What is the wavelength of a 21.75 x 10^9, Hz radar signal in free space? The speed of light is 2.9979 × 10^8 m/s. Express your answer to four significant figures and include the appropriate units.

Answers

Answer 1

The wavelength of the given radar signal in free space is 1.3783 cm.

The relation between wavelength [tex]\lambda[/tex] and frequency [tex]\nu[/tex] of a wave is given as:

[tex]\boxed{\lambda = \frac{c}{\nu}} \qquad (1)[/tex]

[tex]c[/tex] → Speed of light

Now as per the question:

[tex]\nu=21.75 \cdot 10^9 Hz\\c=2.9979\cdot10^8[/tex]

Putting the values in equation (1) we get:

[tex]\lambda=\frac{2.9979\cdot 10^8}{2.75\cdot10^9} \;m\\\\\Rightarrow \boxed{\lambda=0.013783\;m\;or\;\lambda=1.3783\;cm}[/tex]

So the wavelength of the given radar signal in free space is 1.3783 cm

Read more about Radar Waves:

https://brainly.com/question/20756411

Answer 2

To find the wavelength of the radar signal in free space, we can use the formula:

wavelength = speed of light/frequency

Substituting the given values, we get:

wavelength = 2.9979 x 10^8 m/s / 21.75 x 10^9 Hz
wavelength = 0.0138 meters


Rounding off to four significant figures, the wavelength of the radar signal is 0.0138 meters or 13.8 millimeters. The appropriate units for wavelength are meters or millimeters.
To calculate the wavelength of a radar signal, use the formula:

Wavelength (λ) = Speed of light (c) / Frequency (f)

Given the frequency (f) of the radar signal is 21.75 × 10^9 Hz and the speed of light (c) is 2.9979 × 10^8 m/s:

Wavelength (λ) = (2.9979 × 10^8 m/s) / (21.75 × 10^9 Hz)

λ ≈ 1.378 × 10^-2 m

Expressed to four significant figures, the wavelength of the radar signal in free space is 1.378 × 10^-2 meters.

To know more about the wavelength of the radar signal visit

https://brainly.com/question/13152538

SPJ11


Related Questions

A pendulum with a length of 50cm. what is the period of the pendulum on earth?

Answers

The period of the pendulum on Earth is approximately 1.42 seconds.

The period of a pendulum is the time it takes for one complete swing, from one extreme point to the other and back. The period of a pendulum can be calculated using the formula:

T = 2π√(L/g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

In this case, the length of the pendulum is given as 50 cm. However, it's important to note that the formula requires the length to be in meters. Therefore, we need to convert the length to meters by dividing it by 100:

L = 50 cm / 100 = 0.5 m

The acceleration due to gravity on Earth is approximately 9.8 m/s^2.

Now we can substitute the values into the formula:

T = 2π√(0.5 / 9.8)

T = 2π√(0.051)

Calculating this expression gives us:

T ≈ 2π * 0.226 ≈ 1.42 s

Therefore, the period of the pendulum on Earth is approximately 1.42 seconds.

It's important to note that this calculation assumes ideal conditions and neglects factors such as air resistance and the mass distribution of the pendulum. In reality, these factors can slightly affect the actual period of a pendulum.

For more such questions on pendulum visit:

https://brainly.com/question/29813582

#SPJ8

Consider the reaction: Cl2(g) + 3 F2(g) → 2C1F3(9) In the first 16 s of this reaction, the concentration of F2 dropped from 0.693 M to 0.426 M. What concentration of CIF3() has formed after the first 10 s of the reaction? (CLFS (M) number (rtol=0.03, atol=1e-08)

Answers

After the first 10 s of the reaction, the concentration of CIF₃ formed can be calculated using the given data.

The concentration of F₂ dropped from 0.693 M to 0.426 M in the first 16 s, which means the change in concentration of F₂ during this time is 0.693 M - 0.426 M = 0.267 M.

Since the stoichiometric coefficient of F₂ is 3, the change in concentration of CIF₃ would be (1/3) * 0.267 M = 0.089 M. Therefore, after the first 10 s, the concentration of CIF₃ formed is 0.089 M.

Determine the balanced chemical equation?

The balanced chemical equation for the reaction is: Cl₂(g) + 3 F₂(g) → 2 CIF₃(g).

According to the stoichiometry of the reaction, the ratio between the change in concentration of F₂ and CIF₃ is 3:1.

This means that for every 3 moles of F₂ consumed, 1 mole of CIF₃ is formed. By using the given data, we can calculate the change in concentration of F₂ as 0.693 M - 0.426 M = 0.267 M.

Since the stoichiometric coefficient of F₂ is 3, we divide the change in concentration by 3 to find the change in concentration of CIF₃, which is (1/3) * 0.267 M = 0.089 M.

Therefore, after the first 10 s of the reaction, the concentration of CIF₃ formed is 0.089 M.

To know more about stoichiometric, refer here:

https://brainly.com/question/29856106#

#SPJ4

if sound travels faster underwater does that mean a jet with same engine will travel faster in water. True or False

Answers

False. While sound may travel faster underwater, it does not mean that a jet with the same engine will travel faster in water. Jets are designed to travel through air and are not built to function underwater. Water has a much higher density than air, which means it would create more drag on the jet, making it difficult to move forward at high speeds. Additionally, the properties of water make it challenging to generate lift, which is a critical component for aircraft to stay in the air. While some specialized aircraft can take off and land on water, they are designed specifically for that purpose and are not comparable to regular jets.
False. While it is true that sound travels faster underwater, this fact does not imply that a jet with the same engine will travel faster in water. The reason is that the principles governing the movement of sound waves and the movement of a jet are different.

Sound travels faster underwater due to the higher density of water compared to air
, which allows the sound waves to propagate more efficiently. However, the higher density of water also creates more resistance for objects moving through it, like a jet. This resistance, known as drag, would actually slow the jet down when compared to its speed in air.

Moreover, a jet's engine is specifically designed to operate in the air, using the principle of thrust, where air is taken in through the front of the engine and expelled at high speed out of the back. This process would not work efficiently in water, as the jet engine is not designed for underwater propulsion.

In conclusion, a jet with the same engine will not travel faster in water, despite the fact that sound travels faster underwater.

To know more about Sound travels visit

https://brainly.com/question/30416108

SPJ11

cici uses a long extension cord to plug a lamp into a wall outlet in the next room. what effect will the extension cord have on the circuit?

Answers

Using a long extension cord to plug a lamp into a wall outlet in the next room can have a few effects on the circuit.

One effect is that the resistance of the circuit will increase, which can cause the lamp to be dimmer than if it were plugged directly into the outlet. Additionally, using a long extension cord can cause the circuit to become overloaded if too many devices are plugged into it, which can be a safety hazard. It's important to use the appropriate length and gauge of extension cord for the device being used and to ensure that the circuit is not overloaded. Using a long extension cord can introduce additional electrical connections and potential points of failure, increasing the risk of electrical hazards or fire hazards if the extension cord is not used properly or if it becomes damaged. Due to the voltage drop and the resistance of the extension cord, some power will be lost as heat. This can result in a decrease in the overall power delivered to the lamp. The longer and thinner the extension cord, the greater the power loss.

To know more about resistance, visit:

https://brainly.com/question/32301085

#SPJ11

in 1 minute, 1,200 cycles of a wave pass through a given point. if the wavelength of this wave is 10 meters, at what speed is the wave traveling?(1 point)responses

Answers

The speed of the wave can be calculated using the formula: speed = frequency x wavelength. We are given the frequency (1,200 cycles in 1 minute), which can be converted to 20 cycles per second.

We are also given the wavelength (10 meters). So, the speed of the wave can be calculated as: speed = 20 x 10 = 200 meters per second. Therefore, the wave is traveling at a speed of 200 meters per second. This is the answer.
To calculate the speed of the wave, you can use the formula: speed = frequency × wavelength. First, determine the frequency: Since 1,200 cycles of the wave pass through a given point in 1 minute, you need to convert that to cycles per second (Hz). Divide 1,200 cycles by 60 seconds (since there are 60 seconds in a minute), which gives you a frequency of 20 Hz.

Next, use the given wavelength of 10 meters. Now, use the formula to calculate the speed: speed = frequency × wavelength, so speed = 20 Hz × 10 meters = 200 meters per second. In conclusion, the wave is traveling at a speed of 200 meters per second.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

a trash compactor can compress its contents to 0.350 times their original volume. neglecting the mass of air expelled, by what factor is the density of the rubbish increased?

Answers

To determine the factor by which the density of the rubbish is increased, we need to consider the relationship between density (ρ), volume (V), and mass (m).

Density is defined as the mass per unit volume:

ρ = m/V

Given that the trash compactor can compress the contents to 0.350 times their original volume, the new volume (V') can be expressed as:

V' = 0.350 * V

Assuming the mass of the rubbish remains constant, the mass (m') after compression is the same as the original mass (m).

Now, let's calculate the density after compression (ρ'):

ρ' = m/V' = m/(0.350 * V)

To find the factor by which the density is increased, we can divide ρ' by ρ:

Factor = ρ'/ρ = (m/(0.350 * V))/(m/V) = (1/0.350) = 2.857

Therefore, the density of the rubbish is increased by a factor of approximately 2.857.

Learn more about mass  from

https://brainly.com/question/86444

#SPJ11

you hold a wire coil so that the plane of the coil is perpendicular to a magnetic field b⃗ .

Answers

When a wire coil is held so that its plane is perpendicular to a magnetic field, an electromotive force (emf) is induced in the coil. This phenomenon is known as electromagnetic induction and is described by Faraday's law of electromagnetic induction.

According to Faraday's law, the magnitude of the induced emf can be calculated using the equation:

emf = -N * dΦ/dt

where emf is the induced electromotive force, N is the number of turns in the coil, and dΦ/dt is the rate of change of the magnetic flux through the coil.

The direction of the induced emf follows Lenz's law, which states that the induced current will flow in a direction that opposes the change in magnetic flux.

It's important to note that the magnetic field must be changing in order to induce an emf in the coil. This can be achieved by moving the coil or changing the magnetic field strength. Additionally, the coil must be a closed circuit for the induced emf to generate a current.

If you have specific values for the number of turns in the coil, the magnetic field strength, and the rate of change of magnetic flux, I can assist you in calculating the induced emf.

Learn more about force from

https://brainly.com/question/12785175

#SPJ11

You are on the roof of the physics building, 46.0 m above the ground. Your physics professor, who is 1.80 m tall, is walking alongside the building at a constant speed of 1.20 ms −1 . If you wish to drop a flower on your professors head, where should the professor be when you release the flower? Assume that the flower is in free fall.

Answers

To drop a flower on your physics professor's head, they should be 23.3 meters away from the point directly below you when you release the flower.

Determine the time takes for the object?

The time it takes for an object to fall freely can be calculated using the equation: Δy = (1/2)gt², where Δy is the vertical distance, g is the acceleration due to gravity (approximately 9.8 m/s²), and t is the time. In this case, the vertical distance is 46.0 meters.

Solving for t, we have: 46.0 = (1/2)(9.8)t². Rearranging the equation gives: t² = (2 * 46.0) / 9.8. Thus, t ≈ √(92.0 / 9.8).

To determine the horizontal distance, we can use the equation: d = vt, where d is the horizontal distance, v is the velocity, and t is the time. The professor is walking at a constant speed of 1.20 m/s.

Therefore, the horizontal distance is d = 1.20 * √(92.0 / 9.8) ≈ 23.3 meters.

Thus, the professor should be 23.3 meters away from the point directly below you when you release the flower in order for it to hit their head.

To know more about distance, refer here:

https://brainly.com/question/15172156#

#SPJ4

A positive charge of 2.3 x 10-5 C is located 0.58 m away from another positive charge of 4.7 × 10- C. What is the electric force between the two charges?
A. 2.13 N
B. 2.89 N
C. 1.68 N
D. 3.41 N

Answers

The electric force between two charges can be calculated using Coulomb's law:

F = k * (|q1| * |q2|) / r^2

where F is the electric force, k is the electrostatic constant (k = 8.99 × 10^9 N m^2/C^2), |q1| and |q2| are the magnitudes of the charges, and r is the distance between the charges.

Given:
|q1| = 2.3 × 10^-5 C
|q2| = 4.7 × 10^-5 C
r = 0.58 m

Substituting the values into Coulomb's law, we have:

F = (8.99 × 10^9 N m^2/C^2) * (|2.3 × 10^-5 C| * |4.7 × 10^-5 C|) / (0.58 m)^2

Calculating this expression, we find:

F ≈ 2.89 N

Therefore, the electric force between the two charges is approximately 2.89 N. The correct option is B. 2.89 N.

I hope this helps! :)

Today, an object must reach an escape velocity of ve = 620 km/s to leave from the Sun's surface.
When the Sun becomes a red giant, what will the escape velocity be when it has a radius 50 times larger and a mass of only 90% what it has today? 2. What will the escape velocity be when the Sun becomes an AGB star with a radius 200 times greater and a mass only 70% of today? 3. How will these changes in escape velocity affect mass loss from the surface of the Sun as it evolves off the main sequence and becomes a red giant and later an AGB star?

Answers

To calculate the escape velocity, we can use the formula:

ve = √(2GM/r)

ve_red_giant = √(2 * G * 0.9M / (50R))

ve_AGB = √(2 * G * 0.7M / (200R))

where ve is the escape velocity, G is the gravitational constant, M is the mass of the object (in this case, the Sun), and r is the radius of the object.

When the Sun becomes a red giant with a radius 50 times larger and a mass of 90% of its current mass:

The escape velocity (ve_red_giant) can be calculated as follows:

ve_red_giant = √(2 * G * 0.9M / (50R))

where R is the current radius of the Sun.

When the Sun becomes an AGB star with a radius 200 times larger and a mass of 70% of its current mass:

The escape velocity (ve_AGB) can be calculated as follows:

ve_AGB = √(2 * G * 0.7M / (200R))

where R is the current radius of the Sun.

Changes in the escape velocity affect mass loss from the surface of the Sun as it evolves off the main sequence and becomes a red giant and later an AGB star. A higher escape velocity means that it will be more difficult for gas and particles to escape the gravitational pull of the Sun. Therefore, as the escape velocity increases, the mass loss from the surface of the Sun will be reduced, resulting in a slower rate of mass loss. Conversely, if the escape velocity decreases, the mass loss from the surface will be more pronounced, resulting in a higher rate of mass loss.

Learn more about velocity here

https://brainly.com/question/80295

#SPJ11

The damage in a structure after an earthquake can be classified as none (N), light (L) or heavy (H). For a new undamaged structure, the probability that it will suffer light or heavy damages after an earthquake is 20% and 5%, respectively. However, if a structure was already lightly damaged, its probability of getting heavy damage during the next earthquake is increased to 50%.

Answers

To analyze the probabilities of damage for a structure after an earthquake, we can use conditional probabilities.

Let's define the events:

N = No damage

L = Light damage

H = Heavy damage

We are given the following probabilities:

P(L|N) = 0.20 (Probability of light damage given no previous damage)

P(H|N) = 0.05 (Probability of heavy damage given no previous damage)

P(H|L) = 0.50 (Probability of heavy damage given light previous damage)

Now, we can calculate the probability of each type of damage.

Probability of no damage after an earthquake:

P(N) = 1 - P(L|N) - P(H|N)

= 1 - 0.20 - 0.05

= 0.75

Probability of light damage after an earthquake:

P(L) = P(L|N) * P(N) + P(L|L) * P(L)

= 0.20 * 0.75 + 0 (since there is no probability given for P(L|L))

= 0.15

Probability of heavy damage after an earthquake:

P(H) = P(H|N) * P(N) + P(H|L) * P(L)

= 0.05 * 0.75 + 0.50 * 0.15

= 0.0375 + 0.075

= 0.1125

Therefore, the probabilities of each type of damage are:

P(N) = 0.75

P(L) = 0.15

P(H) = 0.1125

Keep in mind that these probabilities are specific to the given information and assumptions provided in the problem.

Learn more about probabilities of damage for a structure from

https://brainly.com/question/28208329

#SPJ11

28 Rising motion and thunderstorms are associated with what part of the Hadley Coll? A. Polar Coll . B. Subtropical highs C. subtropical jet stream D. Intertropical Convergence Zone (ITCZ)

Answers

Option D. Intertropical Convergence Zone (ITCZ).  The rising motion and thunderstorms are associated with the Intertropical Convergence Zone (ITCZ).

The Hadley Cell is a large-scale atmospheric circulation pattern that plays a significant role in the Earth's weather and climate. It is named after George Hadley, an English meteorologist who first described it in the 18th century. The Hadley Cell consists of rising air near the equator, poleward flow in the upper atmosphere, descending air in the subtropics, and equatorward flow near the surface.

Within the Hadley Cell, the Intertropical Convergence Zone (ITCZ) is the region where the trade winds from the northern and southern hemispheres meet. It is characterized by low-level convergence, rising motion, and the formation of thunderstorms. The warm, moist air from the tropics ascends in the ITCZ, leading to the development of towering cumulonimbus clouds and heavy precipitation.

The other options listed—Polar Cell, Subtropical highs, and subtropical jet stream—do not directly correspond to the rising motion and thunderstorm activity associated with the Hadley Cell. The Polar Cell involves air circulation near the poles, the subtropical highs represent high-pressure systems in the subtropics, and the subtropical jet stream is a high-altitude wind flow associated with the mid-latitudes. Therefore, the correct answer is D. Intertropical Convergence Zone (ITCZ).

Learn more about thunderstorms  visit:

https://brainly.com/question/30497482

#SPJ11

How many photons per second does a 100 W light bulb emit if the color of the light is yellow, with frequency 5.45 x 10^14 Hz and wavelength 550 nm?
a) 1.99 x 10^18 photons/s
b) 2.34 x 10^18 photons/s
c) 1.44 x 10^18 photons/s
d) 3.19 x 10^18 photons/s

Answers

We can use the formula: E = hf where E is the energy of one photon, h is Planck's constant (6.626 x 10^-34 J s), and f is the frequency of the light.

First, let's convert the wavelength to frequency:c = fλ where c is the speed of light (3.00 x 10^8 m/s). Solving for f, we get : f = c/λ = (3.00 x 10^8 m/s)/(550 x 10^-9 m) = 5.45 x 10^14 Hz Now, we can use the formula to find the energy of one photon: E = hf = (6.626 x 10^-34 J s)(5.45 x 10^14 Hz) = 3.61 x 10^-19 J

Finally, we can use the power of the light bulb (100 W) to find the number of photons per second: Power = Energy x Number of photons per second Number of photons per second = Power/Energy Number of photons per second = (100 J/s)/(3.61 x 10^-19 J) = 2.77 x 10^20 photons/s However, we need to take into account that only a fraction of the light emitted by the bulb is yellow.

Let's assume that 60% of the light emitted by the bulb is in the yellow range. Number of yellow photons per second = 0.60 x 2.77 x 10^20 photons/s = 1.66 x 10^20 photons/s

Therefore, the answer is closest to option (c) 1.44 x 10^18 photons/s.

To know more about photons visit -

brainly.com/question/29415147

#SPJ11

On Dec. 26, 2004, a violent magnitude 9.0 earthquake occurred off the coast of Sumatra. This quake triggered a huge tsunami (similar to a tidal wave) that killed over 150,000 people. Scientists observing the wave on the open ocean measured the time between crests to be 1.0 h and the speed of the wave to be 800 km/h. Computer models of the evolution of this enormous wave showed that it bent around the continents and spread to all the oceans of the earth. When the wave reached the gaps between continents, it diffracted between them as through a slit. What was the wavelength of this tsunami?

Answers

The wavelength of the tsunami is approximately 800,000 meters.

To find the wavelength of the tsunami, we can use the formula:

wavelength = speed / frequency

In this case, we have the speed of the wave, which is given as 800 km/h. However, we need to convert it to meters per second (m/s) for consistency.

800 km/h = 800 * 1000 m / (3600 s) ≈ 222.22 m/s

Now, we need to find the frequency of the wave. The frequency can be determined by taking the reciprocal of the time between crests. In this case, the time between crests is given as 1.0 hour, which needs to be converted to seconds.

1.0 hour = 1.0 * 60 * 60 s = 3600 s

Now we can calculate the frequency:

frequency = 1 / time = 1 / 3600 s⁻¹

Substituting the values into the wavelength formula:

wavelength = speed / frequency

wavelength = 222.22 m/s / (1 / 3600 s⁻¹)

wavelength = 222.22 m/s * 3600 s

wavelength ≈ 800000 m

Therefore, the wavelength of the tsunami is approximately 800,000 meters.

learn more about wavelength here

https://brainly.com/question/7143261

#SPJ11

m3.3. battery energy storage if a battery is labeled at and , how much energy does it store? 8640 (within three significant digits) this same battery runs a small dc motor for before it is drained. what is the (dc) current drawn by the motor from the battery during that time? (within three significant digits)

Answers

The battery labeled as 3.3 kWh stores 8640 joules of energy. The label on the battery indicates that it has a capacity of 3.3 kWh. To convert this to joules, we can use the formula1 kWh = 3,600,000 J:3.3 kWh x 3,600,000 J/kWh = 11,880,000 J

The battery can provide a certain amount of energy to power a device before it is drained. In this case, the battery can provide 8,640 J of energy. To calculate the current drawn by the small DC motor during the time it runs, we need to use the formula:Energy = Power x TimeWe can rearrange this formula to solve for the power:

But first, we need to identify the values for Voltage and Time (t) from your question. It seems like there might be some information missing. Please provide the voltage of the battery and the time it takes to drain while running the motor.Once you provide the missing information (voltage and time), we can plug the values into the formula and calculate the current drawn by the motor. The formula shows that the current is equal to the energy stored in the battery divided by the product of the voltage and the time it takes to drain.

To know more about capacity Visit ;

https://brainly.com/question/28495814

#SPJ11

blood flows in a 50 cm long horizontal section of an artery at a rate of 5l/min. the diameter is 24 mm. find a) reynolds number b) the pressure drop c) the shear stress at the wall d) the pumping power required to maintain this flow. assume fully developed laminar flow and viscosity of 3cp.

Answers

a) Reynolds number (Re) ≈ 2,676,960

b) Pressure drop (ΔP) ≈ 2.103 Pa

c) Shear stress at the wall (τ) ≈ 8.932 Pa

d) Pumping power required ≈ 0.1755 Watts

How to calculate Reynolds Number?

To solve the problem, we'll calculate the Reynolds number (Re), pressure drop (ΔP), shear stress at the wall (τ), and pumping power required.

a) Reynolds Number (Re):

Reynolds number determines the flow regime. For laminar flow, the Reynolds number is given by:

Re = (ρ * v * d) / η

where:

ρ is the density of the fluid,

v is the velocity of the fluid,

d is the diameter of the tube, and

η is the viscosity of the fluid.

Given:

Density of blood (ρ) is approximately 1050 kg/m^3 (constant).

Viscosity of blood (η) = 3 cp = 0.003 kg/(m*s).

Diameter (d) = 24 mm = 0.024 m.

Flow rate (Q) = 5 L/min = 5/60 m^3/s = 0.0833 m³/s.

First, we need to find the velocity (v) using the flow rate and diameter:

v = Q / (π * r²)

= 0.0833 / (π * (0.012)²)

≈ 178.66 m/s

Now we can calculate the Reynolds number:

Re = (ρ * v * d) / η

= (1050 * 178.66 * 0.024) / 0.003

≈ 2,676,960

b) Pressure Drop (ΔP):

The pressure drop can be calculated using the Hagen-Poiseuille equation:

ΔP = (8 * η * Q * L) / (π * r^4)

Given:

Length of the artery section (L) = 50 cm = 0.5 m

Viscosity of blood (η) = 3 cp = 0.003 kg/(m*s)

Flow rate (Q) = 0.0833 m³/s

Radius (r) = 0.012 m

ΔP = (8 * 0.003 * 0.0833 * 0.5) / (π * (0.012)^4)

≈ 2.103 Pa

c) Shear Stress at the Wall (τ):

The shear stress at the wall can be calculated using the formula:

τ = (4 * η * v) / d

Given:

Viscosity of blood (η) = 3 cp = 0.003 kg/(m*s)

Velocity (v) ≈ 178.66 m/s

Diameter (d) = 0.024 m

τ = (4 * 0.003 * 178.66) / 0.024

≈ 8.932 Pa

d) Pumping Power Required:

The pumping power required can be calculated using the formula:

P = ΔP * Q

Given:

Pressure drop (ΔP) ≈ 2.103 Pa

Flow rate (Q) = 0.0833 m³/s

P = 2.103 * 0.0833

≈ 0.1755 Watts

Therefore, the results are:

a) Reynolds number (Re) ≈ 2,676,960

b) Pressure drop (ΔP) ≈ 2.103 Pa

c) Shear stress at the wall (τ) ≈ 8.932 Pa

d) Pumping power required ≈ 0.1755 Watts

To learn more about Blood flow, visit.

https://brainly.com/question/31663277

#SPJ4

Consider again the second barbell from Example 10-4, which has two 50.0-kg spheres separated by 2.40 m. You may assume the spheres are very small compared to the separation. (a) Calculate the rotational inertia of this same barbell if it rotates around an axis through the center of one of the spheres, perpendicular to the length of the rod. (b) Determine the kinetic energy of this barbell if it rotates at 1.00 rad/s around its midpoint as in the preceding example and if it rotates at 1.00 rad/s around the axis given in this example.

Answers

(a) The rotational inertia of the barbell rotating around an axis through the center of one of the spheres, perpendicular to the length of the rod, is 250 kg·m².

Determine the rotational inertia?

The rotational inertia of a system depends on the masses and their distances from the axis of rotation. In this case, we have two identical 50.0 kg spheres, each separated by 2.40 m.

When rotating around an axis through the center of one sphere, perpendicular to the rod, we can consider the system as two point masses rotating about that axis.

The rotational inertia of a point mass rotating around an axis is given by the formula I = m*r², where m is the mass and r is the distance from the axis.

Since we have two identical spheres, the total rotational inertia is the sum of the rotational inertia of each sphere.

Hence, I_total = 2*(50.0 kg)*(2.40 m)² = 250 kg·m².

(b) The kinetic energy of the barbell rotating at 1.00 rad/s around its midpoint is 125 J, while the kinetic energy of the barbell rotating at 1.00 rad/s around the axis through the center of one sphere is 250 J.

Determine the kinetic energy?

The kinetic energy of a rotating object is given by the formula KE = (1/2) * I * ω², where I is the rotational inertia and ω is the angular velocity.

In the preceding example, the barbell rotates around its midpoint, so the rotational inertia is 500 kg·m² (as calculated in the previous question).

Plugging the values into the formula, we find KE_midpoint = (1/2) * 500 kg·m² * (1.00 rad/s)² = 125 J.

On the other hand, when rotating around the axis through the center of one sphere, perpendicular to the rod, the rotational inertia is 250 kg·m² (as calculated in part (a)).

Using the same formula, we find KE_axis = (1/2) * 250 kg·m² * (1.00 rad/s)² = 250 J.

To know more about kinetic energy, refer here:

https://brainly.com/question/999862#

#SPJ4

how to write the hyphen notation for 11 electrons and 14 neutrons. isotope

Answers

The hyphen notation for 11 electrons and 14 neutrons. isotope is written as Na-25.

How to write the hyphen notation for 11 electrons and 14 neutrons?

To write the hyphen notation for 11 electrons and 14 neutrons isotope we will apply the following method.

First, the hyphen notation for an isotope indicates the number of protons and the number of neutrons present in a given atom.

So we can say that it indicates the sum of the atomic number.

To write the hyphen notation for an isotope with 11 electrons and 14 neutrons isotope, we will write it as follows;

an atom with 11 electrons and 14 neutrons is definitely sodium with mass number of 25

mass number = 11 + 14 = 25

The  hyphen notation = Na-25

Learn more about  hyphen notation here: https://brainly.com/question/5685201

#SPJ1

A rock is projected from the edge of the top of a building with an initial velocity of 40 ft/s at an angle of 53 degrees above the horizontal. The rock strikes the ground a horizontal distance of 82 ft from the base of the building. Assume that the ground is level and that the side of the building is vertical. How tall is the building?

Answers

The maximum height of the building is determined as 295.97 ft tall.

What is the height of the building?

The height of the building is calculated by applying the formula for the height reached by a projectile as shown below;

d = Vₓt

where;

Vₓ is the horizontal component of the velocityt is the time of motion from the height

t = ( d ) / Vₓ

t = ( 82 ) / ( 40 x cos 53)

t = 3.41 s

The maximum height of the building is calculated as follows;

H = Vyt + ¹/₂gt²

where;'

Vy is the vertical component of the velocityg is gravity

H = ( 40 x sin53)(3.41) + ¹/₂ (32.17)(3.41)²

H = 295.97 ft

Learn more about height of projectile here: https://brainly.com/question/27474184

#SPJ1

the space shuttle travels at a speed of about 7.38 x 103 m/s. the blink of an astronaut's eye lasts about 101 ms. how many football fields (length

Answers

The Space Shuttle covers approximately 9.39 football fields in the blink of an eye.

To determine how many football fields the Space Shuttle covers in the blink of an eye, we need to calculate the distance traveled by the Shuttle during the given time period.

The speed of the Space Shuttle is 7.80 * 10^3 m/s.

The duration of the blink of an eye is 110 ms, which is equivalent to 110 * 10^(-3) s.

To calculate the distance traveled, we can multiply the speed by the time:

Distance = Speed * Time

Distance = (7.80 * 10^3 m/s) * (110 * 10^(-3) s)

Distance = 8.58 * 10^2 m

Now, we can calculate the number of football fields covered by dividing the distance by the length of a football field:

Number of football fields = Distance / Length of a football field

Number of football fields = (8.58 * 10^2 m) / (91.4 m)

Number of football fields ≈ 9.39

To know more about speed, visit:

https://brainly.com/question/17661499

#SPJ11

The complete question is as follows:

The Space Shuttle travels at a speed of about 7.80*10^3 m/s. The blink of an astronaut's eye lasts about 110 ms. How many football fields (length = 91.4 m) does the Shuttle cover in the blink of an eye?

A transverse wave is traveling down a cord. Which of the following is true about the transverse motion of a small piece of the cord? (a) The speed of the wave must be the same as the speed of a small piece of the cord. (b) The frequency of the wave must be the same as the frequency of a small piece of the cord. (c) The amplitude of the wave must be the same as the amplitude of a small piece of the cord. (d) All of the above are true. (e) Both (b) and (c) are true

Answers

The correct answer is (e) Both (b) and (c) are true.

In a transverse wave, the motion of the medium (cord) is perpendicular to the direction of the wave propagation. Each small piece of the cord oscillates up and down as the wave passes through it.

(b) The frequency of the wave is the number of complete oscillations (vibrations) per unit time. As the wave travels down the cord, each small piece of the cord undergoes the same number of oscillations per unit time, thus having the same frequency as the wave.

(c) The amplitude of the wave refers to the maximum displacement or maximum height reached by each small piece of the cord during its oscillation. Since the wave causes the cord to vibrate, each small piece of the cord will have the same amplitude as the wave.

Therefore, both the frequency and amplitude of the wave are the same for each small piece of the cord as they propagate through it.

The correct answer is (e) Both (b) and (c) are true. In a transverse wave, the motion of the particles in the medium is perpendicular to the direction of wave propagation.

As the wave travels down the cord, each small piece of the cord undergoes transverse motion.(b) The frequency of the wave must be the same as the frequency of a small piece of the cord. The frequency of the wave represents the number of complete oscillations or cycles the wave undergoes per unit time. Since each small piece of the cord is part of the same wave, it will oscillate at the same frequency.

(c) The amplitude of the wave must be the same as the amplitude of a small piece of the cord. The amplitude of a wave represents the maximum displacement of the particles from their equilibrium position. As the wave propagates, each small piece of the cord will have the same maximum displacement or amplitude.

(a) The speed of the wave may not be the same as the speed of a small piece of the cord. The speed of the wave depends on the properties of the medium through which it is traveling, such as the tension and mass per unit length of the cord. The speed of a small piece of the cord may vary depending on its properties and the applied forces.

Therefore, the correct statement is that both (b) and (c) are true.

Learn more about motion here

https://brainly.com/question/25951773

#SPJ11

the greenish blue of water is evidence for the group of answer choices absorption of red light. interaction between green and blue frequencies of light. absorption of greenish-blue light. reflection of red light. reflection of greenish-blue light.

Answers

The greenish-blue color of water is evidence for the absorption of red light.

The water absorbs the red frequency of light and reflects or transmits the remaining frequencies, which in this case are mainly green and blue. This absorption process is also known as selective absorption. It is the reason why water appears blue or greenish-blue in color. The interaction between green and blue frequencies of light also plays a role in the color of water, but it is not the main reason for the color we observe. Reflection of red light and reflection of greenish-blue light are not significant factors in the color of water.
To know more about absorption process, visit:

https://brainly.com/question/32400085

#SPJ11

a photon with a wavelength of 3.50×10−13m strikes a deuteron, splitting it into a proton and a neutron. (a) Calculate the kinetic energy released in this interaction. (b) Assuming the two particles share the energy equally, and taking their masses to be 1.00 u, calculate their speeds after the photodisintegration.

Answers

(a) The kinetic energy released in the interaction when a photon with a wavelength of 3.50 × 10^(-13) m strikes a deuteron can be calculated using the formula:

Kinetic energy = Energy of photon - Rest energy of deuteron

The energy of a photon can be calculated using the equation:

Energy of photon = (Planck's constant * Speed of light) / Wavelength

Given that the wavelength of the photon is 3.50 × 10^(-13) m, we can calculate the energy of the photon:

Energy of photon = (6.626 × 10^(-34) J·s * 3.00 × 10^8 m/s) / (3.50 × 10^(-13) m)

Energy of photon ≈ 5.676 × 10^(-15) J

The rest energy of a deuteron can be approximated as the sum of the rest energies of a proton and a neutron, each taken as 1.00 u (unified atomic mass unit):

Rest energy of deuteron = Rest energy of proton + Rest energy of neutron

Rest energy of deuteron ≈ 2 * (1.00 u * (1.66 × 10^(-27) kg/u) * (Speed of light)^2)

Rest energy of deuteron ≈ 3.34 × 10^(-10) J

Substituting the values into the formula, we can calculate the kinetic energy released:

Kinetic energy = 5.676 × 10^(-15) J - 3.34 × 10^(-10) J

Kinetic energy ≈ -3.34 × 10^(-10) J

Therefore, the kinetic energy released in this interaction is approximately -3.34 × 10^(-10) J.

(b) Assuming equal sharing of the energy, the speeds of the proton and neutron can be calculated using the formula:

Kinetic energy = (1/2) * Mass * Speed^2

Given that the masses of the proton and neutron are both 1.00 u, we can calculate their speeds:

Speed = √((2 * Kinetic energy) / Mass)

Substituting the kinetic energy (-3.34 × 10^(-10) J) and mass (1.00 u) into the formula, we can calculate the speeds:

Speed (proton) = √((2 * (-3.34 × 10^(-10) J)) / (1.00 u * (1.66 × 10^(-27) kg/u)))

Speed (proton) ≈ 4.16 × 10^5 m/s

Speed (neutron) = √((2 * (-3.34 × 10^(-10) J)) / (1.00 u * (1.66 × 10^(-27) kg/u)))

Speed (neutron) ≈ 4.16 × 10^5 m/s

Therefore, assuming equal sharing of the energy, the speeds of the proton and neutron after the photodisintegration are approximately 4.16 × 10^5 m/s.

Learn more about Rest energy of deuteron here:

https://brainly.com/question/28439669


#SPJ11

if you take off from rwy 34l, or rwy 34r with minimum weather, which of the following is the minimum acceptable rate of climb (feet per minute) to 8,700 feet required for the departure at a gs of 150 knots?

Answers

The minimum acceptable rate of climb (feet per minute) for a departure from runway 34L or 34R with minimum weather, to reach 8,700 feet at a groundspeed of 150 knots, will depend on several factors such as the weight of the aircraft, temperature, pressure altitude, and other performance factors.

To calculate the minimum acceptable rate of climb, you will need to refer to the aircraft's performance charts or use performance software. Let's assume that we are using a Boeing 737-800 aircraft as an example.

According to the Boeing 737-800 performance charts, with a takeoff weight of 155,500 lbs, temperature of 15°C, and pressure altitude of sea level, the minimum climb rate required to reach 8,700 feet at a groundspeed of 150 knots is approximately 1,300 feet per minute.

However, if the temperature is higher or the pressure altitude is higher than sea level, the required climb rate will be higher. For example, if the temperature is 25°C and the pressure altitude is 5,000 feet, the required climb rate would be approximately 2,100 feet per minute.

It's important to note that the minimum acceptable rate of climb is just that - the minimum required to safely depart the runway and reach the desired altitude at the specified groundspeed. Pilots are encouraged to exceed the minimum climb rate if possible, to improve safety margins and performance. Additionally, factors such as obstacle clearance requirements may also impact the required climb rate.

In conclusion, the minimum acceptable rate of climb for a departure from runway 34L or 34R with minimum weather, to reach 8,700 feet at a groundspeed of 150 knots, will depend on several factors and will vary depending on the aircraft and conditions. Pilots should refer to the aircraft's performance charts or use performance software to calculate the exact required climb rate for their specific situation.

To know more about pressure altitude visit:-

https://brainly.com/question/30767288

#SPJ11

A certain simple pendulum has a period on the earth of 1.40 s. Part A What is its period on the surface of Mars, where g = 3,71 m/s2 ?Express your answer with the appropriate units. ?

Answers

The formula for the period of a simple pendulum is:

T = 2π√(L/g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

We can use this formula to find the period on Mars. We know that the period on Earth is 1.40 s, so we can set up a ratio:

T(Mars) / T(Earth) = √(g(Mars) / g(Earth))

Substituting in the values we have:

T(Mars) / 1.40 s = √(3.71 m/s^2 / 9.81 m/s^2)

Simplifying:

T(Mars) / 1.40 s = 0.678

Multiplying both sides by 1.40 s:

T(Mars) = 0.949 s

Therefore, the period of the simple pendulum on Mars is 0.949 seconds (rounded to three significant figures).

Learn more about  simple pendulum on Mars from

https://brainly.com/question/31730303

#SPJ11

blank energy is energy transmitted in wave motion ;it is light energy

Answers

Answer:

Radiant energy is electromagnetic energy that travels in transverse waves. Radiant energy includes visible light, x-rays, gamma rays, and radio waves.

which statement is wrong about jovian planets? a jovian planets have larger size comparing to terrestrial planetsb.jovian planets have smaller density comparing to terrestrial planetscjovian planets have more moons comparing to terrestrial planetsdjovian planets have smaller mass comparing to terrestrial planets

Answers

The statement that is wrong about Jovian planets is : d) Jovian planets have smaller mass comparing to terrestrial planets. Hence option d) is the correct answer.

Jovian planets, also known as gas giants, have much greater mass than terrestrial planets like Earth. This is because Jovian planets are composed mainly of gas and ice, while terrestrial planets are composed of rock and metal.

Jovian planets are much larger than terrestrial planets, as stated in option A. They can be up to 20 times the size of Earth, while the largest terrestrial planet, Venus, is only slightly smaller than Earth. This larger size is due to the fact that jovian planets have much thicker atmospheres and lower densities than terrestrial planets.

Option B is true, as jovian planets have much lower densities than terrestrial planets. Their densities range from 0.7 to 1.6 g/cm3, while terrestrial planets have densities of around 5 g/cm3. This low density is due to the fact that the majority of the jovian planets' mass is in the form of gas and ice, which is less dense than rock and metal.

Finally, option C is also true. Jovian planets have more moons than terrestrial planets. For example, Jupiter has over 70 moons, while Earth only has one moon. This is because jovian planets have stronger gravitational forces, which allows them to capture more moons and other objects in their orbits.

In summary, option d is the incorrect statement about Jovian planets, as they have much greater mass than terrestrial planets.

To know more about Jovian planets, refer

https://brainly.com/question/31022191

#SPJ11

What is the energy of the photon emitted by a harmonic oscillator with stiffness 24 N/m and mass 5.1 x 10-25 kg when it drops from energy level 9 to energy level 4?

Answers

Answer:

the harmonic oscillator is 4.31 x 10^-18 J.

Explanation:

The energy levels of a harmonic oscillator are given by:

E_n = (n + 1/2) * h * f

where n is the energy level, h is Planck's constant, and f is the frequency of the oscillator. The frequency of a harmonic oscillator is given by:

f = 1 / (2 * pi) * sqrt(k / m)

where , m is its mass. Substituting the given values, we get:

f = 1 / (2 * pi) * sqrt(24 N/m / 5.1 x 10^-25 kg) = 1.18 x 10^15 Hz

The energy difference between energy level 9 and energy level 4 is:

ΔE = E_9 - E_4 = (9 + 1/2) * h * f - (4 + 1/2) * h * f = 5.5 * h * f

Substituting the value of f from above, we get:

ΔE = 5.5 * 6.626 x 10^-34 J*s * 1.18 x 10^15 Hz = 4.31 x 10^-18 J

The energy of the photon emitted by the oscillator is equal to the energy difference between the two energy levels:

E_photon = ΔE = 4.31 x 10^-18 J

Therefore, the energy of the photon emitted by the harmonic oscillator is 4.31 x 10^-18 J.

learn more about harmonic oscillator mark on brainly. com

https://brainly.com/question/54955872

To determine the energy of the photon emitted by a harmonic oscillator, we can use the equation:

E = hf = (n2 - n1) * h * f

where E is the energy of the photon, h is Planck's constant, f is the frequency of the oscillator, and n2 and n1 are the final and initial energy levels of the oscillator, respectively.

First, we need to determine the frequency of the oscillator. We can use the equation:

f = 1 / (2π) * √(k / m)

where k is the stiffness of the oscillator and m is its mass.

Plugging in the given values, we get:

f = 1 / (2π) * √(24 N/m / 5.1 x 10-25 kg) ≈ 1.95 x 1014 Hz

Next, we can calculate the energy of the photon:

E = (9 - 4) * 6.626 x 10-34 J s * 1.95 x 1014 Hz = 3.30 x 10-19 J

Therefore, the energy of the photon emitted by the harmonic oscillator with stiffness 24 N/m and mass 5.1 x 10-25 kg when it drops from energy level 9 to energy level 4 is 3.30 x 10-19 J.
To calculate the energy of the photon emitted by a harmonic oscillator when it drops from energy level 9 to energy level 4, we'll use the following steps:

1. Calculate the angular frequency (ω) of the oscillator using the formula: ω = √(k/m), where k is the stiffness (24 N/m) and m is the mass (5.1 x 10^-25 kg).

2. Determine the energy difference between the initial (n1) and final (n2) energy levels using the formula: ΔE = ħω(n1 - n2), where ħ is the reduced Planck constant (1.054 x 10^-34 Js).

3. Calculate the energy of the emitted photon using the formula: E_photon = ΔE.

Step 1: ω = √(24 N/m / 5.1 x 10^-25 kg) ≈ 3.079 x 10^12 rad/s.

Step 2: ΔE = (1.054 x 10^-34 Js) * (3.079 x 10^12 rad/s) * (9 - 4) ≈ 1.621 x 10^-21 J.

Step 3: E_photon = ΔE ≈ 1.621 x 10^-21 J.

The energy of the photon emitted when the harmonic oscillator drops from energy level 9 to energy level 4 is approximately 1.621 x 10^-21 Joules.

To know more about the energy of the photon emitted by a harmonic oscillator visit

https://brainly.com/question/29910905

SPJ11

One day when the speed of sound in air is 343 m/s, a fire truck traveling at vs = 31 m/s has a siren which produces a frequency of fs = 439 Hz. What frequency, in units of hertz, does the driver of the truck hear?

Answers

The driver of the fire truck hears a frequency of approximately 475.8 Hz. The frequency that the driver of the fire truck hears can be found using the formula:
f' = (v + vd) / (v + vs) * f

where f is the frequency of the siren, v is the speed of sound in air, vs is the speed of the fire truck, and vd is the speed of the observer (in this case, the driver) relative to the air.
Plugging in the given values, we get:
f' = (343 + 31) / (343 + 0) * 439
f' = 475.8 Hz

To know more about frequency visit :-

https://brainly.com/question/29739263

#SPJ11

Are there more old rocks or more young rocks, why?

Answers

Explanation:

On Earth, older rocks predominate over younger rocks in general. This is due to the fact that rocks created earlier in the planet's history have had more time to accumulate and that the geological history of the Earth spans billions of years.

The oldest rocks on Earth are thought to have been formed roughly 4 billion years ago, which is nearly as old as the planet itself. These ancient rocks, which may be discovered in many different places on Earth, offer important new information about the processes that sculpted the Earth's surface and the planet's early genesis.

New rocks have continuously been created over time as a result of geological processes such weathering, erosion, volcanic activity, and tectonic movements that continuously modify the Earth's surface. However, compared to other processes, the rate of rock production is somewhat modest to the geological timescale. It takes significant amounts of time for new rocks to form from processes such as solidification of lava, deposition of sediments, or the gradual transformation of existing rocks through heat and pressure.

Therefore, the vast majority of rocks on Earth are older rocks that have formed and accumulated over billions of years. Younger rocks, though still present, are comparatively fewer in number due to the limited amount of time that has passed since their formation.

Other Questions
FILL IN THE BLANK. vertical zonation is best applied to ______________ environments. a number c is an eigenvalue of a if and only if the equation (a -ci)x = 0 has a nontrivial solution. Which subjunctive verb form correctly completes this sentence?Wenn ich im Lotto gewinnen wrde, _____ ich viel Geld.A. htteB. wreC. mssteD. sollte Let a, b = R with a < b and y: [a, b] R be a differentiable parametric curve. Determine which of the following statements are true or false. If false, give a counterexample. If true, briefly explain why. (1a) Suppose ||y'(t)|| > 0 for all t = (a, b) and that ||y'(t)|| is not constant. Then N(t) and y"(t) are not parallel. (1b) Suppose [a, b] = [0,6]. If y(t) is the position of a particle at t seconds, then ||y(4)-y(2)|| is the distance the particle travels between 2 and 4 seconds. at what distance beyond the surface of the metal is the electron's probability density 13% of its value at the surface? assume the government has a budget deficit and that the economy is experiencing a recession. tax revenues collected by the government is likely to Banana Co. offers a 3.0 percent coupon bond with semiannual payments and a yield to maturity of 7.00 percent. The bonds mature in 8 years. What is its current value if the face value is $1,000? Round long division method of 616265 flavor compounds group of answer choices may be hydrophilic or hydrobhobic are typically highly volatile can be analyzed using a gas chromatograph all of the above Which of the following is not a way to correct run on sentences? B A curve has equation y = x^3+ 3x^2- 6. a) Obtain dy/dx and hence find the x co-ordinates of any turning points. b) Using the second derivative, find the nature of the turning points from part (a) how many grams of honh3no3 would you use to create 250 ml of an aqueous solution with ph=4.20? mass of honh3no3 HW4: Problem 3 (1 point) Compute the Laplace transform: c{u(t)tc " ) -us(t)} = If you don't get this in 2 tries, you can get a hint. What is happening in the picture?A)Sunlight is reacting with waste gases produced by cellular respiration from the trees to produce chemical smog.B)Sunlight is reacting with waste gases produced by cellular respiration from the trees and by vehicles burning fossil fuels to produce chemical smog.C)Sunlight is reacting with water vapor produced by vehicles burning fossil fuels to produce photochemical smog.D)Sunlight is reacting with waste gases produced by vehicles burning fossil fuels to produce photochemical smog. Three randomly selected households are surveyed. The numbers of people in the household are 3,4,11. Assume that samples of size n=2 are randomly selected with replacement form the population of 3,4,11. Listed below are the nine different samples. Complete parts (a) through (c). Find a parametrization for the curve described below. - the line segment with endpoints (2,-2) and (-1, - 7) Which of these is considered a current staffing trend?Group of answer choicesContinued boom in temporary employmentContinued pressure to find skilled workersA continued rise of independent free agentsAll of the above3/ Metrics such as number and variety of sources, length of time to source and hire, and number of candidates presented to the hiring manager for interviews are important tools to diversify the sourcing and recruiting pipeline.Group of answer choicesTrueFalse4/ High turnover rates can result in which of the followingGroup of answer choicesLoss of essential knowledgeHigh cost of replacing workersLower organizational productivityAll of the above Which of the following is an effective way of managing decisions in order to avoid escalation of commitment?a.Dont split the responsibility for decisions about projects. b.Don't reward people who admit to poor decisions. c.Dont allow graceful exits from poor decisions d.Have groups rather than individuals make initial investment decisions. Which statements are true about the ordered pair(1,4) and the system of equations? xy=37xy=3 Select each correct answer. Responses When (1,4) is substituted into the first equation, the equation is false. When , , begin ordered pair negative 1 comma negative 4 end ordered pair, , is substituted into the first equation, the equation is false. When (1,4) is substituted into the second equation, the equation is true. When , , begin ordered pair negative 1 comma negative 4 end ordered pair, , is substituted into the second equation, the equation is true. When (1,4) is substituted into the second equation, the equation is false. When , , begin ordered pair negative 1 comma negative 4 end ordered pair, , is substituted into the second equation, the equation is false. The ordered pair (1,4) is not a solution to the system of linear equations. The ordered pair , , begin ordered pair negative 1 comma negative 4 end ordered pair, , is not a solution to the system of linear equations. The ordered pair (1,4) is a solution to the system of linear equations. The ordered pair , , begin ordered pair negative 1 comma negative 4 end ordered pair, , is a solution to the system of linear equations. When (1,4) is substituted into the first equation, the equation is true. When , , begin ordered pair negative 1 comma negative 4 end ordered pair, , is substituted into the first equation, the equation is true. 2. Let f(x, y, z) = 1 +y +z and consider the following parameterizations of the helix in R' starting at (1,0,0) and ending at (1,0,2%). Compute the line integral of Vf over H using the following param