Chloric acid [tex](HClO_3)[/tex] is not a strong acid. The correct answer is 5. Chloric acid [tex](HClO_3)[/tex]
The strength of an acid refers to its ability to completely dissociate into ions when dissolved in water. Strong acids are those that readily ionize in water, producing a high concentration of hydrogen ions [tex](H^+)[/tex].
Based on this definition, we can identify the acid that is not classified as a strong acid among the options provided.
The strong acids among the options are:
1. Perchloric acid [tex](HClO_4)[/tex]
2. Sulfuric acid [tex](H_2SO_4)[/tex]
3. Hydrobromic acid (HBr)
4. Hydrochloric acid (HCl)
5. Chloric acid [tex](HClO_3)[/tex]
6. Hydrofluoric acid (HF)
7. Hydroiodic acid (HI)
8. Nitric acid [tex](HNO_3)[/tex]
Among these options, the acid that is not considered a strong acid is chloric acid [tex](HClO_3)[/tex]. While chloric acid is a moderately strong acid, it is not as strong as the others listed.
Therefore, the correct answer is: 5. Chloric acid (HClO3)
To learn more about Chloric acid from the given link
https://brainly.com/question/30398438
#SPJ4
the concentration of carbon dioxide in the atmosphere is 3.9×10−4 . convert this number to decimal form
The concentration of carbon dioxide in the atmosphere is 3.9×10−4 concentration of carbon dioxide in the atmosphere in decimal form is 0.00039.
To convert the number 3.9×10^(-4) to decimal form, we need to move the decimal point to the left by the exponent value of -4.
Starting with 3.9×10^(-4), we move the decimal point four places to the left:
3.9×10^(-4) = 0.00039
Therefore, the concentration of carbon dioxide in the atmosphere in decimal form is 0.00039.
Scientific notation, represented as 3.9×10^(-4), is a way to express very large or very small numbers using a combination of a coefficient and a power of 10. In this case, the coefficient is 3.9 and the exponent is -4. Moving the decimal point to the left or right is determined by the sign and value of the exponent. Converting scientific notation to decimal form makes it easier to understand and work with the numerical value, especially when comparing or performing calculations with other values in decimal format.
Learn more about Scientific notation here:
https://brainly.com/question/16936662?
#SPJ11
PLEASE HELP ME WITH THIS CHEMISTRY HOMEWORK!!! WILL GIVE BRAINLIEST!!! :) 15 POINTS!!!
The given chart mentions electrodes with notations, standard reduction potentials, half-reactions and total voltage, while also mentioning the anode and cathode part of the batteries.
The completed chart is attached as an image below.
Standard reduction potential refers to the tendency of an element to gain electrons, that is get reduced under standard conditions of pressure and temperature.
The higher the positive value, the more would be the tendency of the element to get reduced and the stronger it will work as an oxidizing agent.
The more the negative value, the least would be the tendency to get reduced and the stronger it will work as a reducing agent.
Learn more about reduction potential in:
https://brainly.com/question/31496487
#SPJ1
when water freezes, its weight group of ____ answer choices a. decreases b. increases c. remains the same as in the liquid state
When water freezes, its weight increases. This is because when water freezes, the water molecules form a crystalline structure that is less dense than liquid water. This means that the same amount of water takes up more space when it freezes than when it is in its liquid state.
Therefore, the weight of the frozen water is greater than the weight of the same amount of liquid water. This is why ice cubes, for example, are heavier than the same amount of water that they were made from. It's important to note that this property of water is unusual because most substances are denser in their solid state than in their liquid state.
To know more about Water visit:
https://brainly.com/question/1216922
#SPJ11
questionwhich type of reaction happens when a base is mixed with an acid?responsesspontaneous reactionspontaneous reactionmetal-base reactionmetal-base reactionmetal-acid reactionmetal-acid reactionneutralization reaction
When a base is mixed with an acid, a neutralization reaction occurs.
This type of reaction involves the combination of H+ ions from the acid with OH- ions from the base to form water (H2O) and a salt. The salt produced depends on the specific acid and base used. For example, when hydrochloric acid (HCl) is mixed with sodium hydroxide (NaOH), the resulting salt is sodium chloride (NaCl). The reaction is not spontaneous and requires an input of energy to occur. Typically, the heat produced during the reaction is used to drive the reaction forward. When a base is mixed with an acid, the type of reaction that occurs is called a neutralization reaction. In this process, the acidic and basic properties of the reactants are neutralized, producing water and a salt as the products. This reaction is important in various chemical processes and everyday situations, such as in the regulation of pH levels and the formation of salts. Neutralization reactions are essential for maintaining a balance in different environments and have various practical applications.
To know more about neutralization visit:
https://brainly.com/question/14156911
#SPJ11
The cis and trans isomers of 4-tert butylcyclohexanol are __________.
a) meso compounds
b) diastereomers
c) positional isomers
d) enantiomers
The cis and trans isomers of 4-tert butylcyclohexanol are diastereomers. Diastereomers are stereoisomers that are not mirror images of each other and have different physical and chemical properties.
The cis and trans isomers of 4-tert butylcyclohexanol are diastereomers. Diastereomers are stereoisomers that are not mirror images of each other and have different physical and chemical properties. In this case, the cis and trans isomers have different spatial arrangements around the cyclohexane ring due to the presence of the bulky tert-butyl group. The cis isomer has the tert-butyl group on the same side as the hydroxyl group, while the trans isomer has them on opposite sides. Therefore, they have different boiling points, melting points, and solubilities. It is important to note that diastereomers are not enantiomers because they do not have a chiral center and cannot be superimposed on each other. In conclusion, the cis and trans isomers of 4-tert butylcyclohexanol are diastereomers.
To know more about diastereomers visit: https://brainly.com/question/30764350
#SPJ11
you work in a science lab that uses hydrochloric acid to porcess your samples. the discarded acid is considered
The discarded hydrochloric acid is considered hazardous waste due to its corrosive and potentially harmful nature.
Proper disposal procedures must be followed to prevent harm to people and the environment. It is important to carefully manage the disposal of any hazardous waste, including hydrochloric acid, by following local regulations and guidelines. Additionally, minimizing the use of hydrochloric acid in laboratory processes and finding alternative methods can help reduce the amount of hazardous waste generated. Keeping track of the amount of hydrochloric acid used and properly disposing of it is essential to maintaining a safe and environmentally responsible workplace. In your science lab, you use hydrochloric acid (HCl) to process samples. The discarded acid is considered hazardous waste due to its corrosive properties and potential environmental impact. Proper disposal is crucial to ensure safety and comply with regulations. Typically, this involves neutralizing the acid using a base, such as sodium hydroxide, to form a salt and water, rendering it harmless. Once neutralized, the waste can be safely disposed of according to local guidelines. Always wear appropriate personal protective equipment (PPE) and follow lab protocols when handling and disposing of chemicals like hydrochloric acid.
To know more about corrosive visit:
https://brainly.com/question/31313074
#SPJ11
In the Bohr model of the hydrogen atom, an electron in the lowest energy state moves at a speed of 2.19 * 106 m/s in a circular path of radius 5.92 * 10-11 meters. What is the effective current associated with this orbiting electron?
The effective current associated with the orbiting electron in the lowest energy state is approximately 4.84 x 10^-4 A.
To calculate the effective current associated with the orbiting electron in the Bohr model, we can use the formula for the current in a circular path:
I = (q * v) / (2πr)
where I is the current, q is the charge of the electron (-1.6 x 10^-19 C), v is the velocity of the electron, and r is the radius of the circular path.
Given:
Charge of the electron, q = -1.6 x 10^-19 C
Velocity of the electron, v = 2.19 x 10^6 m/s
Radius of the circular path, r = 5.92 x 10^-11 meters
Substituting these values into the formula:
I = (-1.6 x 10^-19 C * 2.19 x 10^6 m/s) / (2π * 5.92 x 10^-11 meters)
Calculating the effective current:
I ≈ -4.84 x 10^-4 A
The negative sign indicates the direction of the current flow, which is opposite to the conventional direction.
For more such questions on electron
https://brainly.com/question/26084288
#SPJ8
a transition metal complex has a a maximum absorbance of 593.7 nm. what is the crystal field splitting energy, in units of kj/mol, for this complex?
The crystal field splitting energy of a transition metal complex has a a maximum absorbance of 593.7 nm is [tex]3.34 * 10^{-19}J[/tex]
To calculate the crystal field splitting energy (Δ) in units of kJ/mol for a transition metal complex with a maximum absorbance of 593.7 nm, we need to use the relationship between Δ and the wavelength of maximum absorbance (λmax) according to the equation:
Δ = hc / λmax
where:
Δ is the crystal field splitting energy,
h is Planck's constant ([tex]6.626 * 10^{-34} Js[/tex]),
c is the speed of light ([tex]2.998 * 10^8 m/s[/tex]),
λmax is the wavelength of maximum absorbance.
First, let's convert the given wavelength from nanometers (nm) to meters (m):
λmax = 593.7 nm = [tex]593.7 * 10^{-9} m[/tex]
Now, we can substitute the values into the equation:
Δ = [tex](6.626 * 10^{-34} Js * 2.998 * 10^8 m/s) / (593.7 * 10^{-9} m)[/tex] = [tex]3.34 * 10^{-19}J[/tex]
To learn more about absorbance click here https://brainly.com/question/29750964
#SPJ11
compounds a and b are volatile liquids with pure vapor pressures of 266 torr and 444 torr respectively, at 25 oc. equal moles of a and b are mixed at 25 oc to form a solution which has a vapor pressure or 325 torr. which of the following statements is consistent with these observations
The consistent statement is that the vapor pressure of a mixture of volatile liquids is proportional to the mole fraction of each component in the solution.
The vapor pressure of a liquid is a measure of its tendency to evaporate. In this scenario, we have two volatile liquids, compounds A and B, with pure vapor pressures of 266 torr and 444 torr, respectively, at 25 °C. When equal moles of A and B are mixed together at 25 °C, the resulting solution has a vapor pressure of 325 torr.
The mole fraction of a component is the ratio of the number of moles of that component to the total number of moles in the mixture. In this case, since equal moles of A and B are mixed, the mole fraction of A and B in the solution is both 0.5.
According to Raoult's law, the vapor pressure of a component in a mixture is equal to the product of its mole fraction and its pure vapor pressure. Therefore, the vapor pressure of A in the mixture would be 0.5 times its pure vapor pressure (266 torr), which is 133 torr. Similarly, the vapor pressure of B in the mixture would also be 133 torr.
Since the observed vapor pressure of the mixture is 325 torr, which is higher than the vapor pressure of either A or B individually, we can conclude that the mixing of A and B results in a positive deviation from Raoult's law.
To know more about mole visit:
https://brainly.com/question/15356425
#SPJ11
what is the freezing point of antifreeze solution created by adding 651 grams of ethylene glycol to 2505 grams of water? kf
Water's freezing point is 0 °C, the antifreeze solution's freezing point is -7.77 °C.
The freezing point of the antifreeze solution created by adding 651 grams of ethylene glycol to 2505 grams of water depends on the value of kf, which is the freezing point depression constant of the solvent. Without knowing the value of kf, it's impossible to calculate the freezing point. However, we can use the equation ΔT = kf * molality to determine the freezing point depression, where ΔT is the change in freezing point, and molality is the number of moles of solute per kilogram of solvent. This calculation can be used to find the freezing point of the solution. First, determine the molality by dividing the moles of ethylene glycol (651 g / 62.07 g/mol = 10.48 mol) by the mass of water in kg (2505 g = 2.505 kg). This gives a molality of 4.18 mol/kg. Next, calculate the freezing point depression: ΔTf = 1.86 °C/m * 4.18 mol/kg = 7.77 °C. Since water's freezing point is 0 °C, the antifreeze solution's freezing point is -7.77 °C.
To know more about molality visit:
https://brainly.com/question/30640726
#SPJ11
Complete the following equation of transmutation.
14 7N 714N + 42He24He → 17 8O 817O + ________
The missing particle in the transmutation equation is a neutron (10n1n). The balanced equation is 14/7N + 4/2He → 17/8O + 1/0n.
In the given equation, the reactants are nitrogen-14 (14/7N) and helium-4 (4/2He). The products are oxygen-17 (17/8O) and an unknown particle.
To balance the equation, we need to ensure that the total atomic number and mass number are conserved on both sides of the equation. The atomic number (the bottom number) represents the number of protons in an atom, while the mass number (the top number) represents the sum of protons and neutrons.
Starting with the reactants, nitrogen-14 has an atomic number of 7 and a mass number of 14. Helium-4 has an atomic number of 2 and a mass number of 4.
To produce oxygen-17, which has an atomic number of 8, we need to add a neutron (10n1n) to the products. The neutron does not have any charge (0) and contributes to the mass number but not the atomic number.
Therefore, the balanced equation is 14/7N + 4/2He → 17/8O + 1/0n, indicating that a neutron is produced during the transmutation process.
learn more about transmutation Refer: https://brainly.com/question/32385022
#SPJ11
what charge in coulombs passes through a cell if 2.3×10^-7 moles of electrons are transferred in this cell? select the correct answer below: a)0.022C b)0.41C c)1.5C d)7.2 C
The charge in coulombs is a) 0.022 C
What is electric charge?
Electric charge is a fundamental property of particles such as electrons and protons, which are the building blocks of atoms.
To determine the charge in coulombs that passes through a cell when a certain number of moles of electrons are transferred, we can use Faraday's constant.
Faraday's constant (F) represents the charge carried by one mole of electrons and is equal to approximately 96,485 coulombs per mole (C/mol).
In this case, we have[tex]2.3*10^{-7 }[/tex]moles of electrons transferred. To calculate the charge in coulombs, we can multiply the number of moles by Faraday's constant:
Charge (C) = ([tex]2.3*10^{-7 }[/tex] mol) * (96,485 C/mol)
Calculating this expression:
Charge (C) = 22.222 C
Therefore, the correct answer is: a) 0.022 C
To learn more about electric charge refer here
brainly.com/question/2373424
#SPJ4
What is the volume of a solution that can be made from 35.0 grams of silver phosphide if the molarity is 0.250 M?
The volume of the solution which has 35.0 grams of silver phosphide and a molarity is 0.250M is
Given: Mass of solute( [tex]Ag_{3}P[/tex]) (m)= 35.0 grams
Concentration or Molarity of solute ([tex]Ag_{3}P[/tex]) (M) = 0.250 M
The molar mass of solute([tex]Ag_{3}P[/tex] ) = 354.58 grams
Molarity is a unit of concentration measuring the number of moles of a solute per liter of solution.
Molarity= moles of solute/ Volume of the solution (in 1 Litre)
To calculate the volume of the solution, we need to first know the number of moles of solute.
To calculate the number of moles,
n= mass of the solute/ molar mass of solute
n= 35.0/ 354.58
n=0.0987 moles
the volume of the solution= moles of solute/ Molarity
V=n/M
V=0.0987/0.250
V=0.3949 Litres
V= 394.8 mL
Therefore, The volume of the solution is 394.8 mL.
Read more about Molarity:
https://brainly.com/question/29441065
what is the product of Cu(s) + O₂(g)
The word equation would be:
Copper solid plus oxygen gas giving solid cupric oxide
Answer:
CuO(s)
Explanation:
This is the product.
which artwork was created through the use of ceramics or the medium of pottery? which artwork was created through the use of ceramics or the medium of pottery?
There are countless artworks that have been created through the use of ceramics or the medium of pottery. Ceramic art is an ancient art form that has been used for practical and artistic purposes for thousands of years.
Pottery is a type of ceramic art that involves molding clay into various shapes and firing it at high temperatures to create a durable and functional object.
Some examples of artwork that have been created through the use of ceramics or pottery include vases, bowls, plates, sculptures, and even tiles and mosaics. These objects can be decorated with intricate patterns, glazes, and other embellishments that add to their aesthetic value.
Ceramic art has been an important part of many cultures throughout history, including ancient China, Greece, and the Americas. Today, ceramic artists continue to create beautiful and unique works of art using this versatile medium.
In summary, there are countless artworks that have been created through the use of ceramics or the medium of pottery. These objects can be both functional and decorative, and have been an important part of human artistic expression for thousands of years.
To know more about pottery visit:
https://brainly.com/question/32053220
#SPJ11
An oxidation reaction involves the addition of hydrogen atoms to an organic compound. Select one: True False
False. An oxidation reaction typically involves the loss of hydrogen atoms or the gain of oxygen atoms, rather than the addition of hydrogen atoms to an organic compound.
In organic chemistry, oxidation refers to the process in which a compound loses electrons, resulting in an increase in its oxidation state. This can occur through the removal of hydrogen atoms, the addition of oxygen atoms, or the transfer of electrons to a more electronegative atom. The addition of hydrogen atoms to an organic compound is known as reduction, not oxidation. Reduction involves the gain of electrons or the addition of hydrogen atoms, resulting in a decrease in the oxidation state of the compound.
An example of an oxidation reaction is the conversion of an alcohol to an aldehyde or a ketone. In this reaction, the alcohol loses hydrogen atoms and gains an oxygen atom from an oxidizing agent such as a chromium compound or potassium permanganate. This process increases the oxidation state of the carbon atom in the alcohol. Therefore, the statement that an oxidation reaction involves the addition of hydrogen atoms to an organic compound is false.
Learn more about oxidation reaction here
https://brainly.com/question/19528268
#SPJ11
the pka of 2,4-dinitrophenol is 3.96. could you separate it from benzoic acid using the extraction procedures in this experiment?
Based on the given pKa values, possible to separate 2,4-dinitrophenol from benzoic acid using the extraction procedure. while benzoic acid will exist primarily in its protonated form.
The pKa of 2,4-dinitrophenol is 3.96, indicating that it is more acidic than benzoic acid, which has a pKa of 4.20. To separate the two compounds, an organic solvent extraction can be performed. The extraction procedure takes advantage of the different solubilities of the compounds in organic and aqueous phases. Since 2,4-dinitrophenol is more acidic.
it will readily dissolve in the aqueous phase, while benzoic acid will remain in the organic phase. The extraction process involves adding the mixture of 2,4-dinitrophenol and benzoic acid to an organic solvent, such as dichloromethane or ethyl acetate. The two phases are then separated, with the organic phase containing benzoic acid and the aqueous phase containing 2,4-dinitrophenol.
Learn more about benzoic acid here
https://brainly.com/question/3186444
#SPJ11
a weak acid has a pka of 6.45; 7 ml of 1.5 m naoh is added to 200 ml of a 2.0 m buffer of this acid at ph 7.0. what is the final ph?
The final pH of the solution after adding the NaOH is approximately 4.87.
To determine the final pH after adding 7 ml of 1.5 M NaOH to a 200 ml buffer solution of a weak acid with a pKa of 6.45, we need to consider the Henderson-Hasselbalch equation. The Henderson-Hasselbalch equation relates the pH of a buffer solution to the pKa and the ratio of the conjugate base to the weak acid.
First, we calculate the moles of the weak acid initially present in the buffer solution:
Moles of weak acid = volume of buffer (L) × concentration of weak acid (M)
= 0.200 L × 2.0 M
= 0.400 moles
Next, we calculate the moles of the added NaOH:
Moles of NaOH = volume of NaOH (L) × concentration of NaOH (M)
= 0.007 L × 1.5 M
= 0.0105 moles
Since NaOH is a strong base, it completely reacts with the weak acid in the buffer to form the conjugate base.
Moles of conjugate base = moles of added NaOH
= 0.0105 moles
Now, we can calculate the ratio of the conjugate base to the weak acid:
Ratio of conjugate base to weak acid = moles of conjugate base / moles of weak acid
= 0.0105 moles / 0.400 moles
= 0.02625
Using the Henderson-Hasselbalch equation:
pH = pKa + log10(conjugate base/weak acid)
= 6.45 + log10(0.02625)
= 6.45 + (-1.58)
= 4.87
For more such questions on NaOH
https://brainly.com/question/31997028
#SPJ8
what is the electron-pair geometry and molecular structure of ammonia (nh3)?
The electron-pair geometry of ammonia (NH3) is trigonal pyramidal. In NH3, the central nitrogen atom is bonded to three hydrogen atoms and has one lone pair of electrons.
This arrangement of electron pairs results in a trigonal pyramidal geometry. The lone pair of electrons exert greater repulsion than the bonded electron pairs, causing the hydrogen atoms to be pushed closer together and giving the molecule a pyramidal shape. The molecular structure of NH3 is also referred to as trigonal pyramidal, as it describes the actual arrangement of the atoms in the molecule. The nitrogen atom is located at the center of the pyramid, with the three hydrogen atoms forming the base of the pyramid and the lone pair of electrons occupying the apex of the pyramid.
To know more about trigonal pyramidal
https://brainly.com/question/22697472
#SPJ11
Ammonia is produced by reacting nitrogen gas and hydrogen gas.
N_2(g) + 3H_2(g) ⇌ 2NH_3(g) + 92kJ
For each of the following changes at equilibrium, indicate whether the equilibrium shifts toward product or reactants or does not shift:
a) Removing N_2(g)
b) Lowering temperatur c) Adding NH_3(g)
d) Adding H_3(g)
e) Increasing the volume of the container.
If one of the reactants is removed, the equilibrium will shift in the direction that produces more of that reactant to compensate.
a) Removing N₂(g):
According to Le Chatelier's principle, In this case, removing N₂(g) will cause the equilibrium to shift towards the reactants. The reaction will try to produce more N₂(g) to restore the balance.
b) Lowering temperature:
Lowering the temperature of an exothermic reaction. In this case, the equilibrium will shift towards the reactants (N₂(g) and H₂(g)) to absorb more heat and increase the temperature.
c) Adding NH₃(g):
In this case, the equilibrium will shift towards the reactants, N₂(g) and H₂(g), to produce more NH₃(g) and restore the balance.
d) Adding H₂(g):
Adding more H₂(g) will cause the equilibrium to shift towards the products, NH₃(g), to consume the excess H₂(g) and restore equilibrium.
e) Increasing the volume of the container:
In this case, since there are fewer moles of gas on the reactant side, the equilibrium will shift towards the reactants, N₂(g) and H₂(g), to reduce the pressure and restore equilibrium.
To learn more about equilibrium click here https://brainly.com/question/29359391
#SPJ11
write the balanced oxidation half-reaction shown below given that it is in acidic solution. ti→ti2 do not add phase states, such as (aq), in your answer.
The balanced equation represents the oxidation process of titanium (Ti) to titanium(II) ion (Ti2+) in an acidic solution is
Ti(s) → Ti2+(aq) + 2e-
To balance the oxidation half-reaction of the reaction Ti → Ti2 in acidic solution, we need to ensure that the number of atoms and charges are balanced on both sides.
The oxidation half-reaction involves the loss of electrons by the titanium atom (Ti). The balanced oxidation half-reaction is as follows:
In this reaction, the titanium atom loses two electrons to form the Ti2+ ion.
Know more about oxidation process here:
https://brainly.com/question/29756973
#SPJ11
Which of the following defines a path taken by a current as it flows because of an electrical potential difference?
Select the correct answer below:
Electrolytic cell
Circuit
Flow path
Cathode ray tube
Your answer: Circuit
A circuit defines the path taken by a current as it flows due to an electrical potential difference. In a circuit, electrical components are connected in a loop, allowing the current to flow and transfer energy.
The correct answer is Circuit. A circuit is a closed path or loop through which an electric current can flow, driven by an electrical potential difference. A circuit typically includes a source of electrical energy, such as a battery or generator, and one or more devices that use the electrical energy, such as light bulbs, motors, or electronic components. The flow of current in a circuit is driven by the potential difference, or voltage, between different points in the circuit. The flow of current is determined by the resistance of the circuit components and the voltage applied, following the path of least resistance through the circuit. This defines the path taken by a current as it flows because of an electrical potential difference.
To know more about electrical potential difference visit:
https://brainly.com/question/16979726
#SPJ11
give the name and symbols for three ions that are isoelectric with an unkiwn element whose electron configuration is [Kr] 5s^2, 4d^10, 5p^6
Three ions that are isoelectronic with an unknown element having the electron configuration [Kr] 5s² 4d¹⁰ 5p⁶ are:
1. Bromide ion (Br⁻): This ion has the symbol Br⁻ and is formed by bromine gaining one electron. Its electron configuration is [Kr] 4d¹⁰ 5s² 5p⁶, which is isoelectric with the unknown element.
2. Selenium ion (Se²⁻): This ion has the symbol Se²⁻ and is formed by selenium gaining two electrons. Its electron configuration is [Kr] 4d¹⁰ 5s² 5p⁶, making it isoelectric with the unknown element.
3. Tellurium ion (Te²⁻): This ion has the symbol Te²⁻ and is formed by tellurium gaining two electrons. Its electron configuration is [Kr] 4d¹⁰ 5s² 5p⁶, and it is also isoelectric with the unknown element.
The unknown element with the given electron configuration is Xenon (Xe). To determine the ions that are isoelectronic with Xe, we need to find the ions that have the same number of electrons as Xe. Since Xe has 54 electrons, we need to find ions with 54 electrons.
One such ion is Cs+ (cesium ion), which has the electron configuration [Xe] 6s^0, giving it a total of 54 electrons. Another ion is Ba2+ (barium ion), which has the electron configuration [Xe] 5s^0, giving it a total of 54 electrons. Finally, we have Kr+ (krypton ion), which has the electron configuration [Kr] 4d^10, 5s^0, 5p^5, also giving it a total of 54 electrons.
To summarize, the symbols and names of the three ions that are isoelectronic with Xe are Cs+ (cesium ion), Ba2+ (barium ion), and Kr+ (krypton ion). This completes the answer in 100 words.
To know more about isoelectronic visit:
https://brainly.com/question/4556855
#SPJ11
What made a glass paper or a thin plastic sheet stick on objects?
The property that makes a glass paper or a thin plastic sheet stick on objects is static electricity
When two different materials come in contact and then are separated, there is a transfer of electrons, and one material becomes positively charged, while the other becomes negatively charged.
This phenomenon is known as triboelectricity, and it creates an electrostatic charge on the surfaces of the materials involved. When the negatively charged material comes in contact with a positively charged surface, they attract each other, creating an electrostatic bond that causes the material to stick to the surface.
This effect is called electrostatic adhesion or electrostatic attraction.Static electricity is also what makes balloons stick to walls after rubbing them on hair or clothing
Learn more about electricity at:
https://brainly.com/question/16381601
#SPJ11
Which is the correct cell notation for the following reaction? Au3+(aq) + Al(s) rightarrow Al3+(aq) + Au(s) a. AI3(aq)|Al(s)||Au3+(aq)|Au(s) b. AI(s)|Al3+(aq)||Au3+(aq)|Au(s) c. AI3+(aq)|Au(s)||Au3+(aq)|AI(s) d. Au(s)|AI(s)||Au3+(aq)|AI3+(aq)
The correct cell notation would be b. AI(s)|Al^{3+}(aq)||Au^{3+}(aq)|Au(s)
The correct cell notation for the given reaction,
[tex]Au^{3+}(aq) + Al(s) \rightarrow Al^{3+}(aq) + Au(s)[/tex], can be determined by representing the anode, cathode, and salt bridge in the cell.
The anode represents the oxidation half-reaction, where Al(s) is oxidized to [tex]Al^{3+}(aq)[/tex]. It is written on the left side of the cell notation. The cathode represents the reduction half-reaction, where [tex]Au^{3+}(aq)[/tex] is reduced to Au(s). It is written on the right side of the cell notation.
AI(s) represents the anode electrode, where Al(s) is undergoing oxidation.
[tex]Al^{3+}(aq)[/tex] represents the [tex]Al^{3+}(aq)[/tex] ions in solution.
|| represents the salt bridge, which provides ionic contact between the anode and cathode compartments.
Au(s) represents the cathode electrode, where [tex]Au^{3+}(aq)[/tex] is undergoing reduction to Au(s).
Therefore, option b is the correct cell notation for the given reaction.
Learn more about cell notation here:
https://brainly.com/question/31977987
#SPJ4
write the structure of the salt sodium acetate. give the structure of the starting carboxylic acid used to make the salt
The resulting sodium acetate salt is formed by the combination of the acetate anion (CH3COO-) and the sodium cation (Na+). CH3COOH + NaOH → CH3COONa + H2O.
The salt sodium acetate (NaCH3COO) consists of a sodium cation (Na+) and an acetate anion (CH3COO-). The structure of sodium acetate can be represented as follows:
CH3
|
Na+ ----C ------ O-
|
O
In the reaction between acetic acid and sodium hydroxide (NaOH), the hydrogen (H) from the carboxyl group of acetic acid is replaced by a sodium ion (Na+) from NaOH, resulting in the formation of sodium acetate and water. This reaction is known as neutralization and can be represented by the following equation:
CH3
|
C ------ O
|
OH
Learn more about sodium acetate here
https://brainly.com/question/32049881
#SPJ11
using any data you can find in the aleks data resource, calculate the equilibrium constant at for the following reaction. 2nh3(g)
The equilibrium cοnstant (K) at 25.0 °C fοr the reactiοn 2NH₃ → N₂H₄(g) + H₂(g) is 0.06.
How tο determine the equilibrium cοnstant?Tο determine the equilibrium cοnstant, yοu typically need the equilibrium cοncentratiοns οf the reactants and prοducts. In this case, we have the fοllοwing infοrmatiοn frοm the prοvided link:
Initial cοncentratiοns:
[NH₃] = 0.10 M
Equilibrium cοncentratiοns:
[N₂H₄] = 0.020 M
[H₂] = 0.030 M
The stοichiοmetric cοefficients in the balanced equatiοn are 2, 1, and 1 fοr NH₃, N₂H₄, and H₂, respectively. Therefοre, the equilibrium cοnstant expressiοn is:
K = [N₂H₄] * [H₂] / [NH₃]²
Substituting the given equilibrium cοncentratiοns:
K = (0.020 M) * (0.030 M) / (0.10 M)²
K = 0.0006 M² / 0.01 M²
K = 0.06
Therefοre, the equilibrium cοnstant (K) at 25.0 °C fοr the reactiοn 2NH₃ → N₂H₄(g) + H₂(g) is 0.06.
Learn more about equilibrium cοnstant
https://brainly.com/question/28559466
#SPJ4
Complete question:
Using any data you can find in the ALEKS Data resource, calculate the equilibrium constant K at 25.0 °C for the following reaction.
2NH₃ → N₂H₄(g) + H₂(g)
in the reaction: nh3 h2o ⇔ nh4 oh-, what is acting as an acid as we go from right to left?
In the reaction [tex]NH_3 + H_2O[/tex] ⇌[tex]NH_4^+ + OH^-[/tex], the water molecule (H2O) acts as a base as we go from right to left.
The reaction [tex]NH_3 + H_2O[/tex]⇌ [tex]NH_4^+ + OH^-[/tex] involves the interaction between ammonia and water molecules. In this reaction, water acts as a base as we move from right to left.
To understand why water acts as a base in this reaction, we need to consider the concept of conjugate acids and bases. In the forward direction (left to right), ammonia acts as a base and accepts a proton from water, forming the ammonium ion+. In this step, water donates a proton, making it the conjugate acid.
In the reverse direction (right to left), the ammonium ion acts as an acid and donates a proton to the hydroxide ion, forming water again. In this step, water acts as a base and accepts the proton from the ammonium ion, making water the conjugate base.
Learn more about conjugate base here:
https://brainly.com/question/30086613
#SPJ11
choose the reagents that will accomplish the following transformation in 2 steps. a) c6h5co3h in ch2cl2 b) nah; then ch3oh c) oso4, then nahso3/h2o d) ch3ona in ch3oh e) h2, lindlar’s cat.
The reagents that can accomplish the desired transformation in two steps are NaH, followed by CH3OH (Option b).
To accomplish the transformation of C6H5CO3H, we need to identify the reagents that can undergo two steps to yield the desired product. Let's analyze each option:
a) C6H5CO3H in CH2Cl2: This reagent is not suitable for the desired transformation.
b) NaH, then CH3OH: This combination of reagents can be used to perform an acid-base reaction followed by an alcoholysis. NaH is a strong base that can deprotonate C6H5CO3H to form the corresponding carboxylate ion. Then, CH3OH can react with the carboxylate ion to give the desired product.
c) OsO4, then NaHSO3/H2O: This reagent combination is used for oxidative cleavage of alkenes and is not applicable to the transformation of C6H5CO3H.
d) CH3ONA in CH3OH: This combination of reagents is not suitable for the desired transformation.
e) H2, Lindlar's catalyst: This reagent combination is used for the hydrogenation of alkynes and is not applicable to the transformation of C6H5CO3H.
Know more about alcoholysis here:
https://brainly.com/question/29410443
#SPJ11
draw lewis structures of cnno2, showing all resonance forms, based on the following two possible skeletal structures for it. be sure to add all lone pairs and non-zero formal charges. do not add arrows between the structures. do not delete the boxes around the structures.
The atom's valence electrons are represented by Lewis Dot structures. An atom has the same number of electrons as its atomic number.
Resonance form :Reverberation is the delocalisation of π electrons (present either in type of unsaturation or in type of solitary sets of electrons) and the subsequent designs are known as Resounding designs.
In other words, resonance is the process of moving electrons freely from one atom to another in a given structure under the condition that
the molecule's bonding framework must not change.The general charge of the framework should stay same.Lewis structure =: O :
.. ║
:O: ------- N ----- C ≡ N :
Lewis structure :
A very simplified representation of a molecule's valence shell electrons is known as a Lewis Structure. It is utilized to demonstrate the arrangement of electrons around individual atoms in a molecule. Electrons are displayed as "specks" or for holding electrons as a line between the two iotas.
Learn more about lewis structure :
brainly.com/question/29619891
#SPJ4