then, du = 2x dx, which implies dx = du / (2x).

substituting these expressions into the integral, we have:

∫xe dx = ∫(x)(dx) = ∫(u⁽¹²⁾)(du / (2x))        = ∫(u⁽¹²⁾)/(2x) du

       = (1/2) ∫(u⁽¹²⁾)/x du.

now, we need to express x in terms of u. from our initial substitution, we have u = x², which implies x = √u.

substituting x = √u into the integral, we have:

(1/2) ∫(u⁽¹²⁾)/(√u) du= (1/2) ∫u⁽¹² ⁻ ¹⁾ du

= (1/2) ∫u⁽⁻¹²⁾ du

= (1/2) ∫1/u⁽¹²⁾ du.

integrating 1/u⁽¹²⁾, we have:

(1/2) ∫1/u⁽¹²⁾ du = (1/2) ∫u⁽⁻¹²⁾ du                    = (1/2) * (2u⁽¹²⁾)

                   = u⁽¹²⁾                    = √u.

substituting back u = x², we have:

∫xe dx = (1/2) ∫(u⁽¹²⁾)/x du

       = (1/2) √u        = (1/2) √(x²)

       = (1/2) |x| + c.

Learn more about integral  here:

https://brainly.com/question/31059545

#SPJ11

To compute the integral ∫xe^x dx, we can use the u-substitution method. By letting u = x, we can express the integral in terms of u, which simplifies the integration process. After finding the antiderivative of the new expression, we substitute back to obtain the final result.

To compute the integral ∫xe^x dx, we will use the u-substitution method. Let u = x, then du = dx. Rearranging the equation, we have dx = du. Now, we can express the integral in terms of u:

∫xe^x dx = ∫ue^u du.

We have transformed the original integral into a simpler form. Now, we can proceed with integration. The integral of e^u with respect to u is simply e^u. Integrating ue^u, we apply integration by parts, using the mnemonic "LIATE":

Letting L = u and I = e^u, we have:

∫LIATE = u∫I - ∫(d/dx(u) * ∫I dx) dx.

Applying the formula, we obtain:

∫ue^u du = ue^u - ∫(1 * e^u) du.

Simplifying, we have:

∫ue^u du = ue^u - ∫e^u du.

Integrating e^u with respect to u gives us e^u:

∫ue^u du = ue^u - e^u + C.

Substituting back u = x, we have:

∫xe^x dx = xe^x - e^x + C,

where C is the constant of integration.

In conclusion, using the u-substitution method, the integral ∫xe^x dx is evaluated as xe^x - e^x + C, where C is the constant of integration.

Learn more about  antiderivative here:

https://brainly.com/question/31396969

#SPJ11

please help due in 5 minutes

Answers

The foot length predictions for each situation are as follows:

7th grader, 50 inches tall: 8.05 inches7th grader, 70 inches tall: 9.27 inches8th grader, 50 inches tall: 5.31 inches8th grader, 70 inches tall: 6.11 inches

To predict the foot length based on the given equations, we can substitute the height values into the respective grade equations and solve for y, which represents the foot length.

For a 7th grader who is 50 inches tall:

y = 0.061x + 5

x = 50

y = 0.061(50) + 5

y = 3.05 + 5

y = 8.05 inches

For a 7th grader who is 70 inches tall:

y = 0.061x + 5

x = 70

y = 0.061(70) + 5

y = 4.27 + 5

y = 9.27 inches

For an 8th grader who is 50 inches tall:

y = 0.04x + 3.31

x = 50

y = 0.04(50) + 3.31

y = 2 + 3.31

y = 5.31 inches

For an 8th grader who is 70 inches tall:

y = 0.04x + 3.31

x = 70

y = 0.04(70) + 3.31

y = 2.8 + 3.31

y = 6.11 inches

Learn more about Equation here:

https://brainly.com/question/29538993

#SPJ1


6. The total number of visitors who went to the theme park during one week can be modeled by
the function f(x)=6x3 + 13x² + 8x + 3 and the number of shows at the theme park can be
modeled by the equation f(x)=2x+3, where x is the number of days. Write an expression that
correctly describes the average number of visitors per show.

Answers

The expression that correctly describes the average number of visitors per show is

(6x³ + 13x² + 8x + 3) / (2x + 3)

How to model the expression

To find the average number of visitors per show, we need to divide the total number of visitors by the number of shows.

The total number of visitors is given by the function

f(x) = 6x³ + 13x² + 8x + 3

The number of shows is given by the function,

f(x) = 2x + 3.

To calculate the average number of visitors per show  we divide the total number of visitors by the number of shows:

Average number of visitors per show = (6x^3 + 13x^2 + 8x + 3) / (2x + 3)

Learn more about polynomials at

https://brainly.com/question/4142886

#SPJ1

"Prove that: sin(x-45)=cos(x+45)

Answers

Using trigonometric identities sin(x - 45) = -cos(x + 45)

What is a trigonometric identity?

A trigonometric identity is an equation that contains a trigonometric ratio.

Since we have the trigonometric identity  sin(x - 45) = -cos(x + 45), we need to prove that Left hand sides L.H.S equals Right Hand side R.H.S. We proceed as follows

L.H.S = sin(x - 45)

Using the trigonometric identity sin(A - B) = sinAcosB - cosAsinB where A = x and B = 45, we have that substituting these into the equation

sin(x - 45) = sinxcos45 - cosxsin45

= sinx × 1/√2 - cosx × 1/√2

= sinx/√2 - cosx√2

= (sinx - cosx)/√2

Also, R.H.S = -cos(x + 45)

Using the trigonometric identity cos(A + B) = cosAcosB - sinAsinB where A = x and B = 45, we have that these into the equation

cos(x + 45) = cosxcos45 - sinxsin45

= cosx × 1/√2 - sinx × 1/√2

= cosx/√2 - sinx/√2

= cosx/√2 - sinx/√2

= (cosx - sinx)/√2

= - (sinx - cosx)/√2

Since L.H.S = R.H.S

sin(x - 45) = -cos(x + 45)

Learn more about trigonometric identities here:

https://brainly.com/question/29722989

#SPJ1

(e) Find a formula for Fp, which is f restricted to the diagonal edge of R (the hypotenuse of the triangular boundary). For this, it is helpful to express y as a function of r. Then Fp will be a funct

Answers

To find a formula for Fp, which represents the function f restricted to the diagonal edge of R (the hypotenuse of the triangular boundary), we need to express y as a function of r.

In the given scenario, the region R is bounded by the y-axis, the line y = 4, and the curve y = r². The diagonal edge of R can be represented by the equation y = x, where x and y are both positive since R is in the first quadrant.

To express y as a function of r, we set y = x and solve for x in terms of r. Since x represents the value on the diagonal edge, we have:

y = x

r² = x

Taking the square root of both sides, we get:

x = √r²

x = r

Therefore, we can express y as a function of r as:

y = r

Now that we have y = r, we can define Fp as a function that represents f restricted to the diagonal edge of R. Let's denote Fp(r) as the restricted function.

Fp(r) = f(r, r)

Here, f(r, r) means that both x and y in the original function f are replaced with r, as we are restricting f to the diagonal edge where x = r and y = r.

So, Fp(r) = f(r, r) represents the formula for Fp, which is f restricted to the diagonal edge of R.

Learn more about diagonal edge here:

https://brainly.com/question/22491728

#SPJ11

Find the indefinite integral by parts. | xIn xdx Oai a) ' [ 1n (x4)-1]+C ** 36 b) 36 c) x [1n (xº)-1]+c 36 کد (d [in (xº)-1]+C 36 Om ( e) tij [1n (xº)-1]+C In 25

Answers

The indefinite integral of x ln(x) dx i[tex]∫x ln(x) dx = (1/2) x^2 ln(x) - (1/4) x^2 + C[/tex]. It is the reverse process of differentiation.

Among the options you provided:

[tex]a) ∫x ln(x) dx = [ln(x^4) - 1] + C / 36b) 36c) x [ln(x^0) - 1] + C / 36d) [ln(x^0) - 1] + C / 36e) [ln(x^0) - 1] + C / In 25[/tex]

The correct option is:

[tex]a) ∫x ln(x) dx = [ln(x^4) - 1] + C / 36[/tex]To find the indefinite integral of the expression ∫x ln(x) dx using integration by parts, we can apply the formula:∫u dv = uv - ∫v du

Let's choose:

[tex]u = ln(x) -- > (1)dv = x dx -- > (2)[/tex]

Taking the derivatives and antiderivatives:

[tex]du = (1/x) dx -- > (3)v = (1/2) x^2 -- > (4)[/tex]

Now we can apply the integration by parts formula:

[tex]∫x ln(x) dx = u*v - ∫v du= ln(x) * (1/2) x^2 - ∫(1/2) x^2 * (1/x) dx= (1/2) x^2 ln(x) - (1/2) ∫x dx= (1/2) x^2 ln(x) - (1/2) (1/2) x^2 + C= (1/2) x^2 ln(x) - (1/4) x^2 + C[/tex]

Therefore, the indefinite integral of x ln(x) dx is:

[tex]∫x ln(x) dx = (1/2) x^2 ln(x) - (1/4) x^2 + C[/tex]

Among the options you provided:

[tex]a) ∫x ln(x) dx = [ln(x^4) - 1] + C / 36b) 36c) x [ln(x^0) - 1] + C / 36d) [ln(x^0) - 1] + C / 36e) [ln(x^0) - 1] + C / In 25[/tex]

The correct option is:

[tex]a) ∫x ln(x) dx = [ln(x^4) - 1] + C / 36[/tex]

Learn more about Find here:

https://brainly.com/question/2879316

#SPJ11

Determine the vertical asymptote(s) of the function. If none exist, state that fact. 6x f(x) = 2 x - 36
Select the correct choice below and, if necessary, fill in the answer box(es) to complete your

Answers

To determine the vertical asymptote(s) of the function, we need to analyze the behavior of the function as x approaches certain values. In this case, we have the function 6xf(x) = 2x - 36.

To find the vertical asymptote(s), we need to identify the values of x for which the function approaches positive or negative infinity.

By simplifying the equation, we have

f(x) = (2x - 36)/(6x).

To determine the vertical asymptote(s), we need to find the values of x that make the denominator (6x) equal to zero, since division by zero is undefined.

Setting the denominator equal to zero, we have 6x = 0. Solving for x, we find x = 0.

Therefore, the vertical asymptote of the function is x = 0.

To learn more about vertical asymptote visit:

brainly.com/question/4084552

#SPJ11

Let y=tan(2x+8). (a) Find the Ay when I = 2 and Ar = 0.2 (b) Find the differential dy when I = 2 and dx = 0.2 Round your answers to three decimals. Question Help: Video Post to forum Submit Question

Answers

For the given function y = tan(2x + 8), (a) Ay = 2sec^2(2x + 8) * 0.2 when I = 2 and Ar = 0.2, and (b) dy = 2sec^2(2x + 8) * 0.2 when I = 2 and dx = 0.2.

(a) To find the change in y, Ay, when I = 2 and Ar = 0.2, we can substitute these values into the derivative of y = tan(2x + 8) and calculate the result. The derivative of y with respect to x is given by dy/dx = 2sec^2(2x + 8). Thus, Ay = dy/dx * Ar = 2sec^2(2x + 8) * 0.2. Substitute I = 2 into the equation to find Ay.

(b) To find the differential dy when I = 2 and dx = 0.2, we can use the derivative of y = tan(2x + 8) to calculate the result. The derivative of y with respect to x is dy/dx = 2sec^2(2x + 8). To find the differential dy, we multiply the derivative by the differential dx. Therefore, dy = dy/dx * dx = 2sec^2(2x + 8) * 0.2. Substitute I = 2 and dx = 0.2 into the equation to find the value of dy.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

Find the value of the integral le – 16x²yz dx + 25z dy + 2xy dz, where C is the curve parameterized by r(t) = (t,t, t) on the interval 1 st < 2. t3 = > Show and follow these steps: dr 1. Compute dt 2. Evaluate functions P(r), Q(r), R(r). 3. Write the new integral with upper/lower bounds. 4. Evaluate the integral. Show all steeps required.

Answers

The value of the integral ∫C  [tex]e^-^1^6^x^{^2} ^y^z[/tex]   dx + 25z dy + 2xy dz, where C is the curve parameterized by r(t) = (t, t, t) on the interval 1 ≤ t ≤ 2, is 2/3(e⁻³²) - 1)..

To compute the integral, we need to follow these steps:

Compute dt: Since r(t) = (t, t, t), the derivative is dr/dt = (1, 1, 1) = dt.

Evaluate functions P(r), Q(r), R(r): In this case, P(r) =  [tex]e^-^1^6^x^{^2} ^y^z[/tex]  , Q(r) = 25z, and R(r) = 2xy.

Write the new integral with upper/lower bounds: The integral becomes ∫[1 to 2] P(r) dx + Q(r) dy + R(r) dz.

Evaluate the integral: Substituting the values into the integral, we have ∫[1 to 2] [tex]e^-^1^6^x^{^2} ^y^z[/tex]  dx + 25z dy + 2xy dz.

To calculate the integral, the specific form of P(r), Q(r), and R(r) is needed, as well as further information on the limits of integration.

To know more about derivative click on below link:

https://brainly.com/question/29144258#

#SPJ11

Determine whether the equality is always true -10 1 y2 + 9 -9 -6 'O "y +9 S'ofvx-9 Sºr(x,y,z)dz dy dx = ["L!*** Sºr(x,y,z)dz dxdy. Select one: O True False

Answers

The equality you provided is not clear due to the formatting. However, based on the given expression, it appears to involve triple integrals in different orders of integration.

To determine whether the equality is always true, we need to ensure that the limits of integration and the integrand are the same on both sides of the equation.

Without specific information on the limits of integration and the integrand, it is not possible to determine if the equality is true or false. To properly evaluate the equality, we would need to have the complete expressions for both sides of the equation, including the limits of integration and the function being integrate (integrand).

If you can provide more specific information or clarify the given expression, I would be happy to assist you further in determining the validity of the equality.

Learn more about integrate here:

https://brainly.com/question/30217024

#SPJ11

Evaluate: sin ( + a) given sin a = 3/5 and cos e = 2/7; a in Q. II and in QIV

Answers

To evaluate sin(α + β) given sin(α) = 3/5 and cos(β) = 2/7, where α is in Quadrant II and β is in Quadrant IV, we can use the trigonometric identities and the given information to find the value.

By using the Pythagorean identity and the properties of sine and cosine functions, we can determine the value of sin(α + β) and conclude whether it is positive or negative based on the quadrant restrictions.

Since sin(α) = 3/5 and α is in Quadrant II, we know that sin(α) is positive. Using the Pythagorean identity, we can find cos(α) as cos(α) = √(1 - sin^2(α)) = √(1 - (3/5)^2) = √(1 - 9/25) = √(16/25) = 4/5. Since cos(β) = 2/7 and β is in Quadrant IV, cos(β) is positive.

To evaluate sin(α + β), we can use the formula sin(α + β) = sin(α)cos(β) + cos(α)sin(β). Substituting the given values, we have sin(α + β) = (3/5)(2/7) + (4/5)(-√(1 - (2/7)^2)). By simplifying this expression, we can find the exact value of sin(α + β).

Learn more about sin here : brainly.com/question/19213118

#SPJ11

Club Warehouse (commonly referred to as CW) sells various computer products at bargain prices by taking telephone, Internet, and fax orders directly from customers. Reliable information on the aggregate quarterly demand for the past five quarters is available and has been summarized below:
Year Quarter Demand (units)
---------------------------------------------------
2019 3 1,356,800
4 1,545,200
2020 1 1,198,400
2 1,168,500
3 1,390,000
---------------------------------------------------
Let the third quarter of 2019 be Period 1, the fourth quarter of 2019 be Period 2, and so on. Apply Naïve approach to predict the demand for CW’s products in the fourth quarter of 2020. Be sure to carry four decimal places for irrational numbers.

Answers

The predicted demand for CW's products in the fourth quarter of 2020 using the Naïve approach is 1,168,500 units.

The naive method assumes that there will be the same amount of demand in the current period as there was in the previous period. We must use the demand in the third quarter of 2020 (Period 7) as the basis if we are to use the Naive approach to predict the demand for CW's products in the fourth quarter of 2020.

Considering that the interest in Period 6 (second quarter of 2020) was 1,168,500 units, we can involve this worth as the anticipated interest for Period 7 (second from last quarter of 2020). As a result, we can anticipate the same level of demand for Period 8 (the fourth quarter of 2020).

Consequently, the Naive approach predicts 1,168,500 units of demand for CW's products in the fourth quarter of 2020.

To know more about interest refer to

https://brainly.com/question/30393144

#SPJ11

1. Find the arc length of the cardioid: r=1+ cos 0 2. Find the area of the region inside r = 1 and inside the region r = 1 + cos2 3. Find the area of the four-leaf rose: r = 2 cos(20)

Answers

trigonometric identities, we know that cos²(θ) = (1 + cos(2θ))/2. Applying this identity:

A = (1/2)∫[0,2π] 4(1 + cos(40))/2 dθ

A = 2π(1 + cos(40))

Evaluating the integral will give us the area of the four-leaf rose.

1. To find the arc length of the cardioid given by the equation r = 1 + cos(θ), we can use the arc length formula in polar coordinates:

L = ∫√(r² + (dr/dθ)²) dθ

Here, r = 1 + cos(θ), so we need to find dr/dθ:

dr/dθ = -sin(θ)

Substituting these values into the arc length formula, we have:

L = ∫√((1 + cos(θ))² + (-sin(θ))²) dθ  = ∫√(1 + 2cos(θ) + cos²(θ) + sin²(θ)) dθ

 = ∫√(2 + 2cos(θ)) dθ

This integral can be evaluated using appropriate techniques such as substitution or trigonometric identities.

provide the arc length of the cardioid.

2. To find the area of the region inside r = 1 and inside the region r = 1 + cos²(θ), we can set up the double integral:

A = ∬D r dr dθ

where D represents the region of interest .

In this case, the region D is defined by the conditions 0 ≤ r ≤ 1 + cos²(θ) and 0 ≤ θ ≤ 2π.

To evaluate the integral, we can convert to Cartesian coordinates using the transformation equations x = rcos(θ) and y = rsin(θ). The limits of integration for x and y will then depend on the polar coordinates.

The integral expression will be:

A = ∫∫D dA  = ∫∫D dx dy

where D is the region defined by the given conditions. Evaluating this integral will give us the area of the region.

3. The area of the four-leaf rose given by the equation r = 2cos(2θ) can be found using the formula for the area in polar coordinates:

A = (1/2)∫[a,b] (r²) dθ

In this case, r = 2cos(20), so we substitute this into the formula:

A = (1/2)∫[0,2π] (2cos(20))² dθ

Simplifying further:

A = (1/2)∫[0,2π] 4cos²(20) dθ

Using

Learn more about interest here:

https://brainly.com/question/25044481

#SPJ11

Find the present and future values of an income stream of 3000
dollars a year, for a period of 5 years, if the continuous interest
rate is 6 percent.
Present Value=_______dollars
Future Value=________

Answers

The present value of the income stream is approximately 25042.53 dollars. The future value of the income stream is approximately 30794.02 dollars.

To find the present and future values of an income stream, we can use the formulas for continuous compound interest.

The formula for the present value of a continuous income stream is given by:

[tex]PV = C / r * (1 - e^(-rt))[/tex]

Where PV is the present value, C is the annual income, r is the interest rate (as a decimal), and t is the time period in years.

Substituting the given values into the formula:

C = 3000 dollars

r = 0.06 (6 percent as a decimal)

t = 5 years

[tex]PV = 3000 / 0.06 * (1 - e^(-0.06 * 5))[/tex]

Calculating the present value:

PV ≈ 25042.53 dollars

Therefore, the present value of the income stream is approximately 25042.53 dollars.

The formula for the future value of a continuous income stream is given by:

[tex]FV = C / r * (e^(rt) - 1)[/tex]

Substituting the given values into the formula:

C = 3000 dollars

r = 0.06 (6 percent as a decimal)

t = 5 years

[tex]FV = 3000 / 0.06 * (e^(0.06 * 5) - 1)[/tex]

Calculating the future value:

FV ≈ 30794.02 dollars

Therefore, the future value of the income stream is approximately 30794.02 dollars.

learn more about continuous compound interest here:

https://brainly.com/question/30761870

#SPJ11

Let f(x) = {6-1 = for 0 < x < 4, for 4 < x < 6. 6 . Compute the Fourier sine coefficients for f(x). • Bn Give values for the Fourier sine series пл S(x) = Bn ΣΒ, sin ( 1967 ). = n=1 S(4) = S(-5) = = S(7) = =

Answers

To compute the Fourier sine coefficients for the function f(x), we can use the formula: Bn = 2/L ∫[a,b] f(x) sin(nπx/L) dx

In this case, we have f(x) defined piecewise:

f(x) = {6-1 = for 0 < x < 4

{6 for 4 < x < 6

To find the Fourier sine coefficients, we need to evaluate the integral over the appropriate intervals.

For n = 0:

B0 = 2/6 ∫[0,6] f(x) sin(0) dx

= 2/6 ∫[0,6] f(x) dx

= 1/3 ∫[0,4] (6-1) dx + 1/3 ∫[4,6] 6 dx

= 1/3 (6x - x^2/2) evaluated from 0 to 4 + 1/3 (6x) evaluated from 4 to 6

= 1/3 (6(4) - 4^2/2) + 1/3 (6(6) - 6(4))

= 1/3 (24 - 8) + 1/3 (36 - 24)

= 16/3 + 4/3

= 20/3

For n > 0:

Bn = 2/6 ∫[0,6] f(x) sin(nπx/6) dx

= 2/6 ∫[0,4] (6-1) sin(nπx/6) dx

= 2/6 (6-1) ∫[0,4] sin(nπx/6) dx

= 2/6 (5) ∫[0,4] sin(nπx/6) dx

= 5/3 ∫[0,4] sin(nπx/6) dx

The integral ∫ sin(nπx/6) dx evaluates to -(6/nπ) cos(nπx/6).

Therefore, for n > 0:

Bn = 5/3 (-(6/nπ) cos(nπx/6)) evaluated from 0 to 4

= 5/3 (-(6/nπ) (cos(nπ) - cos(0)))

= 5/3 (-(6/nπ) (1 - 1))

= 0

Thus, the Fourier sine coefficients for f(x) are:

B0 = 20/3

Bn = 0 for n > 0

Now we can find the values for the Fourier sine series S(x):

S(x) = Σ Bn sin(nπx/6) from n = 0 to infinity

For the given values:

S(4) = B0 sin(0π(4)/6) + B1 sin(1π(4)/6) + B2 sin(2π(4)/6) + ...

= (20/3)sin(0) + 0sin(π(4)/6) + 0sin(2π(4)/6) + ...

= 0 + 0 + 0 + ...

= 0

S(-5) = B0 sin(0π(-5)/6) + B1 sin(1π(-5)/6) + B2 sin(2π(-5)/6) + ...

= (20/3)sin(0) + 0sin(-π(5)/6) + 0sin(-2π(5)/6) + ...

= 0 + 0 + 0 + ...

= 0

S(7) = B0 sin(0π(7)/6) + B1 sin(1π(7)/6) + B2 sin(2π(7)/6) + ...

= (20/3)sin(0) + 0sin(π(7)/6) + 0sin(2π(7)/6) + ...

= 0 + 0 + 0 + ...

= 0

Learn more about Fourier sine here:

https://brainly.com/question/32520285

#SPJ11

Rework problem 23 from section 2.1 of your text, involving the percentages of grades and withdrawals in a calculus-based physics class. For this problem, assume that 9 % withdraw, 15 % receive an A, 21 % receive a B, 31 % receive a C, 17 % receive a D. and 7 % receive an F. (1) What probability should be assigned to the event "pass the course'? (2) What probability should be assigned to the event "withdraw or fail the course"? (Note: Enter your answers as decimal fractions. Do not enter percentages.)

Answers

The probability of passing the course can be calculated by adding the probabilities of receiving an A, B, or C, which is 45%. The probability of withdrawing or failing the course can be calculated by adding the probabilities of withdrawing and receiving an F, which is 16%.

To calculate the probability of passing the course, we need to consider the grades that indicate passing. In this case, receiving an A, B, or C signifies passing. The probabilities of receiving these grades are 15%, 21%, and 31% respectively. To find the probability of passing, we add these probabilities: 15% + 21% + 31% = 67%. However, it is important to note that the sum exceeds 100%, which indicates an error in the given information.

Therefore, we need to adjust the probabilities so that they add up to 100%. One way to do this is by scaling down each probability by the sum of all probabilities: 15% / 95% ≈ 0.1579, 21% / 95% ≈ 0.2211, and 31% / 95% ≈ 0.3263. Adding these adjusted probabilities gives us the final probability of passing the course, which is approximately 45%.

To calculate the probability of withdrawing or failing the course, we need to consider the grades that indicate withdrawal or failure. In this case, withdrawing and receiving an F represent these outcomes. The probabilities of withdrawing and receiving an F are 9% and 7% respectively. To find the probability of withdrawing or failing, we add these probabilities: 9% + 7% = 16%.

Again, we need to adjust these probabilities to ensure they add up to 100%. Scaling down each probability by the sum of all probabilities gives us 9% / 16% ≈ 0.5625 and 7% / 16% ≈ 0.4375. Adding these adjusted probabilities gives us the final probability of withdrawing or failing the course, which is approximately 56%.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

a circular table cloth has a hem all the way around its perimeter. the length of this hem is 450cm. what is the radius of the table cloth?

Answers

Step-by-step explanation:

Circumference of a circle =  pi * diameter = 2 pi r

then

450 cm = 2 pi r

225 = pi r

225/pi = r =71.6 cm

The region bounded by the x
-axis and the part of the graph of y=cosx
between x=−π/2
and x=π/2
is separated into two regions by the line x=k
. If the area of the region for −π/2
is less than or equal to x
which is less than or equal to k is three times the area of the region for k
is less than or equal to x
which is less than or equal to π/2
, then k=?

Answers

The value of k, which separates the region bounded by the x-axis and the graph of y=cosx, is approximately 0.2618.

To find the value of k, we need to determine the areas of the two regions and set up an equation based on the given conditions. Let's calculate the areas of the two regions.

The area of the region for −π/2 ≤ x ≤ k can be found by integrating the function y=cosx over this interval. The integral becomes the sine function evaluated at the endpoints, giving us the area A1:

A1 = ∫[−π/2, k] cos(x) dx = sin(k) - sin(-π/2) = sin(k) + 1

Similarly, the area of the region for k ≤ x ≤ π/2 is given by:

A2 = ∫[k, π/2] cos(x) dx = sin(π/2) - sin(k) = 1 - sin(k)

According to the given conditions, A1 ≤ 3A2. Substituting the expressions for A1 and A2:

sin(k) + 1 ≤ 3(1 - sin(k))

4sin(k) ≤ 2

sin(k) ≤ 0.5

Since k is in the interval [-π/2, π/2], the solution to sin(k) ≤ 0.5 is k = arcsin(0.5) ≈ 0.2618. Therefore, k is approximately 0.2618.

Learn more about integral here:

https://brainly.com/question/31059545

#SPJ11

please answer fast
Find the area of the region enclosed between f(x) = 22 - 2x + 3 and g(x) = 2x2 - 1-3. Area = (Note: The graph above represents both functions f and g but is intentionally left unlabeled.) 2 Find the

Answers

The area enclosed between the functions f(x) = 22 - 2x + 3 and g(x) = 2x^2 - 1-3 can be calculated by finding the definite integral of their difference. The result will give us the area of the region between the two curves.

To find the area between the curves, we need to determine the points where the curves intersect. Setting f(x) equal to g(x), we can solve the equation 22 - 2x + 3 = 2x^2 - 1-3. Simplifying, we get 2x^2 + 2x - 19 = 0. Using quadratic formula, we find the values of x where the curves intersect.

Next, we integrate the difference between the functions over the interval between these x-values to calculate the area. The definite integral of [f(x) - g(x)] will give us the area of the region enclosed by the two curves.

To learn more about functions click here: brainly.com/question/31062578

#SPJ11

Write tan(cos-2 x) as an algebraic expression."

Answers

The expression tan(cos^(-2)x) cannot be simplified further into an algebraic expression. It represents the tangent function applied to the reciprocal of the square of the - BFGV function of x.

The expression tan(cos^(-2)x) consists of two trigonometric functions: tangent (tan) and the reciprocal of the square of the cosine function (cos^(-2)x). The reciprocal of the square of the cosine function represents 1/(cos^2x), which can be rewritten as sec^2x (the square of the secant function). Therefore, the expression can be written as tan(sec^2x). However, there is no further algebraic simplification possible for this expression. It remains in the form of the tangent function applied to the square of the secant function of x.

To learn more about trigonometric: -brainly.com/question/29156330#SPJ11

Consider the following IVP,
y" + 13y = 0, y' (0) = 0, 4(pi/2) =
and
a. Find the eigenvalue of the
system. b. Find the eigenfunction of this
system.

Answers

The given initial value problem (IVP) is y'' + 13y = 0 with the initial condition y'(0) = 0. the eigenvalue of the given system is ±i√13, and the corresponding eigenfunctions are [tex]e^(i√13t) and e^(-i√13t).[/tex]).

To find the eigenvalue of the system, we first rewrite the differential equation as a characteristic equation by assuming a solution of the form y = [tex]e^(rt)[/tex], where r is the eigenvalue. Substituting this into the differential equation, we get [tex]r^2e^(rt) + 13e^(rt) = 0.[/tex] Simplifying the equation yields r^2 + 13 = 0. Solving this quadratic equation gives us two complex eigenvalues: r = ±√(-13). Therefore, the eigenvalues of the system are ±i√13.

To find the eigenfunction, we substitute one of the eigenvalues back into the original differential equation. Considering r = i√13, we have (d^2/dt^2)[tex](e^(i√13t)) + 13e^(i√13t) = 0.[/tex] Expanding the derivatives and simplifying the equation, we obtain -[tex]13e^(i √13t) + 13e^(i√13t) = 0[/tex], which confirms that the function e^(i√13t) is a valid eigenfunction corresponding to the eigenvalue i√13. Similarly, substituting r = -i√13 would give the eigenfunction e^(-i√13t).

In summary, the eigenvalue of the given system is ±i√13, and the corresponding eigenfunctions are [tex]e^(i√13t) and e^(-i√13t).[/tex]

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

Solve the following first order differential equation using the integrating factor method. dy cos(t) + sin(t)y = 3cos' (t) sin(t) - 2 dx

Answers

The solution to the given first-order differential equation using the integrating factor method is y = Ce^(cos(t)) - 2x, where C is a constant.

To solve the first-order differential equation dy cos(t) + sin(t)y = 3cos'(t) sin(t) - 2 dx using the integrating factor method, we follow these steps: First, we rewrite the equation in the standard form of a linear differential equation by moving all the terms to one side:

dy cos(t) + sin(t)y - 3cos'(t) sin(t) + 2 dx = 0

Next, we identify the coefficient of y, which is sin(t). To find the integrating factor, we calculate the exponential of the integral of this coefficient:

μ(t) = e^(∫ sin(t) dt) = e^(-cos(t))

We multiply both sides of the equation by the integrating factor μ(t):

e^(-cos(t)) * (dy cos(t) + sin(t)y - 3cos'(t) sin(t) + 2 dx) = 0

After applying the product rule and simplifying, the equation becomes:

d(ye^(-cos(t))) + 2e^(-cos(t)) dx = 0

Integrating both sides with respect to their respective variables, we have:

∫ d(ye^(-cos(t))) + ∫ 2e^(-cos(t)) dx = ∫ 0 dx

ye^(-cos(t)) + 2x e^(-cos(t)) = C

Finally, we can rewrite the solution as:

y = Ce^(cos(t)) - 2x

Learn more about differential equation here: brainly.com/question/25731911

#SPJ11

Select all conditions for which it is possible to construct a triangle. Group of answer choices A. A triangle with angle measures 30, 40, and 100 degrees. B. A triangle with side lengths 4 cm, 5 cm, and 8 cm, C. A triangle with side lengths 4 cm and 5 cm, and a 50 degree angle. D. A triangle with side lengths 4 cm, 5 cm, and 12 cm. E. A triangle with angle measures 40, 60, and 80 degrees.

Answers

The options that allow for the construction of a triangle are:

Option B: A triangle with side lengths 4 cm, 5 cm, and 8 cm.

To determine if it is possible to construct a triangle, we need to consider the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

Let's evaluate each option:

A. A triangle with angle measures 30, 40, and 100 degrees.

This option does not provide any side lengths, so we cannot determine if it satisfies the triangle inequality theorem. Insufficient information.

B. A triangle with side lengths 4 cm, 5 cm, and 8 cm.

We can apply the triangle inequality theorem to this option:

4 cm + 5 cm > 8 cm (True)

5 cm + 8 cm > 4 cm (True)

4 cm + 8 cm > 5 cm (True)

This set of side lengths satisfies the triangle inequality theorem, so it is possible to construct a triangle.

C. A triangle with side lengths 4 cm and 5 cm, and a 50-degree angle.

We don't have the length of the third side, so we cannot determine if it satisfies the triangle inequality theorem. Insufficient information.

D. A triangle with side lengths 4 cm, 5 cm, and 12 cm.

Applying the triangle inequality theorem:

4 cm + 5 cm > 12 cm (False)

5 cm + 12 cm > 4 cm (True)

4 cm + 12 cm > 5 cm (True)

Since the sum of the lengths of the two smaller sides (4 cm and 5 cm) is not greater than the length of the longest side (12 cm), it is not possible to construct a triangle with these side lengths.

E. A triangle with angle measures 40, 60, and 80 degrees.

This option does not provide any side lengths, so we cannot determine if it satisfies the triangle inequality theorem. Insufficient information.

Based on the analysis, the options that allow for the construction of a triangle are:

Option B: A triangle with side lengths 4 cm, 5 cm, and 8 cm.

Learn more about triangle inequality theorem click;

https://brainly.com/question/30956177

#SPJ1

8. Estimate the error in the approximation of Tg for the integral f cos(x²) dx. *cos(1²) dr. 0 Recall: The error bound for the Trapezoidal Rule is Er| < K(b-a)³ 12n² where f"(z)| ≤ K for a ≤ x

Answers

The error in the approximation of the integral ∫f cos(x²) dx using the Trapezoidal Rule with n subintervals and evaluating at cos(1²) is estimated to be less than K(b-a)³/(12n²), where f"(z) ≤ K for a ≤ x.

The Trapezoidal Rule is a numerical integration method that approximates the integral by dividing the interval into n subintervals and using trapezoids to estimate the area under the curve. The error bound for this method is given by Er| < K(b-a)³/(12n²), where K represents the maximum value of the second derivative of the function within the interval [a, b]. In this case, we are integrating the function f(x) = cos(x²), and the specific evaluation point is cos(1²). To estimate the error, we need to know the interval [a, b] and the value of K. Once these values are known, we can substitute them into the error bound formula to obtain an estimation of the error in the approximation.

Learn more about Trapezoidal Rule here:

https://brainly.com/question/30401353

#SPJ11

Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 4y - 6 = x + 2y + 32 3x 4y + 4z 32 - 8 - 14 (x, y, z)= =

Answers

Using the Gauss-Jordan elimination method, the final augmented matrix is:

[ 1 2 0 |  0  ]

[ 0 0 1 |  0  ]

[ 0 0 1 | 16  ]

We can write the augmented matrix in the proper form to solve the system of linear equations using the Gauss-Jordan elimination method. The given system of equations is:

2x + 4y - 6z = x + 2y + 32

3x + 4y + 4z = 32

-8x - 14y + z = -8

We can represent this system as an augmented matrix:

[ 2    4   -6  | 32 ]

[ 1     2   0   | 32 ]

[-8  -14   1    | -8  ]

We will perform row operations to transform the augmented matrix into row-echelon form and then into reduced row-echelon form.

1: Swap rows R1 and R2 to make the leading coefficient in the first column a non-zero value.

[ 1     2    0  |  32 ]

[ 2    4   -6  |  32 ]

[-8   -14   1   |  -8 ]

2: Multiply R1 by -2 and add it to R2.

[ 1    2    0  |  32 ]

[ 0   0   -6  | -32 ]

[-8  -14   1   |  -8  ]

3: Multiply R1 by 8 and add it to R3.

[ 1   2    0  |  32  ]

[ 0  0  -6   |  -32 ]

[ 0  0   1    |    16 ]

4: Multiply R2 by -1/6 to make the leading coefficient in the second column equal to 1.

[ 1 2 0  | 32 ]

[ 0 0 1  | 16  ]

[ 0 0 1  | 16  ]

5: Subtract R3 from R1 and R2.

[ 1  2 0 | 16 ]

[ 0 0 1  | 16 ]

[ 0 0 1  | 16 ]

6: Subtract R2 from R1.

[ 1 2 0 |  0 ]

[ 0 0 1 | 16 ]

[ 0 0 1 | 16 ]

7: Subtract R3 from R1.

[ 1 2 0 |  0  ]

[ 0 0 1 |  0  ]

[ 0 0 1 | 16  ]

Now, the augmented matrix is in reduced row-echelon form. Let's write the system of equations:

x + 2y = 0

z = 0

z = 16

From the second and third equations, we can see that z must be both 0 and 16, which is impossible. Therefore, the system of equations is inconsistent and has no solution.

In matrix form, the final augmented matrix is:

[ 1   2   0  |  0 ]

[ 0  0   1   |  0 ]

[ 0  0   1   | 16 ]

To know more about Gauss-Jordan elimination refer here:

https://brainly.com/question/30763804

#SPJ11

Answer:

Step-by-step explanation:

Describe the end behavior of polynomial graphs with odd and even degrees. Talk about positive and negative leading coefficients.

Answers

Answer:

+x^(any) → ∞  for x → ∞-x^(any) → -∞  for x → ∞x^(even) → (-x)^(even)  for x → -∞x^(odd) → -(-x)^(odd)  for x → -∞

Step-by-step explanation:

You want a description of the end behavior of even- and odd-degree polynomials with positive and negative leading coefficients.

Infinity

As x gets large (approaches infinity), any power of x will also get large (approach infinity). The sign of the infinity being approached for large positive x will match the sign of the leading coefficient.

Even degree

When the degree of the polynomial is even, the right-end and left-end behaviors match.

Odd degree

When the degree of the polynomial is odd, the sign of the left-end behavior is opposite that of the right end behavior.

__

Additional comment

You can think of any even power of x as matching the end-behavior of |x|. Similarly, any odd power of x will match the end behavior of x. The general trend of even-degree polynomials with a positive leading coefficient is a U- or V-shape. The general trend of any odd-degree polynomial with a positive leading coefficient is a /-shape (rising, left-to-right). A negative leading coefficient turns these shapes upside down.

When it comes to end behavior, the leading term is the only one that needs to be considered.

<95141404393>

Consider the initial-value problem s y' = cos?(r)y, 1 y(0) = 2. Find the unique solution to the initial-value problem in the explicit form y(x). Since cosº(r) is periodic in r, it is important to know if y(x) is periodic in x or not. Inspect y(.r) and answer if y(x) is periodic.

Answers

To solve the initial-value problem dy/dx = cos(r)y, y(0) = 2, we need to separate the variables and integrate both sides with respect to their respective variables.

First, let's rewrite the equation as dy/y = cos(r) dx.

Integrating both sides, we have ∫ dy/y = ∫ cos(r) dx.

Integrating the left side with respect to y and the right side with respect to x, we get ln|y| = ∫ cos(r) dx.

The integral of cos(r) with respect to r is sin(r), so we have ln|y| = ∫ sin(r) dr + C1, where C1 is the constant of integration.

ln|y| = -cos(r) + C1.

Taking the exponential of both sides, we have |y| = e^(-cos(r) + C1).

Since e^(C1) is a positive constant, we can rewrite the equation as |y| = Ce^(-cos(r)), where C = e^(C1).

Now, let's consider the initial condition y(0) = 2. Plugging in x = 0 and solving for C, we have |2| = Ce^(-cos(0)).

Since the absolute value of 2 is 2 and cos(0) is 1, we get 2 = Ce^(-1).

Dividing both sides by e^(-1), we obtain 2/e = C.

Therefore, the solution to the initial-value problem in explicit form is y(x) = Ce^(-cos(r)).

Now, let's inspect y(x) to determine if it is periodic in x. Since y(x) depends on cos(r), we need to analyze the behavior of cos(r) to determine if it repeats or if there is a periodicity.

The function cos(r) is periodic with a period of 2π. However, since r is not directly related to x in the equation, but rather appears as a parameter, we cannot determine the periodicity of y(x) solely based on cos(r).

To fully determine if y(x) is periodic or not, we need additional information about the relationship between x and r. Without such information, we cannot definitively determine the periodicity of y(x).

Learn more about initial-value problem here:

https://brainly.com/question/17279078

#SPJ11

The product of two multiplied matrices A (3X2) and B (2x2) is a new matrix of dimension Select one: оа. 2x2 O b. 3x1 ос 2x3 O d. 3x2

Answers

The product of two multiplied matrices A (3x2) and B (2x2) is a new matrix of dimension 3x2.

To determine the dimensions of the product of two matrices, we use the rule that the number of columns in the first matrix must be equal to the number of rows in the second matrix. In this case, matrix A has 2 columns and matrix B has 2 rows. Since the number of columns in A matches the number of rows in B, the resulting matrix will have dimensions given by the number of rows in A and the number of columns in B, which is 3x2.

Therefore, the correct answer is option (d) 3x2.

In summary, when multiplying two matrices, the resulting matrix's dimensions are determined by the number of rows in the first matrix and the number of columns in the second matrix. In this case, the product of matrices A (3x2) and B (2x2) will yield a new matrix with dimensions 3x2.

To learn more about dimensions click here:

brainly.com/question/31106945

#SPJ11

What is the value of y after the following code is executed? Note that the question asks for y, not x.
x = 10
y = x + 2
x = 12
a. 8
b. 10
c. 12
d. 14

Answers

After the given code is executed, the value of y will still be 12.

The code starts by assigning the value 10 to the variable x. Then, the variable y is assigned the value of x + 2, which is 12 (10 + 2). Next, the value of x is changed to 12. However, this change does not affect the value of y, which was already assigned as 12.

Therefore, the correct answer is c. 12.

what is variable?

In the context of mathematics and programming, a variable is a symbol or name that represents a value that can change. It is used to store and manipulate data within a program or equation.

A variable can hold different types of data, such as numbers, text, or boolean values, and its value can be modified during the execution of a program or when solving equations. Variables provide a way to store and retrieve data, perform calculations, and control the flow of a program.

to know more about variable visit:

brainly.com/question/16906863

#SPJ11

Let f(x, y, z) = xy + 2°, x =r+s - 6t, y = 3rt, z = s. Use the Chain Rule to calculate the partial derivatives. (Use symbolic notation and fractions where needed. Express the answer in terms of indep

Answers

To calculate the partial derivatives of f(x, y, z) = xy + 2z with respect to r, s, and t using the Chain Rule, we need to differentiate each component of f(x, y, z) with respect to its corresponding variable. Here are the steps:

Partial derivative with respect to r (∂f/∂r):

∂f/∂r = (∂f/∂x)(∂x/∂r) + (∂f/∂y)(∂y/∂r) + (∂f/∂z)(∂z/∂r)

Taking partial derivatives of each component:

∂f/∂x = y

∂x/∂r = 1

∂f/∂y = x

∂y/∂r = 3t

∂f/∂z = 2

∂z/∂r = 0

Substituting these values into the Chain Rule formula:

∂f/∂r = (y)(1) + (x)(3t) + (2)(0)

= y + 3tx

Therefore, ∂f/∂r = y + 3tx.

Partial derivative with respect to s (∂f/∂s):

∂f/∂s = (∂f/∂x)(∂x/∂s) + (∂f/∂y)(∂y/∂s) + (∂f/∂z)(∂z/∂s)

Taking partial derivatives of each component:

∂f/∂x = y

∂x/∂s = 1

∂f/∂y = x

∂y/∂s = 0

∂f/∂z = 2

∂z/∂s = 1

Substituting these values into the Chain Rule formula:

∂f/∂s = (y)(1) + (x)(0) + (2)(1)

= y + 2

Therefore, ∂f/∂s = y + 2.

Partial derivative with respect to t (∂f/∂t):

∂f/∂t = (∂f/∂x)(∂x/∂t) + (∂f/∂y)(∂y/∂t) + (∂f/∂z)(∂z/∂t)

Taking partial derivatives of each component:

∂f/∂x = y

∂x/∂t = -6

∂f/∂y = x

∂y/∂t = 3r

∂f/∂z = 2

∂z/∂t = 0

Substituting these values into the Chain Rule formula:

∂f/∂t = (y)(-6) + (x)(3r) + (2)(0)

= -6y + 3rx

Thererore, ∂f/∂t = -6y + 3rx.

To summarize:

∂f/∂r = y + 3tx

∂f/∂s = y + 2

∂f/∂t = -6y + 3rx

To know more about partial derivatives, visit:

brainly.com/question/6732578

#SPJ11

Other Questions
The principles on which special relativity is based include all the following except:a. only the universal rest frame gives correct measurementsb. an observer in an inertial reference frame cannot tell if they are in motion or notc. the laws describing observed motion are the same in any inertial reference framed. the speed of light is the same in any frame of referencee. observers in two inertial frames agree on the speed of the other observer Consider the following function, 12 (y + x) f(x, y) = if 0 y x 1 5 0 otherwise. Find the volume, V, contained between z = 0 and z = f(x, y). Hint: Finding the volume under a surface is s the dhcp server and the client use broadcasts to communicate with each other. clients go through four steps to obtain an address from a dhcp server. move the correct steps from the left to the right, and then place them in the order they occur when a client is obtaining its ip configuration from a dhcp server. dhcp authorizationdhcp offerdhcp discoverdhcp autostartdhcp verificationdhcp requestdhcp ack move right move left move up move down Consider the space curve 7(t) = (7sin 2t), 2/6 cos 2t), 5 cos( 2t)). = a. Find the arc length function for 8(t). s(t) = b. Find the arc length parameterization for r(t). F(s) = = Case Studies Southwestern University: (B)* Southwestern University (SWU), a large state college in SWU's president, Dr. Joel Wisse, decided it was time for his Stephenville, Texas, encolis close to 20,000 students. The school isa vice president of development to forecast when the existing stadium dominant force in the small city, with more stadents during fall and would max out." The expansion was, in his mind, a given But spring than perset residents Winner meded to know how long he could wait. He also sought a Always a football powerhouse, SWU is usually in the top 20 in revenue projection, assuming an average ticket price of $50 in 2010 college football rankings. Since the legendary Bo Pinterno was hired and a 5% increase cach year in future price as its head coach in 2003 in hopes of reading the elusive number 1 ranking), attendance at the five Saturday home games cache Discussion Questions increased. Prior to Pinterno's arrival altendance gerally averaged 1. Develop a forecasting model, justifying its selection over other 25,000 to 29.000 per game. Season ticket sales bumped up by techniques, and project attendance through 2011. 10.000 just with the announcement of the new coach's anival 2 What revenues to be capeted in 2010 and 2011 Stepheville and SWU were ready to move to the big time! 3. Discuss the school's options The immediate issue facing SWU, however, was not NCAA ranking. It was capacity. The existing SWU stadium, built in 1953. has eating for 54,000 fans. The following table indicates attes. This integrated case study at the host the text Ohores facing dance at each game for the past 6 years. Southwestan's footballadium include(A) megte din project One of Pitserno's demands upon joining SWU had been asta- dium expansion, or possibly even a new stadium. With attendance food wie Sauplement website loading the new dim (Chapter ) quality of facilities (Chapter 6 ) braket analysis of increasing, swu administrators began to face the issue head-on. (Char3 weet) imetypring of football programe (Chapter Petersohad wanted dormitories solely for his whletes in the state website, and () iting of campus city office for a dium as me additional feature of any expansion days (Chapter 13) Chapter 4 Forecasting Demand 170 4 Southwestern University Football Game Attendance, 2004-2009 2004 2005 Game Attendees Opponent Attendees Opponent 34.200 Baylor 36.100 Oklahoma 39.800 Tees 40,200 Nebraska 38,200 LSU 39.100 UCLA 26.900 Arkansas 25,300 Nevada 35,100 USC 36.200 Ohio State 2006 Attendees Opponent 35.900 TCU 46.500 Texas Tech 13,100 Alaska 27900 Arizona 39.200 Rice 2009 2007 2008 Game Attendees Opponent Attendees Opponent Attendees 41.900 Arkanas 42.500 Indiana 46.900 46,100 Missouri 48.200 North Texas 50,100 43.900 Florida 44,200 Texas A&M 45.900 30,100 Miami 33.900 Southam 36,300 40.500 Duke 47,800 Oklahoma 49.900 His hade thee wekeah, Sharly popular thief to the expectaty e vende and had tot timpul inainen Opponent LSU Texas Prairie View A&M Montana Arizona Sul Consider the experiment of tossing a fair coin once and suppose that the event space is thepower set of the sample space.a) What is the sample space h of the experiment?b) What is the event space A of the experiment? c) Under this experiment, is X = 5 a random variable? Justify your answer. The concept of freedom in a consumer behavior sense relates to which of the following?A) freedom of speechB) freedom of pressC) freedom of worshipD) freedom of choiceE) freedom of movement Which nursing action when administering medication to children is appropriately directed forward medication safety?a. If a child is resistant to taking the medication, the nurse should tell the child that it is candy.b. Measurement by teaspoon is as accurate as milliliters.c. If a drug is not supplied in liquid form, the nurse can always crush the pill.d. Assess the childs weight prior to initial drug administration. given the following code fragment, what is the final value of variable output? int myarr[5] = {1,2,3,4,5}; int output = 0; output = myarr[0] myarr[4]; Does anybody understand how to do this assignment? What is a word wheel question at position 26 a set of weak arguments attacking a message and arguments that refute the attacks is best described as: a set of weak arguments attacking a message and arguments that refute the attacks is best described as: recency effect counterarguing mere exposure effect an innoculation defense HELP ME ASAP An object is launched at 39.2 meters per second (m/s) from a 42.3-meter tall platform. The equation for the object's height s at time t seconds after launch is s(t) = -4.9t^2 +39.2t + 42.3t, where s is in meters. Create a table of values and graph the function. Approximately when will the object hit the ground?SHOW YOUR WORK Canyou please help step by step, im having trouble starting on thisquestion and where to go with itConsider the region bounded by f(x)=e", y=1, and x = 1. Find the volume of the solid formed if this region is revolved about: a. the x-axis. b. the line y-7 Please disregard any previous answersselected if they are present.Solve the system of equations by substitution. 5x + 2y = - 41 x-y = -4 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set of the sys A coach calculated the mean and the mode of the number of points scored by 6 players. mean: 7 pointsmode: 8 pointsHow many points did player 5 score? """""""Convert the losowing angle to degrees, minutes, and seconds forma = 98.82110degre" evaluate the line integral, where c is the given curve. c (x+7y) dx x^2 dy, C consists of line segments from (0, 0) to (7, 1) and from (7, 1) to (8, 0) As a parallel-plate capacitor with circular plates 18 cm in diameter is being charged, the current density of the displacement current in the region between the plates is uniform and has a magnitude of 23 A/m2.(a) Calculate the magnitude B of the magnetic field at a distance r = 70 mm from the axis of symmetry of this region.T(b) Calculate dE/dt in this region.V/m s Find a basis for the null space of the given matrix. (If an basis for the null space does not exist, enter DNE Into any cell.) A=[ ] X Give nullity(A). Which switching technology reduces the size of a broadcast domain?A. ISLB. 802.1QC. VLANsD. STP Steam Workshop Downloader