Answer:
.16666667
Step-by-step explanation:
(x)3=0.5
divide both sides by 3
x =.16666667
if (x-y)=15 what is the value of x^2 -2xy+y^2
Answer:
=225
Step-by-step explanation:
The value of x² - 2xy + y² would be; 225
What is the algebraic expression?Algebraic expressions are mathematical statements with a minimum of two terms containing variables or numbers.
we are given that (x-y)=15
The identity (x + y)² - (x - y)² = 4xy.
(x + y)²= (x² + 2xy + y²)
we have been asked to find x² - 2xy + y²
x² - 2xy + y² = (x - y)²
x² - 2xy + y² = 15²
x² - 2xy + y² = 225
Learn more about the algebraic expression here :
brainly.com/question/21751419
#SPJ2
Stacy saved some dimes. Leo saved 3 times as many dimes as Stacy. If Leo saved a total of 72 dimes, how many dimes did Stacy save? Let n represent the number of dimes that Stacy saved.
Answer:
Leo: 3n Dimes
Leo: 72 Dimes
Stacy: 72/3 Dimes
Stacy: 24 Dimes
What is the distance in units from (2, -12) to (-11, -12)
20 POINTSSS
HURRY PLEASEEEE
Answer:
d= (-11-2)^2 + (-12--12)^2
d= (-13)^2 + (0)^2
d=169
square root the 169
answer is 13
that's the distance from (2, -12) (-11, -12)
hope that helps
Step-by-step explanation:
The distance between the points A ( 2 , -12 ) and B ( -11 , -12 ) is 13 units
What is the distance of a line between 2 points?
The distance of a line between 2 points is always positive and given by the formula
Let the first point be A ( x₁ , y₁ ) and the second point be B ( x₂ , y₂ )
The distance between A and B is D , and the distance D is
[tex]Distance D = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2} }[/tex]
Given data ,
Let the distance between the two points be = D
Let the first point be represented as = A
The value of A = A ( 2 , -12 )
The second point be represented as = B
The value of B = B ( -11 , -12 )
Now , the distance between the points A and B is given by the equation of distance formula
[tex]Distance D = \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2} }[/tex]
Substituting the values in the equation , we get
[tex]Distance D = \sqrt{(-12-(-12)^{2} + (2-(-11))^{2} }[/tex]
On simplifying the equation , we get
[tex]Distance D = \sqrt{(0 + (2+11))^{2} }[/tex]
[tex]Distance D = \sqrt{(13)^{2} }[/tex]
[tex]Distance D = 13[/tex]
Therefore , the value of D is 13
Hence ,
The distance between the points A ( 2 , -12 ) and B ( -11 , -12 ) is 13 units
To learn more about distance between 2 points click :
https://brainly.com/question/18234495
#SPJ2
A chemist has a 100 gram sample of a radioactive
material. He records the amount of radioactive material
every week for 6 weeks and obtains the data in the
table below.
look at the picture please <3 i really need this asap
Answer:
75
Step-by-step explanation:
did it 5 mins ago
help please i don’t get it
How do I solve this arithmetic sequence?
Answer:
The 16ᵗʰ term of this sequence is 82
Step-by-step explanation:
Here,
First Term = a₁ = 9
Common Difference = (d) = 2
Now, For 16ᵗʰ term, n = 16
aₙ = a + (n - 1)d
a₁₆ = 7 + (16 - 1) × 2
a₁₆ = 7 + 15 × 5
a₁₆ = 7 + 75
a₁₆ = 82
Thus, The 16ᵗʰ term of this sequence is 82
-TheUnknownScientist
(a) An angle measures 30°. What is the measure of its supplement?
(b) An angle measures 26°. What is the measure of its complement?
Answer:
32 and 58.
Step-by-step explanation:
complementary angles add up to 90.
26+x=y
x+y=90
plug y=26+x into the above equation
x+26+x=90
2x=64
x=32
The angles are 32 and 58.
Which is the equation in slope-intercept form for the line that passes through (-1,5) and is parallel to 3x + 2y = 4?
Answer asap please
Answer:
3.24
Step-by-step explanation:
Please help me this is on khan academy.
Mr. Mole's burrow lies 5 55 meters below the ground. He started digging his way deeper into the ground, descending 3 33 meters each minute. Graph the relationship between Mr. Mole's elevation relative to the ground (in meters) and time (in minutes).
At the 95% confidence level, the margin of error for this survey, expressed as a proportion, is approximately 0.0288.
To calculate the margin of error for a survey expressed as a proportion, we need to use the formula:
Margin of Error = Critical Value [tex]\times[/tex] Standard Error
First, let's find the critical value.
For a 95% confidence level, we can refer to the standard normal distribution (Z-distribution) and find the z-value associated with a 95% confidence level.
The critical value for a 95% confidence level is approximately 1.96.
Next, we need to calculate the standard error.
The standard error for a proportion can be computed using the formula:
Standard Error [tex]= \sqrt{((p \times (1 - p)) / n)}[/tex]
Where:
p = proportion of respondents in favor of the plan
n = sample size
In this case, the proportion in favor of the plan is 37/185 = 0.2 (rounded to the nearest thousandth).
The sample size is 185.
Now we can calculate the standard error:
Standard Error [tex]= \sqrt{((0.2 \times (1 - 0.2)) / 185)}[/tex]
Simplifying further:
Standard Error ≈ [tex]\sqrt{((0.04) / 185)}[/tex]
Standard Error ≈ [tex]\sqrt{(0.0002162)}[/tex]
Standard Error ≈ 0.0147 (rounded to the nearest thousandth)
Finally, we can calculate the margin of error:
Margin of Error = 1.96 [tex]\times[/tex] 0.0147
Margin of Error ≈ 0.0288 (rounded to the nearest thousandth)
For similar question on confidence level.
https://brainly.com/question/30536583
#SPJ8
At the Pizza place, 12% of the pizzas made last week had extra cheese. If 30 pizzas had extra cheese, how many pizzas in all were made last week?
Answer: 250
Step-by-step explanation:
Given
12% of the Pizzas had extra cheese
If those pizzas were 30 in number
Suppose, x be the total Pizzas
So, 12% of x is 30
[tex]\Rightarrow x\times \dfrac{12}{100}=30\\\\\Rightarrow x=250[/tex]
Thus, 250 Pizzas were maid last week
What is the volume, in cubic in, of a rectangular prism with a height of 11in, a width
of 20in, and a length of 19in?
The volume of the rectangular prism is 4180in^3.
What is rectangular prism?"A rectangular prism can be defined as a 3-dimensional solid shape which has six faces that are rectangles".
For the given situation,
Length of the rectangular prism = 19 in
Width of the rectangular prism = 20 in
Height of the rectangular prism = 11 in
The formula for volume of the rectangular prism,
[tex]V=l[/tex] × [tex]w[/tex] × [tex]h[/tex]
On substituting the values,
⇒[tex]V= 19[/tex] × [tex]20[/tex] × [tex]11[/tex]
⇒[tex]V=4180[/tex]
Thus the volume of the rectangular prism is [tex]4180 in^{3}[/tex].
Learn more about rectangular prism here
https://brainly.com/question/21812790
#SPJ2
If your input is 5 what is the output?
Answer:
When the input is 5, the output is 11.
Step-by-step explanation:
Replace x with 5: 3(5) - 4 = 15 - 4 = 11
When the input is 5, the output is 11.
Find the area of the figure shown below and choose the appropriate result.
A. 96 mm^2
B. 102 mm^2
C. 90 mm^2
D. 140 mm^2
X 2. Gi'shon needs to complete the expressions below to factor x2 + x - 56. 0/1 Which of the following must be true? * ( x1)x___)
F. Both expressions will include subtraction.
G. The sum of the values in the blanks should be 1. X Х
H. The product of the values in the blanks should be 56.
J. The values in the blanks will be the same number but opposite signs
Answer: gggggg
g the sum of values are 1
Step-by-step explanation: 8-7=1
The factorized form of the expression is A = ( x - 7 ) ( x + 8 ) and sum of the values in the blanks should be 1
What is Factorizing?Brackets should be expanded in the following ways to factorize an expression
For an expression of the form A = a ( b + c ) , the expanded version is given by A = ab + ac, i.e., multiply the term outside the bracket by everything inside the bracket
For an expression of the form A = ( a + b ) ( c + d ) , the expanded version is given by A = ac + ad + bc + bd, in other words everything in the first bracket should be multiplied by everything in the second.
Given data ,
Let the expression be represented as A
Now , the value of A is
A = x² + x - 56
On factorizing the equation , we get
A = x² + 8x - 7x - 56
8x - 7x = 1
So , A = ( x - 7 ) ( x + 8 )
Hence , the expression is A = ( x - 7 ) ( x + 8 )
To learn more about factorization click :
https://brainly.com/question/804076
#SPJ2
..
A cone has a height of 4 inches and a
circumference at the base of 121 inches.
What is the approximate volume of the cone?
Answer:
Approximately 1553.83
please help ASAP!!!
A cone has a radius of 2.5 inches and a height of 1.6 inches.
What is the volume of the cone?
Use 3.14 for pi. Round to the nearest tenth.
4.0 in³
10.5 in³
12.0 in³
23.1 in³
i need a little help with this
HELP NEEDED!!! 15POINTS FOR A ANSWER AND EXPLANATION! I cant figure this out help me please! Also no links.
Answer:
Line I:y=5
Line m:y=_2×+5
Line n:y=×-1
Line p:×=_5
Step-by-step explanation:
Hope It Help
Brainliest Please
Two cars leave simultaneously from points A and B, the distance between which is 280 km. If the cars move to meet each other, they’ll meet in 2 hours. But if they move in the same direction, then the car going from point A will catch up with the car going from point B in 14 hours. What is the speed of each of the cars?
Answer:
Car A speed = 80 m/s
Car B speed = 60 m/s
Step-by-step explanation:
Let Speed of Car A be represented as x
Let Speed of Car B be represented as y
280 = (x+y)(2)140 = x+y --> Equation 1Let z represent the distance that Car A travels until it catches up to Car B
280+z = x(14)Since it takes 14 hours for Car B to cover the distance z,
z = 14y280+14y = 14x280 = 14(x-y)20 = x-y --> Equation 2Solving Equation 1 and Equation 2, we get:
x = y+20140 = 2y+20120 = 2yy = 60 x = y+20 = 80Answer:
Car A speed = 80 km/h
Car B speed = 60 km/h
Step-by-step explanation:
determine the missing length in your right triangle using the Pythagorean theorem. round your answer to the nearest 10th if necessary
Answer:
21.4
Step-by-step explanation:
13^2 + 17^2 = c^2
169 + 289 = c^2
458 = c^2
The square root of 458 is 21.4.
The Americans with disabilities act sets a maximum angle for a wheelchair ramp entering a business at 4.76 degrees. Determine the horizontal distance needed to accommodate a ramp that goes up to a door.
Answer:
Step-by-step explanation:
tanα=h/d, where α=angle of elevation, h=height, d=horizontal distance.
d=h/tanα, we are given that h=4ft and α=4.76° so
d=4/tan4.76° ft
d≈48.04 ft (to nearest hundredth of a foot)
Solve using the quadratic formula 1
Answer:
Step-by-step explanation:
Unless we set x^2 + 8x + 15 equal to zero, we don't have an equation to be solved. I will assume that the problem is actually x^2 + 8x + 15 = 0.
The coefficients of this quadratic are {1, 8, 15}, and so the "discriminant" b^2 - 4ac is (8)^2 - 4(1)(15), or 4. Because the discriminant is positive, we know that there are two real, unequal roots.
Continuing with the quadratic formula and knowing that the discriminant is 4, we get:
-8 ± √4 -8 ± 2
x = ---------------- = --------------- , or x = -2 ± 1: x = -3 and x = -5
2 2
A rocket is launched from a tower. The height of the rocket, y in feet, is
related to the time after launch, x in seconds, by the given equation.
Using this equation, find out the time at which the rocket will reach its
max, to the nearest 100th of a second.
y = 16x^2+ 238x + 81
Answer: 7.44
Step-by-step explanation: DeltaMath
Find the 7th term in the following sequence (n = 7)
f(n) = 5 + 8(n-1)
Also, for this question, state what a1 is (first term) and the common difference (a2 - a1).
Answer:
see explanation
Step-by-step explanation:
Substitute n = 7 into f(n)
f(7) = 5 + 8(7 - 1) = 5 + 8(6) = 5 + 48 = 53
f(n) = 5 + 8(n - 1) represents the nth term of an arithmetic sequence
f(n) = a₁ + (n - 1)d
where a₁ is the first term and d the common difference
By comparison, then
a₁ = 5 and common difference d = 8
V 144 belongs to the set of integers.
O True
O False
Answer:
True
Step-by-step explanation:
[tex] \sqrt{144} [/tex]
is a rational number.
It is also a perfect square which means it is an integer.
Hope this Helps!:)
Answer:
Step-by-step explanation:
True. √144 = 12 (an integer) or 12/1, which is rational.
Which equation has no real solutions?
A 2x2 + 2x + 15 = 0
B 2x2 + 5x – 3 = 0
C 1 x2 + 7x + 2 = 0
D x2 - 4x + 2 = 0
Options are:
CPCTC
Congruent
vertical angles are congruent
If alternate interior angles are congruent then lines are parallel
Answer:
1) because they are vertical angles
2) because SAS
3) CPCTC
4) Converse of the Alternate Interior Angles
I need help on this math problem quickly!!
Suppose three moons A, B, and C orbit 100,000 kilometers above the surface of a planet. Suppose m ZABC = 90°, and the planet is 20,000 kilometers in diameter. Draw a diagram of the situation. How far is moon A from moon C?
Answer:
Step-by-step explanation:
Please see diagram attached.
Moon A and C are 100,000km + 10,000 = 110,000km from center of planet.
So they are 110,000 + 110,000 = 220,000km apart.
Answer:
Step-by-step explanation:
AC is 220000km according to the drawing:
Tran is using a coordinate plane to design a treasure hunt for his students. The hunt begins at the flagpole at the origin. The first clue is hidden 5 units north of the flagpole. The second clue is located 6 units east of the flagpole. The final clue is located 5 units south of the flagpole. Plot the locations of the flagpole and the 3 clues on the coordinate plane and show the path students will follow from the flagpole to all three clues. . Each unit represents 50 feet. What is the shortest combined distance along the path from the flagpole to Clue 1 to Clue 2 and to Clue 3?
Answer:
The shortest combined distance along the path from the flagpole to Clue 1 to Clue 2 and to Clue 3 is approximately 1,031.025 feet
Step-by-step explanation:
The given coordinates of the clues for the treasure hunt are
The location of the first clue = 5 units north of the flag pole
The coordinates is (0, 5)
The location of the second clue = 6 units east of the flag pole
The coordinates is (6, 0)
The location of the final clue = 5 units south of the flag pole
The coordinates is (0, -5)
The flagpole is at the origin
The coordinates of the flagpole is (0, 0)
Each unit on the graph = 50 feet
From the drawing of the treasure hunt created with Microsoft Excel, the shortest distances between the clues are as follows;
The shortest distance between 2 points is a straight line
Therefore
The shortest length from the flagpole to Clue 1 = 5 - 0 = 5 units
The actual distance from the flagpole to Clue 1 = 5 units × 50 feet/unit = 250 feet
The length from Clue 1 to Clue 2= √(6² + 5²) = √(61) units
The actual distance from Clue 1 to Clue 2 = √(61) units × 50 feet/unit = 50·√61 feet
By similarity, the actual distance from Clue 2 to Clue 3 = 50·√61
The combined shortest distance along the path from the flagpole to Clue 1 to Clue 2 and to Clue 3 = (250 + 50·√61 + 50·√61) feet ≈ 1,031.025 feet