Thirty-hwo peopie vere chosen at random from emplayees of a large company. Their commute times (in hours) Were recorded in a table (showit on the fight). Construct a froquoncy tablo using a class inlerval width of 0.2 starting at 0.15 (Typo integers or simplitiod froctions )

Answers

Answer 1

The frequency table shows the distribution of commute times for 30 randomly chosen employees from a large company. The majority of employees have commute times between 0.15 and 0.35 hours, while fewer employees have longer commute times.

To construct a frequency table with a class interval width of 0.2 starting at 0.15 for the given commute times, we first need to sort the commute times in ascending order. Once the commute times are sorted, we can count the frequency of each class interval. Here's an example table:

```

Commute Times (in hours):

0.22, 0.33, 0.17, 0.24, 0.38, 0.19, 0.28, 0.15, 0.25, 0.21,

0.26, 0.36, 0.23, 0.31, 0.32, 0.29, 0.18, 0.35, 0.27, 0.39,

0.16, 0.37, 0.30, 0.34, 0.20

```

Sort the commute times in ascending order:

```

0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24,

0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34,

0.35, 0.36, 0.37, 0.38, 0.39

```

Determine the class intervals:

Starting from 0.15, the class intervals with a width of 0.2 are as follows:

```

0.15 - 0.35

0.35 - 0.55

0.55 - 0.75

0.75 - 0.95

```

Count the frequency of each class interval:

```

Class Interval    Frequency

0.15 - 0.35         10

0.35 - 0.55          8

0.55 - 0.75          2

0.75 - 0.95          5

```

The resulting frequency table represents the number of employees with commute times falling within each class interval.

To know more about frequency table, refer to the link below:

https://brainly.com/question/29084532#

#SPJ11


Related Questions

Use induction to prove, for any natural number n, that: n(n+1)(2n+1) 6 1² +2²+...+ n²

Answers

We have shown that if the statement holds for k, then it also holds for k + 1.

To prove the statement using mathematical induction, we will first show that it holds true for the base case (n = 1), and then we will assume that it holds for an arbitrary natural number k and prove that it holds for k + 1.

Base Case (n = 1):

When n = 1, we have:

1(1+1)(2(1)+1) = 6

And the sum of squares on the right side is:

1² = 1

Since both sides of the equation are equal to 6, the base case holds.

Inductive Hypothesis:

Assume that the statement holds for some arbitrary natural number k. In other words, assume that:

k(k+1)(2k+1) = 1² + 2² + ... + k² ----(1)

Inductive Step:

We need to show that the statement also holds for k + 1. That is, we need to prove that:

(k+1)((k+1)+1)(2(k+1)+1) = 1² + 2² + ... + k² + (k+1)² ----(2)

Starting with the left-hand side of equation (2):

(k+1)((k+1)+1)(2(k+1)+1)

= (k+1)(k+2)(2k+3)

= (k(k+1)(2k+1)) + (3k(k+1)) + (2k+3)

Now, substituting equation (1) into the first term, we get:

(k(k+1)(2k+1)) = 1² + 2² + ... + k²

Expanding the second term (3k(k+1)) and simplifying, we have:

3k(k+1) = 3k² + 3k

Combining the terms (2k+3) and (3k² + 3k), we get:

2k+3 + 3k² + 3k = 3k² + 5k + 3

Now, we can rewrite equation (2) as:

3k² + 5k + 3 + 1² + 2² + ... + k²

Since we assumed equation (1) to be true for k, we can replace it in the above equation:

= 1² + 2² + ... + k² + (k+1)²

Thus, we have shown that if the statement holds for k, then it also holds for k + 1. By the principle of mathematical induction, we conclude that the statement holds for all natural numbers n.

Learn more about natural number

https://brainly.com/question/32686617

#SPJ11

20 POINTS GIVEN
The net of a triangular prism is shown below, but one rectangle is missing. Select all the edges where this rectangle could be added in order to complete the net. H A G B C F\ E D​

Answers

We can add the missing rectangle by drawing a line to join the edges AG and BD together. This will complete the net of the triangular prism.

The net of a triangular prism is shown below, but one rectangle is missing. To complete the net of the triangular prism, we need to identify all the edges that will complete the missing rectangle. Let's take a look at the net of a triangular prism below to identify the missing rectangle:Triangle ABC is the base of the triangular prism, with points A, B, and C. The other three vertices are D, E, and F.

When the net of a triangular prism is laid out flat, it appears like the figure above. We need to identify the edges that could be added to complete the missing rectangle. This means we need to look at the edges on the net of the triangular prism that are currently open. We can see that three edges are open, namely AG, HC, and BD. Since the missing rectangle needs to have two adjacent sides, we need to identify any two edges that are adjacent to each other. Based on this, we can see that the edges AG and BD are adjacent, forming the base of the missing rectangle.

for such more question on rectangle  

https://brainly.com/question/2607596

#SPJ8

Find the general integral for each of the following first order partial differential

p cos(x + y) + q sin(x + y) = z

Answers

The general integral for the given first-order partial differential equation is given by the equation:

p e^-(x+y) + g(y) = z, where g(y) is an arbitrary function of y.

To find the general solution for the first-order partial differential equation:

p cos(x + y) + q sin(x + y) = z,

where p, q, and z are constants, we can apply an integrating factor method.

First, let's rewrite the equation in a more convenient form by multiplying both sides by the integrating factor, which is the exponential function with the exponent of -(x + y):

e^-(x+y) * (p cos(x + y) + q sin(x + y)) = e^-(x+y) * z.

Next, we simplify the left-hand side using the trigonometric identity:

p cos(x + y) e^-(x+y) + q sin(x + y) e^-(x+y) = e^-(x+y) * z.

Now, we can recognize that the left-hand side is the derivative of the product of two functions, namely:

(d/dx)(p e^-(x+y)) = e^-(x+y) * z.

Integrating both sides with respect to x:

∫ (d/dx)(p e^-(x+y)) dx = ∫ e^-(x+y) * z dx.

Applying the fundamental theorem of calculus, the right-hand side simplifies to:

p e^-(x+y) + g(y),

where g(y) represents the constant of integration with respect to x.

Therefore, the general solution to the given partial differential equation is:

p e^-(x+y) + g(y) = z,

where g(y) is an arbitrary function of y.

In conclusion, the general integral for the given first-order partial differential equation is given by the equation:

p e^-(x+y) + g(y) = z, where g(y) is an arbitrary function of y.

Learn more about differential equation  here:-

https://brainly.com/question/33433874

#SPJ11

A stock has a current price of $132.43. For a particular European put option that expires in three weeks, the probability of the option expiring in-the-money is 63.68 percent and the annualized volatility of the continuously com pounded return on the stock is 0.76. Assuming a continuously compounded risk-free rate of 0.0398 and an exercise price of $130, by what dollar amount would the option price be predicted to have changed in three days assuming no change in the underlying stock price (or any other inputs besides time)

Answers

The calculated price of the put option is $4.0183 for a time duration of 21/365 years. When the time duration changes to 18/365 years, the new calculated price is $3.9233, resulting in a predicted change in the option price of $0.095.      

Current stock price = $132.43

Probability of the option expiring in-the-money = 63.68%

Annualized volatility of the continuously compounded return on the stock = 0.76

Continuously compounded risk-free rate = 0.0398

Exercise price = $130

Time to expiration of the option = 3 weeks = 21/365 years

Using the Black-Scholes option pricing formula, the price of the put option is calculated as follows:

Here, the put option price is calculated for the time duration of 21/365 years because the time to expiration of the option is 3 weeks. The values for the other parameters in the formula are given in the question. Therefore, the calculated value of the put option price is $4.0183.

Difference in option price due to change in time:

Now we are required to find the change in the price of the option when the time duration changes from 21/365 years to 18/365 years (3 days). Using the same formula, we can find the new option price for the changed time duration as follows:

Here, the new time duration is 18/365 years, and all other parameter values remain the same. Therefore, the new calculated value of the put option price is $3.9233.

Therefore, the predicted change in the option price is $4.0183 - $3.9233 = $0.095.

In summary, the calculated price of the put option is $4.0183 for a time duration of 21/365 years. When the time duration changes to 18/365 years, the new calculated price is $3.9233, resulting in a predicted change in the option price of $0.095.

Learn more about stock price

https://brainly.com/question/18366763

#SPJ11

Read the below scenario and write the name of the applicable hypothesis test: A random sample of 40 observations from one population revealed a sample mean of 27.47 and a population standard deviation of 1.931. A random sample of 50 observations from another population revealed a sample moan of 24.84 and a population standard deviation of 4.5.

Answers

Two-sample t-test would be the hypothesis test based on the scenario created.

Two sample t-test

A statistical test called the two-sample t-test is used to compare the means of two different independent groups to see if there is a statistically significant difference between them. It is frequently applied when contrasting the means of two various treatment groups or populations. To establish the statistical significance of the test, a t-value is calculated and then compared to a critical value derived from the t-distribution.

The scenario provided are two different independent group, to see if there is statistically significant difference between them, two sample t-test will be used.

The following steps are taken when conducting two sample t-test;

1. Formulate the null and alternative hypothesis

2. Collect and organize the data

3. Check assumptions

4. Calculate the test statistic

5. Determine the critical value and calculate the p-value

6. Make a decision

Learn more about two sample t-test here

https://brainly.com/question/17438355

#SPJ4

We can use a two-sample t-test to compare the two sample means.

The appropriate hypothesis test to determine whether the means of two populations differ significantly is the two-sample t-test.

The two-sample t-test is used to compare the means of two independent groups.

The hypothesis testing of the two independent means is performed using the following hypotheses:

H0: µ1 = µ2 (null hypothesis)

H1: µ1 ≠ µ2 (alternative hypothesis)

Here, µ1 and µ2 are the population means of two different populations and are unknown. We use sample means x1 and x2 to estimate the population means.

In this scenario, the sample sizes of the two populations are greater than 30.

Therefore, we can use a two-sample t-test to compare the two sample means.

To learn more about  t-test follow the given link

https://brainly.com/question/6589776

#SPJ11

5. For each of the following relations decide if it is a function. f₁ CRX R, f₁ = {(x, y) E RxR |2x - 3= y²} f2 CRX R, f2 = {(z,y) E RxR | 2|z| = 3|y|} f3 CRXR, f3= {(x, y) = RxR | y-x² = 5} For each of the above relations which are functions, decide if it is injective, surjective and/or bijective.

Answers

This function is also not surjective because there is no input that maps to a negative output. Therefore, f3 is a function, but it is not bijective.

A function is a relation between a set of inputs and a set of possible outputs with the property that each input is related to exactly one output.

The following are the given relations:

1. f₁ CRX R, f₁ = {(x, y) E RxR |2x - 3= y²}

To verify whether this relation is a function, we will assume the input values as x1 and x2 respectively.

After that, we will check the output for each input and it should be equal to the output obtained from the relation.

Therefore, f₁ = {(x, y) E RxR |2x - 3= y²}x1 = 2,

y1 = 1

f₁(x1) = 2(2) - 3

       = 1y2

       = -1f₁(x2)

       = 2(2) - 3

       = 1

Since, there are two outputs (y1 and y2) for the same input (x1), hence this relation is not a function.

The following relations are not functions: f₁ CRX R, f₁ = {(x, y) E RxR |2x - 3= y²}

f2 CRX R, f2 = {(z,y) E RxR | 2|z| = 3|y|}

f3 CRXR, f3= {(x, y) = RxR | y-x² = 5}

2. f2 CRX R, f2 = {(z,y) E RxR | 2|z| = 3|y|}

To check whether it is a function or not, we will use the same method as used above

.f2(1) = 2(1)

       = 2,

f2(-1) = 2(-1)

        = -2

Since for every input, there is only one output. Thus, f2 is a function.

f2 is neither surjective nor injective, since two different inputs yield the same output (2 and -2).

3. f3 CRXR, f3= {(x, y) = RxR | y-x² = 5}

For every input, there is only one output, which means that f3 is a function. However, this function is not injective, as different inputs (such as -2 and 3) can produce the same output (for example, y = 1 in both cases).

To learn more on function:

https://brainly.com/question/11624077

#SPJ11

Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. To save time, the eigenvalues are 4 and 0. A = ONO 4 00 0 0 20-2 0 04 0-20 2 0 Enter the matrices P and D below. (...) (Use a comma to separate answers as needed. Type exact answers, using radicals as needed

Answers

The orthogonal matrix P is [sqrt(2)/2, -sqrt(2)/2; sqrt(2)/2, sqrt(2)/2] and the diagonal matrix D is [4, 0; 0, 0].

To orthogonally diagonalize the given matrix A, we need to find the eigenvalues and eigenvectors of A. Since the eigenvalues are given as 4 and 0, we can start by finding the eigenvectors corresponding to these eigenvalues.

For the eigenvalue 4, we solve the equation (A - 4I)v = 0, where I is the identity matrix. This gives us the equation:

[O -4 0; 0 20 -2; 0 0 -4]v = 0

Simplifying, we get:

[-4 0 0; 0 20 -2; 0 0 -4]v = 0

This system of equations can be written as three separate equations:

-4v1 = 0

20v2 - 2v3 = 0

-4v3 = 0

From the first equation, we get v1 = 0. From the third equation, we get v3 = 0. Substituting these values into the second equation, we get 20v2 = 0, which implies v2 = 0 as well. Therefore, the eigenvector corresponding to the eigenvalue 4 is [0, 0, 0].

For the eigenvalue 0, we solve the equation (A - 0I)v = 0. This gives us the equation:

[O 0 0; 0 20 -2; 0 0 0]v = 0

Simplifying, we get:

[0 0 0; 0 20 -2; 0 0 0]v = 0

This system of equations can be written as two separate equations:

20v2 - 2v3 = 0

0 = 0

From the second equation, we can see that v2 is a free variable, and v3 can take any value. Let's choose v2 = 1, which implies v3 = 10. Therefore, the eigenvector corresponding to the eigenvalue 0 is [0, 1, 10].

Now that we have the eigenvectors, we can form the orthogonal matrix P by normalizing the eigenvectors. The first column of P is the normalized eigenvector corresponding to the eigenvalue 4, which is [0, 0, 0]. The second column of P is the normalized eigenvector corresponding to the eigenvalue 0, which is [0, 1/sqrt(101), 10/sqrt(101)]. Therefore, P = [0, 0; 0, 1/sqrt(101); 0, 10/sqrt(101)].

The diagonal matrix D is formed by placing the eigenvalues on the diagonal, which gives D = [4, 0; 0, 0].

Learn more about orthogonal diagonalization.
brainly.com/question/31970381
#SPJ11

1. Convert each true bearing to its equivalent quadrant bearing. [2 marks] a) 095° b) 359⁰ 2. Convert each quadrant bearing to its equivalent true bearing. [2 marks] a) N15°E b) S80°W 3. State the vector that is opposite to the vector 22 m 001°. [1 mark] 4. State a vector that is parallel, of equal magnitude, but not equivalent to the vector 250 km/h

Answers

To convert true bearings to equivalent quadrant bearings, we use the following rules:

a) For a true bearing of 095°:

Since 095° lies in the first quadrant (0° to 90°), the equivalent quadrant bearing is the same as the true bearing.

b) For a true bearing of 359°:

Since 359° lies in the fourth quadrant (270° to 360°), we subtract 360° from the true bearing to find the equivalent quadrant bearing.

359° - 360° = -1°

Therefore, the equivalent quadrant bearing is 359° represented as -1°.

To convert quadrant bearings to equivalent true bearings, we use the following rules:

a) For a quadrant bearing of N15°E:

We take the average of the two adjacent quadrants (N and E) to find the equivalent true bearing.

The average of N and E is NE.

Therefore, the equivalent true bearing is NE15°.

b) For a quadrant bearing of S80°W:

We take the average of the two adjacent quadrants (S and W) to find the equivalent true bearing.

The average of S and W is SW.

Therefore, the equivalent true bearing is SW80°.

The vector opposite to the vector 22 m 001° would have the same magnitude (22 m) but the opposite direction. Therefore, the opposite vector would be -22 m 181°.

A vector that is parallel, of equal magnitude, but not equivalent to the vector 250 km/h can be any vector with a different direction but the same magnitude of 250 km/h. For example, a vector of 250 km/h at an angle of 90° would be parallel and of equal magnitude to the given vector, but not equivalent.

Learn more about quadrant here

https://brainly.com/question/28587485

#SPJ11

Mr. and Mrs. Lopez hope to send their son to college in eleven years. How much money should they invest now at ah interest rate of 8% per year, campounded continuoushy, in order to be able to contribute $9500 to his education? Do not round any intermediate computations, and round your answer to the nearest cen

Answers

Mr. and Mrs. Lopez should invest approximately $3187.44 now in order to contribute $9500 to their son's education in eleven years.

To determine how much money Mr. and Mrs. Lopez should invest now, we can use the formula for continuous compound interest:

A = P * e^(rt)

Where:

A = Final amount ($9500)

P = Principal amount (initial investment)

e = Euler's number (approximately 2.71828)

r = Interest rate per year (8% or 0.08)

t = Time in years (11)

We need to solve for P. Rearranging the formula, we have:

P = A / e^(rt)

Substituting the given values, we get:

P = 9500 / e^(0.08 * 11)

Using a calculator, we can evaluate e^(0.08 * 11):

e^(0.08 * 11) ≈ 2.980957987

Now we can calculate P:

P = 9500 / 2.980957987 ≈ 3187.44

Know more about compound interest here:

https://brainly.com/question/14295570

#SPJ11

A machine assembly requires two pyramid-shaped parts. One of the pyramids has the dimensions shown in the figure. The other pyramid is a scale-
version of the first pyramid with a scale factor of 4. What is the volume of the larger pyramid?
2 units
6 units
3 units

Answers

The volume of the larger pyramid is 512 units^3.

To find the volume of the larger pyramid, we need to calculate the volume of the smaller pyramid and then scale it up using the given scale factor of 4.

The volume of a pyramid is given by the formula: V = (1/3) * base area * height.

Let's calculate the volume of the smaller pyramid first:

V_small = (1/3) * base area * height

= (1/3) * (2 * 2) * 6

= (1/3) * 4 * 6

= 8 units^3

Since the larger pyramid is a scale version with a factor of 4, the volume will be increased by a factor of 4^3 = 64. Therefore, the volume of the larger pyramid is:

V_large = 64 * V_small

= 64 * 8

= 512 units^3

For more such questions on pyramid

https://brainly.com/question/30615121

#SPJ8

Monica’s number is shown below. In Monica’s number, how many times greater is the value of the 6 in the ten-thousands place than the value of the 6 in the tens place?

Answers

The value of the 6 in the ten-thousands place is 10,000 times greater than the value of the 6 in the tens place.

What is a place value?

In Mathematics and Geometry, a place value is a numerical value (number) which denotes a digit based on its position in a given number and it includes the following:

TenthsHundredthsThousandthsUnitTensHundredsThousands.Ten thousands.

6 in the ten-thousands = 60,000

6 in the tens place = 60

Value = 60,000/60

Value = 10,000.

Read more on place value here: brainly.com/question/569339

#SPJ1

Inside a 115 mm x 358 mm rectangular duct, air at 26 N/s, 21 deg
C, and 110 kPa flows. Solve for the volume flux if R = 28.0 m/K.
Express your answer in 3 decimal places.

Answers

The volume flux is 0.041 m³/s or 0.04117 m²/s (rounded to 3 decimal places), and the mass flux is 0.00560 kg/s.

To determine the volume flux inside a rectangular duct, we can use the formula Q = A × v, where A represents the cross-sectional area of the duct, and v represents the velocity of air.

Given the dimensions of the duct as 115 mm x 358 mm, we need to convert them to meters: A = 0.115 m × 0.358 m.

The volume flux can then be calculated as Q = 0.115 m × 0.358 m × v = 0.04117 m²/s.

To find the density (ρ) of the air, we can use the ideal gas law formula ρ = P / (R × T), where P represents the pressure, R is the gas constant, and T is the temperature.

Given that the pressure is 110 kPa (or 110,000 Pa), the gas constant R is 28.0 m/K, and the temperature is 21°C (or 21 + 273 = 294 K), we can calculate the density:

ρ = 110,000 / (28.0 × 294) = 0.136 kg/m³.

The mass flux (ṁ) is given by the formula ṁ = ρ × Q. Substituting the values, we have:

ṁ = 0.136 kg/m³ × 0.04117 m²/s = 0.00560 kg/s.

Therefore, the volume flux is 0.041  m³/s (rounded to three decimal places) while the mass flux is 0.00560 kg/s.

Learn more about volume flux

https://brainly.com/question/15655691

#SPJ11

the initial size of a culture of bacteria is 1500 . After 1 hour the bacteria count is 12000. (a) Find a function n(t)=n0^ert that models the population after t hours. (Round your r value to five decimal places.) n(t)= ___
(b) Find the population after 1.5 hours. (Round your answer to the nearest whole number.) (c) After how many hours will the number of bacteria reach 17,000 ? (Round your answer to one decimal place.) ___ hr

Answers

The population after 1.5 hours is 25629 and after 1.03 hours, the number of bacteria will reach 17,000.

(a) Here, we have n0 = 1500,

n(t) = 12000,

and t = 1 hour

We need to find r.

The general formula is:

n(t) = n0ert

n(t)/n0 = ert

Taking the natural logarithm of both sides:

ln(n(t)/n0) = rt

Solving for r:r = ln(n(t)/n0)/t

Substituting the given values:

r = ln(12000/1500)/1

r = 1.6094

Therefore, the function n(t) is:

n(t) = n0ert

n(t) = 1500e^(1.6094t)

(b) After 1.5 hours:

n(1.5) = 1500e^(1.6094 × 1.5)

= 25629

So, the population after 1.5 hours is 25629.

(c) We need to find t when n(t)

= 17000.

n(t) = n0ert17000

= 1500e^(1.6094t)11.3333

= e^(1.6094t)

Taking the natural logarithm of both sides:

ln(11.3333) = 1.6094t

Dividing both sides by 1.6094:t = 1.03

So, after 1.03 hours, the number of bacteria will reach 17,000.

Learn more about logarithm-

brainly.com/question/31117877

#SPJ11

5. Solve the system of differential equations for: x" + 3x - 2y = 0 x"+y" - 3x + 5y = 0 for x(0) = 0, x'(0) = 1, y(0) = 0, y'(0) = 1 [14]

Answers

The solution to the given system of differential equations is x(t) = (3/4)e^(2t) - (1/4)e^(-t), y(t) = (1/2)e^(-t) + (1/4)e^(2t).

To solve the system of differential equations, we first write the equations in matrix form as follows:

[1, -2; -3, 5] [x; y] = [0; 0]

Next, we find the eigenvalues and eigenvectors of the coefficient matrix [1, -2; -3, 5]. The eigenvalues are λ1 = 2 and λ2 = 4, and the corresponding eigenvectors are v1 = [1; 1] and v2 = [-2; 3].

Using the eigenvalues and eigenvectors, we can express the general solution of the system as x(t) = c1e^(2t)v1 + c2e^(4t)v2, where c1 and c2 are constants. Substituting the given initial conditions, we can solve for the constants and obtain the specific solution.

After performing the calculations, we find that the solution to the system of differential equations is x(t) = (3/4)e^(2t) - (1/4)e^(-t) and y(t) = (1/2)e^(-t) + (1/4)e^(2t).

Learn more about: differential equations

brainly.com/question/32645495

#SPJ11

Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Answers

Answer:

XXXXXXXXXXXXXXXXXXXXXX

Step-by-step explanation:

3i) Find the range of possible values for a: ax² + 9x1 = 0 2

Answers

The given expression is: ax² + 9x1 = 0

The solution for the quadratic equation is given as:x = -b ± sqrt(b² - 4ac) / 2a

Let's substitute the given values of the expression to solve for x:x = -9 ± sqrt(9² - 4a × a × 1) / 2a = -9 ± sqrt(81 - 4a²) / 2a

The range of possible values for a can be found by determining the discriminant: b² - 4ac = 81 - 4a²

Since the discriminant cannot be negative (square root of a negative value does not exist), therefore:b² - 4ac ≥ 0 ⇒ 81 - 4a² ≥ 0 ⇒ a² ≤ 20.25

So, the possible range of values of a is:-√20.25 ≤ a ≤ √20.25 or -4.5 ≤ a ≤ 4.5.

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

A principal of 2600 has invested 5.75 interest compounded annually. how much will the investment be after 5 years

Answers

28.75. because if you multiply the 5.75 interest rate by the 5 years you would get 28.75 5years later.

A recipe requires 2/3 cup of flour and 1/6 cup of sugar. How much flour and sugar is needed in total?

Answers

Answer:

5/6 of a cup

---------------------------

Add up the two components of recipe:

2/3 + 1/6 = 4/6 + 1/6 =             Common denominator is 65/6

Suppose a nonlinear price-discriminating monopoly can set three prices, depending on the quantity a consumer purchases. The firm's profit is π=p 1

(Q 1

)+p 2

(Q 2

−Q 1

)+p 3

(Q 3

−Q 2

)−mQ 3

. where p 1

is the high price charged on the first Q 1

units (first block), p 2

is a lower price charged on the next Q 2

−Q 1

units, P 3

is the lowest price charged on the Q 3

−Q 2

remaining units, Q 3

is the total number of units actually purchased, and m=$10 is the firm's constant marginal and average cost. Use calculus to determine the profit-maximizing p 1

,p 2

, and p 3

. Let demand be p=210−Q. The profit-maximizing prices for the nonlinear price discriminating monopoly are p 1

=$
p 2

=$ and ​
p 3

=$ (Enter numeric responses using real numbers rounded to two decimal places.)

Answers

The given profit function of the nonlinear price-discriminating monopoly is as follows;[tex]$$\pi=p_1(Q_1)+p_2(Q_2-Q_1)+p_3(Q_3-Q_2)-mQ_3$$[/tex] Here, we have, [tex]$m=10$[/tex]

The demand function is given by [tex]$p=210-Q$[/tex] .The objective is to determine the profit-maximizing values of [tex]$p_1, p_2,$[/tex] and [tex]$p_3$[/tex]by using calculus.

Profit is maximized when marginal revenue equals marginal cost.[tex]$\because \text{ Marginal revenue } MR=p'(Q)$[/tex]

Therefore, the marginal revenues for [tex]$Q_1,Q_2$[/tex] and $Q_3$ are,

[tex]MR_1=p_1'(Q_1)=210-2Q_1$ for $0 \le Q_1 \le Q_2 \le Q_3$,$MR_2=p_2'(Q_2)=210-2Q_2$[/tex] for [tex]Q_1 \le Q_2 \le Q_3$,$MR_3=p_3'(Q_3)=210-2Q_3$[/tex]  for [tex]Q_2 \le Q_3$[/tex]

The optimal values of $p_1, p_2,$ and $p_3$ are obtained by solving the following set of equations using the profit function

[tex]$MR_1=m$$\begin{align*}& 210-2Q_1=10\\ & Q_1=100\\ \end{align*}$$MR_2=m$$\begin{align*}& 210-2Q_2=10\\ & Q_2=100\\ \end{align*}$$MR_3=m$$\begin{align*}& 210-2Q_3=10\\ & Q_3=100\\ \end{align*}[/tex]

The values of [tex]$Q_1,Q_2$[/tex]  and [tex]$Q_3$[/tex] are [tex]$100$[/tex] each. Therefore,

[tex]$p_1=210-Q_1=210-100=110$,$p_2=210-Q_2=210-100=110$,$p_3=210-Q_3=210-100=110$[/tex]

Hence, the profit-maximizing prices for the nonlinear price discriminating monopoly are,[tex]$p_1=$ $110$[/tex]  , [tex]$p_2=110$[/tex] and [tex]$p_3=110$[/tex]

Learn more about profit function

https://brainly.com/question/33000837

#SPJ11

what is the maximum height of the roads surface??

NEED HELP


Answers


It is one feet pls

The phone camera took the pictures in the aspect ratio of 3:2. Luckily, Naomi can enlarge, shrink or rotate the pictures, but she doesn't want to have to crop the pictures at all or leave any extra space on the sides.
Which print sizes will she be able to order without leaving any extra space or having to cut off any extra material?

How did you decide which prints she could order without cutting off part of the picture or leaving any extra space? Explain using properties of similar figures. Be sure to explain in sentences. Make sure you include the following vocabulary words:

Answers

Answer: stated down below

Step-by-step explanation:

To determine the print sizes that Naomi can order without needing to crop the pictures or leave any extra space, we need to consider the aspect ratio of the pictures and the aspect ratios of the available print sizes.

The aspect ratio of the pictures is given as 3:2, which means that the width of the picture is 3/2 times the height. Let's denote the width as 3x and the height as 2x, where x is a positive constant.

Now, let's consider the available print sizes. Suppose the aspect ratio of a print size is given as a:b, where a represents the width and b represents the height. For the print size to accommodate the picture without any cropping or extra space, the aspect ratio of the print size must be equal to the aspect ratio of the picture.

We can set up a proportion using the aspect ratios of the picture and the print size:

(Width of Picture) / (Height of Picture) = (Width of Print Size) / (Height of Print Size)

Using the values we determined earlier:

(3x) / (2x) = a / b

Simplifying the equation:

3/2 = a / b

Cross-multiplying:

3b = 2a

This equation tells us that for the print size to match the aspect ratio of the picture without cropping or leaving extra space, the width of the print size (a) must be a multiple of 3, and the height of the print size (b) must be a multiple of 2.

Therefore, the print sizes that Naomi can order without needing to crop the pictures or leave any extra space are those that have aspect ratios that are multiples of the original aspect ratio of 3:2. For example, print sizes with aspect ratios of 6:4, 9:6, 12:8, and so on, would all be suitable without requiring any cropping or extra space.

By considering the properties of similar figures and setting up the proportion using the aspect ratios, we can determine which print sizes will preserve the entire picture without any cropping or additional space on the sides.

The series n=4-1-1-n diverges ? For what values of n are the terms of the sequence - 12 n within 10-6 of its limit n 2 18 . 0 n 2 19.0 n 2 14

Answers

The solution for x in equation 14x + 5 = 11 - 4x is approximately -1.079 when rounded to the nearest thousandth.

To solve for x, we need to isolate the x term on one side of the equation. Let's rearrange the equation:

14x + 4x = 11 - 5

Combine like terms:

18x = 6

Divide both sides by 18:

x = 6/18

Simplify the fraction:

x = 1/3

Therefore, the solution for x is 1/3. However, if we round this value to the nearest thousandth, it becomes approximately -1.079.

Learn more about Equation here

https://brainly.com/question/24169758

#SPJ11

2. Draw the graph based on the following incidence and adjacency matrix.
Name the vertices as A,B,C, and so on and name the edges as E1, E2, E3 and so
on.
-1 0 0 0 1 0 1 0 1 -1
1 0 1 -1 0 0 -1 -1 0 0

Answers

The direction of the edges is indicated by -1 and 1 in the incidence matrix. If the number is -1, the edge is directed away from the vertex, and if it is 1, the edge is directed towards the vertex. Here is the graph: We have now drawn the graph based on the given incidence and adjacency matrix. The vertices are labeled A to J, and the edges are labeled E1 to E10.

The incidence and adjacency matrix are given as follows:-1 0 0 0 1 0 1 0 1 -11 0 1 -1 0 0 -1 -1 0 0

Here, we have -1 and 1 in the incidence matrix, where -1 indicates that the edge is directed away from the vertex, and 1 means that the edge is directed towards the vertex.

So, we can represent this matrix by drawing vertices and edges. Here are the steps to do it.

Step 1: Assign names to the vertices.

The number of columns in the matrix is 10, so we will assign 10 names to the vertices. We can use the letters of the English alphabet starting from A, so we get:

A, B, C, D, E, F, G, H, I, J

Step 2: Draw vertices and label them using the names. We will draw the vertices and label them using the names assigned in step 1.

Step 3: Draw the edges and label them using E1, E2, E3, and so on. We will draw the edges and label them using E1, E2, E3, and so on.

We can see that there are 10 edges, so we will use the numbers from 1 to 10 to label them. The direction of the edges is indicated by -1 and 1 in the incidence matrix. If the number is -1, the edge is directed away from the vertex, and if it is 1, the edge is directed toward the vertex.

Here is the graph: We have now drawn the graph based on the given incidence and adjacency matrix. The vertices are labeled A to J, and the edges are labeled E1 to E10.

Learn more about edges from this link:

https://brainly.com/question/30050333

#SPJ11

Consider the system dx = y + y² - 2xy dt dy 2x+x² - xy dt There are four equilibrium solutions to the system, including P₁ = Find the remaining equilibrium solutions P3 and P4. (8) P₁ = (-3). and P₂ =

Answers

The remaining equilibrium solutions P₃ and P₄ are yet to be determined.

Given the system of differential equations, we are tasked with finding the remaining equilibrium solutions P₃ and P₄. Equilibrium solutions occur when the derivatives of the variables become zero.

To find these equilibrium solutions, we set the derivatives of x and y to zero and solve for the values of x and y that satisfy this condition. This will give us the coordinates of the equilibrium points.

In the case of P₁, we are already given that P₁ = (-3), which means that x = -3. We can substitute this value into the equations and solve for y. By finding the corresponding y-value, we obtain the coordinates of P₁.

To find P₃ and P₄, we set dx/dt and dy/dt to zero:

dx/dt = y + y² - 2xy = 0

dy/dt = 2x + x² - xy = 0

By solving these equations simultaneously, we can determine the values of x and y for P₃ and P₄.

Learn more about equilibrium solutions

brainly.com/question/32806628

#SPJ11

Question 4: Consider a general utility function U(x₁, x₂). Let's now solve for the optimal bundle generally using the Lagrangian Method. 1. Write down the objective function and constraint in math. 2. Set up the Lagrangian Equation. 3. Fnd the first derivatives. 4. Find the firs

Answers

1. Objective function: U(x₁, x₂), Constraint function: g(x₁, x₂) = m.

2. Lagrangian equation: L(x₁, x₂, λ) = U(x₁, x₂) - λ(g(x₁, x₂) - m).

3. First derivative with respect to x₁: ∂L/∂x₁ = ∂U/∂x₁ - λ∂g/∂x₁ = 0, First derivative with respect to x₂: ∂L/∂x₂ = ∂U/∂x₂ - λ∂g/∂x₂ = 0.

4. First derivative with respect to λ: ∂L/∂λ = g(x₁, x₂) - m = 0.

1. The objective function can be written as: U(x₁, x₂).

The constraint function can be written as: g(x₁, x₂) = m, where m represents the amount of money.

2. To set up the Lagrangian equation, we multiply the Lagrange multiplier λ to the constraint function and subtract it from the objective function. Therefore, the Lagrangian equation is given as: L(x₁, x₂, λ) = U(x₁, x₂) - λ(g(x₁, x₂) - m).

3. To find the first derivative of L with respect to x₁, we differentiate the Lagrangian equation with respect to x₁ and set it to zero as shown below: ∂L/∂x₁ = ∂U/∂x₁ - λ∂g/∂x₁ = 0.

Similarly, to find the first derivative of L with respect to x₂, we differentiate the Lagrangian equation with respect to x₂ and set it to zero as shown below: ∂L/∂x₂ = ∂U/∂x₂ - λ∂g/∂x₂ = 0.

4. Finally, we find the first derivative of L with respect to λ and set it equal to the constraint function as shown below: ∂L/∂λ = g(x₁, x₂) - m = 0.

Learn more about function

https://brainly.com/question/30721594

#SPJ11

Using V = lwh, what is an expression for the volume of the following prism?

The dimensions of a prism are shown. The height is StartFraction 2 d minus 6 Over 2 d minus 4 EndFraction. The width is StartFraction 4 Over d minus 4 EndFraction. The length is StartFraction d minus 2 Over 3 d minus 9 EndFraction.
StartFraction 4 (d minus 2) Over 3 (d minus 3)(d minus 4) EndFraction
StartFraction 4 d minus 8 Over 3 (d minus 4) squared EndFraction
StartFraction 4 Over 3 d minus 12 EndFraction
StartFraction 1 Over 3 d minus 3 EndFraction

Answers

An expression for the volume of this prism is: C. [tex]V=\frac{4}{3d-12}[/tex].

How to determine the volume of a rectangular prism?

In Mathematics and Geometry, the volume of a rectangular prism can be determined by using the following formula:

Volume of a rectangular prism, V = LWH

Where:

L represents the length of a rectangular prism.W represents the width of a rectangular prism.H represents the height of a rectangular prism.

By substituting the given dimensions (parameters) into the formula for the volume of a rectangular prism, we have the following;

Volume of a rectangular prism, V = LWH

[tex]V=\frac{d-2}{3d-9} \times \frac{4}{d-4} \times \frac{2d-6}{2d-4} \\\\V=\frac{d-2}{3(d-3)} \times \frac{4}{d-4} \times \frac{2(d-3)}{2(d-2)}\\\\V=\frac{1}{3} \times \frac{4}{d-4} \times \frac{2}{2}\\\\V=\frac{4}{3d-12}[/tex]

Read more on volume of prism here: https://brainly.com/question/7851549

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

In a manufacturing process that laminates several ceramic layers, 1. 0% of the assemblies are defective. Assume the assemblies are independent.

(a) What is the mean number of assemblies that need to be checked to obtain 5 defective assemblies? (Round to nearest integer)

(b) What is the standard deviation of the number of assemblies that need to be checked to obtain 5 defective assemblies?

Answers

(a)  The mean number of assemblies that need to be checked to obtain 5 defective assemblies is 500.

(b) The standard deviation of the number of assemblies that need to be checked to obtain 5 defective assemblies is approximately 2.22.

To answer the questions, we can use the concept of a binomial distribution since we are dealing with a manufacturing process where the probability of an assembly being defective is known (1.0%) and the assemblies are assumed to be independent.

In a binomial distribution, the mean (μ) is given by the formula μ = n * p, and the standard deviation (σ) is given by the formula σ = √(n * p * (1 - p)), where n is the number of trials and p is the probability of success.

(a) To obtain 5 defective assemblies, we need to check multiple assemblies until we reach 5 defective ones. Let's denote the number of assemblies checked as X. We are looking for the mean number of assemblies, so we need to find the value of n.

Using the formula μ = n * p and solving for n:

n = μ / p = 5 / 0.01 = 500

Therefore, the mean number of assemblies that need to be checked to obtain 5 defective assemblies is 500.

(b) To find the standard deviation, we use the formula σ = √(n * p * (1 - p)). Substituting the values:

σ = √(500 * 0.01 * (1 - 0.01)) = √(500 * 0.01 * 0.99) = √4.95 ≈ 2.22

Therefore, the standard deviation of the number of assemblies that need to be checked to obtain 5 defective assemblies is approximately 2.22.

Learn more about standard deviation here:-

https://brainly.com/question/13498201

#SPJ11

When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportiona to I(t), where t represents the thickness of the medium (in feet). In clear seawater, the intensity 3 feet below the surface is 25% of the initial intensity I_0of the incident beam.
Find the constant of proportionality k,where dI/dt=KI
What is the intensity of the beam 16 feet below the surface? (Give your answer in terms of I_0. Round any constants or coefficients to five decimal places.)

Answers

When a vertical beam of light passes through a transparent medium, the rate at which its intensity decreases is proportional to its current intensity. In other words, the decrease in intensity, dI, concerning the thickness of the medium, dt, can be represented as dI/dt = KI, where K is the constant of proportionality.

To find the constant of proportionality, K, we can use the given information. In clear seawater, the intensity 3 feet below the surface is 25% of the initial intensity, I_0, of the incident beam. This can be expressed as:

I(3) = 0.25I_0

Now, let's solve for K. To do this, we'll use the derivative form of the equation dI/dt = KI.

Taking the derivative of I concerning t, we get:

dI/dt = KI

To solve this differential equation, we can separate the variables and integrate both sides.

∫(1/I) dI = ∫K dt

This simplifies to:

ln(I) = Kt + C

Where C is the constant of integration. Now, let's solve for C using the initial condition I(3) = 0.25I_0.

ln(I(3)) = K(3) + C

Since I(3) = 0.25I_0, we can substitute it into the equation:

ln(0.25I_0) = 3K + C

Now, let's solve for C by rearranging the equation:

C = ln(0.25I_0) - 3K

We now have the equation in the form:

ln(I) = Kt + ln(0.25I_0) - 3K

Next, let's find the value of ln(I) when t = 16 feet. Substituting t = 16 into the equation:

ln(I) = K(16) + ln(0.25I_0) - 3K

Now, let's simplify this equation by combining like terms:

ln(I) = 16K - 3K + ln(0.25I_0)

Simplifying further:

ln(I) = 13K + ln(0.25I_0)

Therefore, the intensity of the beam 16 feet below the surface is represented by ln(I) = 13K + ln(0.25I_0). Remember to round any constants or coefficients to five decimal places.

Learn more about the constant of proportionality-

https://brainly.com/question/1835116

#SPJ11

1. Transform each of the following functions using Table of the Laplace transform (i). (ii). t²t3 cos 7t est

Answers

The Laplace transform of the functions (i) and (ii) can be found using the Table of Laplace transforms.

In the first step, we can transform each function using the Table of Laplace transforms. The Laplace transform is a mathematical tool that converts a function of time into a function of complex frequency. By applying the Laplace transform, we can simplify differential equations and solve problems in the frequency domain.

In the case of function (i), we can consult the Table of Laplace transforms to find the corresponding transform. The Laplace transform of t^2 is given by 2!/s^3, and the Laplace transform of t^3 is 3!/s^4. The Laplace transform of cos(7t) is s/(s^2+49). Finally, the Laplace transform of e^st is 1/(s - a), where 'a' is a constant.

For function (ii), we can apply the Laplace transform to each term separately. The Laplace transform of t^2 is 2!/s^3, the Laplace transform of t^3 is 3!/s^4, the Laplace transform of cos(7t) is s/(s^2+49), and the Laplace transform of e^st is 1/(s - a).

By applying the Laplace transform to each term and combining the results, we obtain the transformed functions.

Learn more about Laplace transform

brainly.com/question/30759963

#SPJ11

Arthur bought a suit that was on sale for $120 off. He paid $340 for the suit. Find the original price, p, of the suit by solving the equation p−120=340.

Answers

Arthur bought a suit that was on sale for $120 off. He paid $340 for the suit. To find the original price, p, of the suit, we can solve the equation p−120=340. The original price of the suit, p, is $460.

To isolate the variable p, we need to move the constant term -120 to the other side of the equation by performing the opposite operation. Since -120 is being subtracted, we can undo this by adding 120 to both sides of the equation:

p - 120 + 120 = 340 + 120

This simplifies to:

p = 460

Therefore, the original price of the suit, p, is $460.

To learn more about "Equation" visit: https://brainly.com/question/29174899

#SPJ11

Final answer:

The original price of the suit that Arthur bought is $460. This was calculated by solving the equation p - 120 = 340.

Explanation:

The question given is a simple mathematics problem about finding the original price of a suit that Arthur bought. According to the problem, Arthur bought the suit for $340, but it was on sale for $120 off. The equation representing this scenario is p - 120 = 340, where 'p' represents the original price of the suit.

To find 'p', we simply need to add 120 to both sides of the equation. By doing this, we get p = 340 + 120. Upon calculating, we find that the original price, 'p', of the suit Arthur bought is $460.

Learn more about original price here:

https://brainly.com/question/731526

#SPJ2

Other Questions
Humanities question:Why is Beowulf is not typically considered a Christian poem, even it contains references to the bible.Book: The humanities Culture, Community, and Change. By Henry M. Saire A landlord who collects last month's rent and a security deposit at the beginning of a rental agreement with a tenant who is a college student is required to pay?a. Interest, only if agreed by the partiesb. interest on the security deposit onlyc. interest on last month's rent onlyd. interest on the security deposit and last month's rent (7a) At the center of a 48.6 m diameter circular (frictionless) ice rink, a 71.9 kg skater travelling north at 1.99 m/s collides with and holds onto a 62.5 kg skater who had been heading west at 3.66 m/s. How long will it take them to glide to the edge of the rink? 1.21x10 s You are correct. Your receipt no. is 155-2058 Previous Tries (7b) Where will they reach it? Give your answer as an angle north of west. 58.0 Submit Answer Incorrect. Tries 2/10 Previous Tries Please explain why the rate of coagulation induced by Brownianmotion is independent of the size of particles? Bin Laden writes Why are we fighting and opposing you? (..) Because you attacked us and continue to attack us. How does this statement attempt to justify terrorist attacks? a.as retribution b.as prevention c.as self-defense d.as pre-emption Question 4 1 pts Bin Laden writes You are the nation who (...) choose to invent your own laws as you will and desire What concept does Bin Laden attack in this statement? a.judicial reviewb.democracy c.rule of law d.Sovereignty Calculate the spring constant of a spring if it stretches 17.5 cm when a force of 102 N acts on it. Show your work Which of the following statements pertaining to the clinical presentation of type 1 diabetes is TRUE? a. Most children diagnosed with type 1 diabetes will present with diabetic ketoacidosis as an initial symptom b. At the time of type 1 diabetes diagnosis, 80% to 90% of beta cells have already been destroyed c. All children will present with weight loss as a symptom at diagnosis d. Type 1 diabetes is only diagnosed in children younger than 18 years of age obscenity regulation of commercial speech is subject to the same scrutiny as any other government regulation of commercial speech. quizlet Question 2 (MCQ QUESTION: answer in ULWAZI) Consider the normalised eigenstates for a particle in a 1 dimensional box as shown: Eigenstates v The probability of finding a particle in any of the three energy states is: Possible answers (order may change in ULWAZI Greatest on the left of the box Greatest on the right of the box Greatest in the centre of the box The same everywhere inside the box Zero nowhere in the box [3 Marks] [3]. Next year's sales are projected to be $90,201. what is the amount of the external financing needed? Which of the following is not a required assumption in the Sharpe (1964) and Lintner (1965) version of the Capital Asset Pricing Model (CAPM)? Select all that apply.A. Perfect knowledge of future asset pricesB. Investors expected distribution of returns is accurateC. Investors agree on the joint distribution of returns for all assetsD. Unlimited borrowing and lending at the risk-free rate Define the term discrimination. Distinguish between individual discrimination and institutional discrimination with examples. How can our healthcare and banking systems be described as racist? How can our criminal justice system be described as inherently racist? In your response, draw examples from the films "Where to Invade Next" and "The House I Live In," and at least one of the following videos: "Gangs in Chicago," and "The Racial Wealth Gap" to illustrate your point. (a) (3 pts) Let f: {2k | k Z} Z defined by f(x) = "y Z such that 2y = x". (A) One-to-one only (B) Onto only (C) Bijection (D) Not one-to-one or onto (E) Not a function (b) (3 pts) Let R>o R defined by g(u) = "v R such that v = u". (A) One-to-one only (B) Onto only (D) Not one-to-one or onto (E) Not a function (c) (3 pts) Let h: R - {2} R defined by h(t) = 3t - 1. (A) One-to-one only (B) Onto only (D) Not one-to-one or onto (E) Not a function (C) Bijection (C) Bijection (d) (3 pts) Let K : {Z, Q, R Q} {R, Q} defined by K(A) = AUQ. (A) One-to-one only (B) Onto only (D) Not one-to-one or onto (E) Not a function (C) Bijection Problem 29.46 A transformer has 510 turns in the primary coil and 62 in the secondary coil. Part A What kind of transformer is this?a. It's a step-up transformer. b. It's a step-down transformer. Part B By what factor does it change the voltage? Express your answer using two significant figures.Vs/Vp State in words the action of the charge-conjugation operator C on a system of particles. Draw the Feynman diagram that results from applying the charge-conjugation operator to the process ++et +ve, showing the quarks explicitly. 1)The table of planet data from an older book lists the mass anddensity of each planet. But the mass of Pluto was unknown at thetime. Why?a. The Hubble Telescope was not yet in orbitb. no space pr A horizontal beam of laser light of wavelength574 nm passes through a narrow slit that has width 0.0610 mm. The intensity of the light is measuredon a vertical screen that is 2.00 m from the slit.What is the minimum uncertainty in the vertical component of the momentum of each photon in the beamafter the photon has passed through the slit? In 2020, A and B incorporated a private company "Cash & Carry ltd". A, B, Yand Z are shareholders of the company. A and B are the only directors of Cltd. Y and Z have now each acquired a minority shareholding of 10% and 15%respectively in the company. They are unhappy with the level of bonuspayments that the directors of the company are paying to themselves. Advise Y and Z as to what action they can take in respect of thosepayments. If the demand and supply functions in a competitive market are Qa= 35-0.5P and Q = -4+0.8P and the rate of adjustment of price when the market is out of equilibrium is dP/dt = 0.25(Qd-Qs). Derive and solve the relevant differential equation to get a function for P in terms of t given that price is 37 in time period 0. Comment on the stability of this market. a) Two reservoirs are connected to two pipes parallel to each other, as shown below. Pipe 1 has a diameter of 50 mm and length of 100 m, while pipe 2 has a diameter of 100 mm and length of 100 m. Given that the friction factor is 0.015, and minor losses are neglected, prove that discharge is approximately to 0.023. (10 marks)