Which one of these statements about yogurt making is FALSE? Select one: a). The bacteria added to milk converts lactose to lactic acid, which reduces the pH of the system. b). The magnitude of the negative charge on the proteins decreases when the milk is acidified and the pH moves towards the isoelectric point. C). The desirable texture of yogurt is mainly the result of the formation of a network of physically cross-linked casein molecules. d). The casein molecules in milk are globular proteins that form cross-links with each other through hydrophobic attractions.

Answers

Answer 1

The FALSE statement about yogurt making is d). The casein molecules in milk are globular proteins that form cross-links with each other through hydrophobic attractions. In reality, casein molecules are not globular proteins; they are phosphoproteins that form cross-links through the interactions of their micelle structures.

The statement that is FALSE about yogurt making is d) The casein molecules in milk are globular proteins that form cross-links with each other through hydrophobic attractions. The correct statement is that the desirable texture of yogurt is mainly the result of the formation of a network of physically cross-linked casein molecules. The bacteria added to milk converts lactose to lactic acid, which reduces the pH of the system. This decrease in pH causes the magnitude of the negative charge on the proteins to decrease, moving the pH towards the isoelectric point. This is what causes the physically cross-linked casein molecules to form, resulting in the desirable texture of yogurt.

To know more about hydrophobic attractions visit:

https://brainly.com/question/31824394

#SPJ11


Related Questions

which statements about spontaneous processes are true? select all that apply: a spontaneous process is one that occurs very quickly. a process that is spontaneous in one direction is nonspontaneous in the other direction under a given set of conditions, provided the system is not at equilibrium. a spontaneous process is one that occurs without continuous input of energy from outside the system. a process is spontaneous if it must be continuously forced or driven.

Answers

A spontaneous process doesn't necessarily occur quickly, and a process requiring continuous force or drive isn't considered spontaneous.

A spontaneous process is one that occurs without continuous input of energy from outside the system. A process that is spontaneous in one direction is nonspontaneous in the other direction under a given set of conditions, provided the system is not at equilibrium. A spontaneous process is one that occurs without continuous input of energy from outside the system. Additionally, a process that is spontaneous in one direction is nonspontaneous in the other direction under a given set of conditions, provided the system is not at equilibrium. It's important to note that a spontaneous process doesn't necessarily occur quickly, and a process requiring continuous force or drive isn't considered spontaneous.

To know more about spontaneous visit:

https://brainly.com/question/5372689

#SPJ11

a sensitive gravimeter at a mountain observatory finds that the free-fall acceleration is 9.00×10−3 m/s2m/s2 less than that at sea level.

Answers

Acceleration due to gravity, denoted as 'g', is the rate at which an object falls towards the Earth. It is a fundamental constant, with an approximate value of 9.81 m/s^2 at sea level. However, the value of g varies with altitude and latitude.

In this scenario, the sensitive gravimeter at the mountain observatory found that the free-fall acceleration was 9.00×10^-3 m/s^2 less than that at sea level. This difference in acceleration can be attributed to several factors, such as the distance from the centre of the Earth, the mass of the mountain, and the rotation of the Earth. These factors cause the gravitational force to vary, resulting in a change in acceleration. It is important to note that even small changes in acceleration can have significant effects on the behaviour of objects. Therefore, accurate measurements of acceleration are critical for many fields, including geophysics, navigation, and space exploration. The sensitivity of gravimeters and other measurement devices is crucial in achieving such precision.

Learn more about gravitational force here ;

https://brainly.com/question/29190673

#SPJ11

A chemical reaction occurs in 50.0 g of water, and the specific heat of water is 4.18 J/g·°C.
The initial temperature was 20.0°C, and the final temperature was 26.6°C. What was the
heat flow?

Answers

The heat flow in this chemical reaction is 1379.4 Joules.

To calculate the heat flow in this chemical reaction, we can use the equation:

Heat flow = mass × specific heat capacity × change in temperature

Given:

Mass of water = 50.0 g

Specific heat capacity of water = 4.18 J/g·°C

Initial temperature = 20.0°C

Final temperature = 26.6°C

First, we need to calculate the change in temperature:

Change in temperature = Final temperature - Initial temperature

Change in temperature = 26.6°C - 20.0°C

Change in temperature = 6.6°C

Next, we can substitute the values into the heat flow equation:

Heat flow = 50.0 g × 4.18 J/g·°C × 6.6°C

Calculating the heat flow:

Heat flow = 1379.4 J

Therefore, the heat flow in this chemical reaction is 1379.4 Joules.

The heat flow represents the amount of energy transferred as heat in a chemical reaction or process. In this case, we are calculating the heat flow in water. By multiplying the mass of water (50.0 g) by the specific heat capacity of water (4.18 J/g·°C) and the change in temperature (6.6°C), we obtain the heat flow in Joules.

It's important to note that the specific heat capacity of water is approximately 4.18 J/g·°C, but this value can vary slightly with temperature. This calculation assumes that the specific heat capacity remains constant over the given temperature range.

For more such question on heat flow  visit

https://brainly.com/question/16055406

#SPJ8

Identify the hybridization of the central atom in each of the following molecules and ions that contain multiple bonds
a)ClNO (N is the central atom)
b)CS2
c)Cl2CO (C is the central atom)
d)Cl2SO (S is the central atom)
e)SO2F2 (S is the central atom)
f)XeO2F2 (Xe is the central atom)
g)ClOF2+ (C is the central atom)

Answers

a) In ClNO, the hybridization of the central atom N is sp².
b) In CS₂, the hybridization of the central atom S is sp.
c) In Cl₂CO, the hybridization of the central atom C is sp².
d) In Cl₂SO, the hybridization of the central atom S is sp³.
e) In SO₂F₂, the hybridization of the central atom S is sp³.
f) In XeO₂F₂, the hybridization of the central atom Xe is sp³d².
g) In ClOF₂⁺, the hybridization of the central atom C is sp³.

In each of the molecules and ions given, the hybridization of the central atom can be determined by considering the number of electron groups (bonds and lone pairs) surrounding the central atom. The hybridization will correspond to the number of electron groups.
a) For ClNO, nitrogen has one lone pair and three bonds, giving it a total of four electron groups. This corresponds to sp3 hybridization.
b) For CS2, carbon has two double bonds and no lone pairs, giving it a total of four electron groups. This corresponds to sp hybridization.
c) For Cl2CO, carbon has two double bonds and one lone pair, giving it a total of three electron groups. This corresponds to sp2 hybridization.
d) For Cl2SO, sulfur has one lone pair and two double bonds, giving it a total of three electron groups. This corresponds to sp2 hybridization.
e) For SO2F2, sulfur has one lone pair and two double bonds, giving it a total of three electron groups. This corresponds to sp2 hybridization.
f) For XeO2F2, xenon has two lone pairs and four bonds, giving it a total of six electron groups. This corresponds to sp3d2 hybridization.
g) For ClOF2+, chlorine has one lone pair and three bonds, giving it a total of four electron groups. This corresponds to sp3 hybridization.

To know more about hybridization visit:

https://brainly.com/question/29020053

#SPJ11

which is a stronger acid? one with a pkapka of 4.7 one with a pkapka of 7.0

Answers

The acid with a pKa of 4.7 is stronger than the acid with a pKa of 7.0. The pKa value is a measure of acid strength, with lower values indicating stronger acids.

The pKa value is a measure of the acidity of an acid. It represents the negative logarithm (base 10) of the acid dissociation constant (Ka), which is a measure of the extent to which an acid dissociates in water. The lower the pKa value, the stronger the acid.

In this case, we compare an acid with a pKa of 4.7 and an acid with a pKa of 7.0. Since the pKa of the first acid is lower, it means that its acid dissociation constant (Ka) is higher, indicating a stronger acid. A lower pKa value suggests that the acid will more readily donate a proton (H+) in an aqueous solution, indicating greater acidity.

In summary, the acid with a pKa of 4.7 is stronger than the acid with a pKa of 7.0. The pKa value serves as a useful tool for comparing the relative strengths of acids, with lower pKa values indicating stronger acids.

Learn more about stronger acids here:

https://brainly.com/question/31477162

#SPJ11

Which statement below accurately describes the contributions of Democritus?
A) ancient Greek philosopher who proposed that matter was not continuous
B) created the modern periodic table
C) proposed the modern Atomic Theory
D) discovered the existence of electrons
E) none of the above

Answers

Democritus, an ancient Greek philosopher, made significant contributions to the understanding of matter by proposing that it was not continuous.

Democritus, who lived in the 5th century BCE, put forth the idea that matter was composed of indivisible particles called atoms. He believed that atoms were the fundamental building blocks of all matter and that they were indivisible and indestructible. Democritus' atomic theory challenged the prevailing belief of his time, which suggested that matter was continuous and could be divided infinitely. Although Democritus did not have the scientific tools or experimental evidence to support his theory, his ideas laid the foundation for the development of the modern atomic theory.

While Democritus made significant contributions to the concept of atoms and the understanding of matter, it is important to note that he did not propose the modern atomic theory as we know it today. The modern atomic theory, which includes the concept of subatomic particles and their interactions, was developed by scientists such as John Dalton, J.J. Thomson, and Ernest Rutherford in the 18th and 19th centuries. Democritus' ideas were influential in shaping the thinking of later scientists and philosophers, but he did not discover the existence of electrons or create the modern periodic table. Therefore, the accurate statement describing the contributions of Democritus would be: "Democritus was an ancient Greek philosopher who proposed that matter was not continuous."

To learn more about Democritus refer:

https://brainly.com/question/1993248

#SPJ11

The pH of a buffer solution that is made by mixing equal volumes of 0.10 M HNO2 and 0.10 M NANO2 is Note: Ką for HNO2 is 7.1 x 10-4 4.67 5.50 3.15 3.19

Answers

The pH of a buffer solution that is made by mixing equal volumes of 0.10 M HNO₂ = 3.15

Option C is correct .

pH = pKa + log [ NO₂⁻ ] / [ HNO₂]

          pH = - log Ka + log 0.10 / 0.10

             pH = 4 - log 7.1

                       = 3.148 ≅ 3.15

Buffer solution :

The pH of an alkaline buffer solution is higher than 7. Soluble support arrangements are regularly produced using a frail base and one of its salts. A mixture of ammonia solution and ammonium chloride solution is a common illustration. In the event that these were blended in equivalent molar extents, the arrangement would have a pH of 9.25.

A buffer is a solution that can resist changing its pH when acidic or basic ingredients are added. It can neutralize small amounts of added acid or base, maintaining a relatively stable pH in the solution. This is significant for processes and additionally responses which require explicit and stable pH ranges.

Incomplete question :

The pH of a buffer solution that is made by mixing equal volumes of 0.10 M HNO₂ and 0.10 M NaNO₂ is Note: Ką for HNO₂ is 7.1 x 10⁻⁴

A. 4.67

B. 5.50

C. 3.15

D. 3.19

Learn more about buffer solution :

brainly.com/question/13076037

#SPJ4

Using any data you can find in the ALEKS Data resource, calculate the equilibrium constant K at 25. 0°C for the following reaction.

TiCl4(g)+ 2H2O(g)â TiO2(s)+ 4HCl(g). Round your answer to 2 significant digits

Answers

The equilibrium constant Kc for the reaction TiCl₄(g) + 2H₂O(g) → TiO₂(s) + 4HCl(g) at 25.0 °C is 0.29.

The equilibrium constant expression for the above reaction is:

Kc = [HCl]⁴ / [TiCl₄][H₂O]²

The value of Kc for the above reaction at 25.0 °C can be found using the data from the ALEKS data resource.The standard free energy change (∆G°) for the above reaction can be obtained using the following relation:

∆G° = -RT ln Kc

where,

R is the universal gas constant = 8.3145 J/K/molT is the temperature in Kelvin = 298.15 K

Thus

∆G° = -8.3145 x 298.15 x ln Kc

= - 2486.6 J/mol

Since the value of ∆G° is known, we can calculate the value of Kc at 25.0 °C by using the following relation:

Kc = e^(-∆G°/RT)

Kc = e^(-2486.6 / (8.3145 x 298.15))

Kc = e^(-1.2426)

Kc = 0.289 (approx)

Therefore, the equilibrium constant Kc for the reaction TiCl₄(g) + 2H₂O(g) → TiO₂(s) + 4HCl(g) at 25.0 °C is 0.29 (approx) rounded off to two significant digits.

Learn more about equilibrium constant: https://brainly.com/question/29809185

#SPJ11

Which of these molecules could dissolve in water? A. BH3 B. NH3​

Answers

Among the given options, NH3 (ammonia) can dissolve in water.

NH3 is a polar molecule, meaning it has a partial positive charge on the hydrogen atoms and a partial negative charge on the nitrogen atom. Water (H2O) is also a polar molecule, with the oxygen atom being partially negative and the hydrogen atoms partially positive.

BH3 (borane) is a nonpolar molecule. It does not possess a significant charge separation and does not readily form hydrogen bonds with water molecules. Therefore, BH3 is not expected to dissolve in water to a significant extent.

Therefore, NH3 (ammonia) can dissolve in water, while BH3 (borane) does not readily dissolve in water.

For more details regarding NH3 (ammonia), visit:

https://brainly.com/question/3631639

#SPJ1

Which of the following will not show geometrical isomerism?
a. [Cr(NH3)4Cl2]Cl
b. [Co(en)2Cl2]Cl
c. [Co(NH3)5NO2]Cl2
d. [Pt(NH3)2Cl2]

Answers

Among the given complexes, [Co(NH3)5NO2]Cl2 will not show geometrical isomerism. This is because it has an octahedral geometry with five ammine (NH3) ligands and one nitro (NO2) ligand, resulting in no possibility of cis-trans isomerism. The other complexes can exhibit geometrical isomerism due to the presence of different ligands.

The complex compounds that show geometrical isomerism have a different spatial arrangement of ligands around the central metal atom due to the presence of a chiral center. In the given options, only [Pt(NH3)2Cl2] will not show geometrical isomerism as it has only two types of ligands, and the arrangement of these ligands around the central metal atom is symmetrical. On the other hand, [Cr(NH3)4Cl2]Cl, [Co(en)2Cl2]Cl, and [Co(NH3)5NO2]Cl2 all have chiral centers and can exhibit geometrical isomerism.
Your answer: c. [Co(NH3)5NO2]Cl2
To know more about octahedral geometry visit:

https://brainly.com/question/31672412

#SPJ11

Which one of the following salts, when dissolved in water, produces the solution with the highest pH?
a. CsF
b. KBr
c. RbCl
d. NaI

Answers

Among the given options, the salt that produces the solution with the highest pH when dissolved in water is CsF (Cesium fluoride).

The pH of a solution depends on the concentration of hydrogen ions (H+) in the solution. Acids release H+ ions, which lower the pH, while bases or alkalis accept H+ ions, increasing the pH. In this case, we are looking for the salt that produces the most basic solution, or the highest pH. When CsF (Cesium fluoride) is dissolved in water, it dissociates into Cs+ ions and F- ions. The fluoride ion (F-) is the conjugate base of a weak acid, HF (hydrofluoric acid). However, compared to the other options (KBr, RbCl, NaI), the fluoride ion (F-) is the most basic anion. It has a higher affinity for accepting H+ ions from water, resulting in the formation of hydroxide ions (OH-) and raising the pH of the solution. Therefore, among the given options, CsF (Cesium fluoride) when dissolved in water produces the solution with the highest pH.

learn more about Cesium fluoride Refer: https://brainly.com/question/16486562

#SPJ11

Calculate S* rxn for the following reaction. The S* for each species is shown below the reaction.
C2H2(g) + 2 H2 (g) --------------> C2H6(g)
S*(J/mol x K) for C2H2(g) = 200.9 , for 2H2 = 130.7, and for C2H6 = 229.2

Answers

The standard entropy change (ΔS*rxn) for the reaction [tex]C_2H_2(g)[/tex] + [tex]2H_2(g)[/tex] → [tex]C_2H_6(g)[/tex] can be calculated by subtracting the sum of the standard entropies of the reactants from the sum of the standard entropies of the products.

In this case, ΔS*rxn = (2 * S*[tex]C_2H_6[/tex]) - (S*[tex]C_2H_2[/tex] + 2 * S*[tex]H_2[/tex]), where S*[tex]C_2H_6[/tex], S*[tex]C_2H_6[/tex],\, and S*H2 represent the standard entropies of *[tex]C_2H_6[/tex],[tex]C_2H_2[/tex] and H2, respectively.

The standard entropy change (ΔS*rxn) for a chemical reaction can be calculated using the standard entropies (S*) of the reactants and products. The equation to calculate ΔS*rxn is:

ΔS*rxn = Σn * S*products - Σm * S*reactants

Where n and m represent the stoichiometric coefficients of the products and reactants, respectively, and S*products and S*reactants are the standard entropies of the products and reactants.

For the given reaction C2H2(g) + 2H2(g) → C2H6(g), the stoichiometric coefficients are 1 for C2H2 and C2H6, and 2 for H2. The standard entropies given are S*C2H2 = 200.9 J/(mol * K), S*H2 = 130.7 J/(mol * K), and S*C2H6 = 229.2 J/(mol * K).

Substituting the values into the equation, we get:

ΔS*rxn = (2 * S*C2H6) - (S*C2H2 + 2 * S*H2)

       = (2 * 229.2) - (200.9 + 2 * 130.7)

       = 458.4 - 462.3

       = -3.9 J/(mol * K)

Therefore, the standard entropy change (ΔS*rxn) for the reaction C2H2(g) + 2H2(g) → C2H6(g) is -3.9 J/(mol * K).

To learn more about entropies refer:

https://brainly.com/question/30355655

#SPJ11

If the frequency of vibration for a C-O bond is -1100 cm-1, the vibration frequency for a C-Cl bond would be A higher. B lower. C not possible to determine with the information given. D identical.

Answers

The vibration frequency for a C-Cl bond would be lower compared to the frequency of vibration for a C-O bond.

The vibrational frequencies of bonds are determined by the masses of the atoms involved and the strength of the bond. In general, heavier atoms and stronger bonds result in lower vibrational frequencies. The atomic mass of chlorine (Cl) is greater than that of oxygen (O), and the C-Cl bond is generally stronger than the C-O bond. Therefore, based on this information, we can conclude that the vibration frequency for a C-Cl bond would be lower than the vibration frequency for a C-O bond.

To further support this conclusion, we can consider the typical range of vibrational frequencies for different types of bonds. Carbon-oxygen (C-O) bonds typically have vibrational frequencies in the range of around 1000-1400 cm-1. On the other hand, carbon-chlorine (C-Cl) bonds tend to have lower vibrational frequencies, typically falling within the range of 600-800 cm-1. This suggests that the vibration frequency for a C-Cl bond would indeed be lower than the vibration frequency for a C-O bond. Therefore, the correct answer is B: lower.

To learn more about frequency refer:

https://brainly.com/question/31452434

#SPJ11

A 0.079 g sample of an unknown metal is dropped into hydrochloric acid and reacts to produce 60.0 mL of dry hydrogen gas at 22 °C and 732 mm Hg. What is the unknown metal (X)? Hint: Find the molar mass of the metal. 2X (s) + 6 HCl (aq) -----------> 2XCl3 (aq) + 3H2(g)

Answers

To determine the unknown metal (X) in the given reaction, we can use stoichiometry and gas laws. Therefore, the unknown metal X in the reaction is lead (Pb).

Convert the volume of hydrogen gas to moles:

Using the ideal gas law equation PV = nRT, we can calculate the number of moles of hydrogen gas:

n = (P * V) / (R * T) = (732 torr * 0.0600 L) / (0.0821 L·atm/mol·K * 295.15 K) = 0.00144 mol

Determine the molar ratio between hydrogen gas and the unknown metal (X). From the balanced equation, we see that for every 3 moles of hydrogen gas, we have 2 moles of X.

3 moles of H2 -> 2 moles of X

0.00144 mol of H2 -> (2/3) * 0.00144 mol = 0.00096 mol of X

Calculate the molar mass of X:

Molar mass of X = (0.079 g) / (0.00096 mol) = 82.29 g/mol

Use the periodic table to find the element with a molar mass close to 82.29 g/mol. The element is lead (Pb).

To know more about gas laws

https://brainly.com/question/27870704

#SPJ11

A chemist makes 340. mL of potassium dichromate (K2Cr2O7) working solution by adding distilled water to 40.0 mL of a 0.479 M stock solution of potassium dichromate in water.
Calculate the concentration of the chemist's working solution. Be sure your answer has the correct number of significant digits.

Answers

The concentration of the chemist's working solution is 0.0564 M.

The first step in solving this problem is to use the dilution formula, which is M1V1 = M2V2, where M is the molarity and V is the volume. In this case, the chemist started with a 0.479 M stock solution of potassium dichromate and added distilled water to make a working solution. The volume of the stock solution was 40.0 mL and the final volume of the working solution was 340.0 mL.
Using the dilution formula, we can solve for the molarity of the working solution:
M1V1 = M2V2
(0.479 M)(40.0 mL) = M2(340.0 mL)
M2 = (0.479 M)(40.0 mL) / 340.0 mL
M2 = 0.0564 M
This answer has the correct number of significant digits, as the given values (0.479 M, 40.0 mL, and 340.0 mL) all have three significant digits. It is important to use distilled water in this calculation to ensure that the final concentration is accurate and not affected by impurities in the water.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

the examples for anions with names charges and chemical symbols

Answers

eg no 1= Calcium

charge=> 2+

symbol Ca

eg no 2= Hydroxide

charge 1-

symbol=>OH

sorry I only know 2 eg

Helium is the second element in the Periodic table. Tin is the 50th. Suggest how tin atoms and helium atoms are different.​

Answers

Helium has 2 stable naturally occuring isotopes while Tin has 10 stable naturally occuring isotopes.

a crystalline ceramic has the chemical formula ab3. what is a possible crystal structure for this ceramic?

Answers

To determine the possible crystal structure for a ceramic with the chemical formula AB3, we need to consider the valence of the elements A and B. A has a valence of 1, while B has a valence of 3. This means that each A ion can bond with three B ions, forming a stable crystalline structure.

One possible crystal structure for this ceramic is the perovskite structure, which has the general formula ABX3. In this structure, the A ion sits at the center of a cubic unit cell, while the B ions occupy the corners of the cell and the X ion is located in the center of each face. This structure is commonly found in many ceramics, including ferroelectrics, superconductors, and piezoelectric materials. It is important to note that there could be other possible crystal structures for this ceramic, depending on the specific properties and conditions of the material.

To know more about Crystalline visit:

https://brainly.com/question/28274778

#SPJ11

Determine the redox reaction represented by the following cell notation.
Mg(s) | Mg2+(aq) || Cu2+(aq) | Cu(s)
Determine the redox reaction represented by the following cell notation.
Mg(s) | Mg2+(aq) || Cu2+(aq) | Cu(s)
2 Mg(s) + Cu2+(aq) ? Cu(s) + 2 Mg2+(aq)
Mg(s) + Cu2+(aq) ? Cu(s) + Mg2+(aq)
2 Cu(s) + Mg2+(aq) ? Mg(s) + 2 Cu2+(aq)
Cu(s) + Mg2+(aq) ? Mg(s) + Cu2+(aq)
3 Mg(s) + 2 Cu2+(aq) ? 2 Cu(s) + 3 Mg2+(aq)

Answers

The redox reaction represented by the given cell notation is:

[tex]2 Mg(s) + Cu_2+(aq) - > Cu(s) + 2 Mg_2+(aq).[/tex]

In this reaction, magnesium (Mg) is oxidized to [tex]Mg_2+(aq)[/tex], while copper [tex](Cu_2+)[/tex] is reduced to Cu(s). The half-reactions can be written as follows:

Oxidation half-reaction:

[tex]Mg(s) - > Mg2_+(aq) + 2e-[/tex]

Reduction half-reaction:

[tex]Cu_2^+(aq) + 2e \,- > Cu(s)[/tex]

In the overall reaction, two magnesium atoms lose electrons (oxidation) to form [tex]Mg_2^+[/tex] ions, while one copper ion gains two electrons (reduction) to form solid copper. This reaction is a classic example of a redox reaction where oxidation and reduction occur simultaneously.

The cell notation used in the question indicates a galvanic cell or voltaic cell, which consists of two half-cells connected by a salt bridge or porous barrier. The left side of the notation represents the anode (oxidation half-reaction) and the right side represents the cathode (reduction half-reaction).

Overall, the given cell notation represents the redox reaction where magnesium (Mg) is oxidized at the anode, and copper [tex](Cu_2^+)[/tex] is reduced at the cathode, resulting in the transfer of electrons and the formation of Mg2+ and Cu(s) species.

To learn more about redox refer:

https://brainly.com/question/21851295

#SPJ11

Which is the strongest oxidizing agent? Standard Reduction Potentials E Na * Na+ + e- 2.71 V Cd -* Cd2+ + 2e 0.40 V H2 + 2H+ + 2e_ 0.00 V Ag + Ag+ + e -0.80 V (A) Na+ (B) H2 (C) Cdº D) Ag+

Answers

The answer is (A) Na+. H2 and Cdº have lower reduction potentials, while Ag+ has a negative reduction potential, indicating that it is not a strong oxidizing agent.

The strongest oxidizing agent is the species that has the highest tendency to gain electrons and get reduced.

This is determined by looking at the standard reduction potentials of the given species. The higher the reduction potential, the stronger the oxidizing agent.

Out of the given species, Na+ has the highest reduction potential of 2.71 V, making it the strongest oxidizing agent.  

To know more about Oxidizing agent visit:

https://brainly.com/question/29137128

#SPJ11

design a synthesis that would convert phenol primarily to ortho-bromophenol

Answers

In order to convert phenol primarily to ortho-bromophenol, we can use a method called electrophilic aromatic substitution. This involves adding an electrophile to the aromatic ring of the phenol, which will replace one of the hydrogen atoms and result in the formation of a substituted product.

One way to achieve this is by using bromine as the electrophile. We can start by adding bromine water to the phenol, which will form a complex with the bromine. Next, we can add a strong acid such as hydrochloric acid to protonate the phenol and make it more reactive. This will help to generate the electrophile, which can then attack the ortho position of the aromatic ring.
To ensure that ortho-bromophenol is formed primarily, we can control the reaction conditions by using a mild temperature and carefully controlling the pH of the reaction mixture. By doing this, we can prevent the formation of unwanted by-products such as para-bromophenol and meta-bromophenol.

In summary, to convert phenol primarily to ortho-bromophenol, we can use electrophilic aromatic substitution with bromine as the electrophile, and control the reaction conditions to promote ortho selectivity. This synthesis can be carried out in a laboratory setting, and is an important step in the preparation of various organic compounds.

To know more about electrophile visit:

https://brainly.com/question/29789429

#SPJ11

Hydrogen is used as a fuel for space ships. In this combustion reaction hydrogen and oxygen
combine to form water. The Gibbs energy for this reaction is negative at 773 K.

a) Define a combustion reaction. (2 points)

b) List the Gibbs energy equation and explain what it means. (3 points)

Determine whether this reaction is spontaneous and explain why. (3 points)

please help meee i’m really bad at chemistry

Answers

a) A combustion reaction is a chemical reaction in which a fuel, such as hydrogen, reacts with oxygen to produce heat, light, and other products.

b) The Gibbs energy equation is ∆G = ∆H - T∆S, where ∆G is the change in Gibbs free energy, ∆H is the change in enthalpy, T is the temperature in Kelvin, and ∆S is the change in entropy. This equation describes the spontaneity of a chemical reaction, where a negative ∆G indicates that the reaction is spontaneous and a positive ∆G indicates that the reaction is non-spontaneous.

∆G represents the maximum amount of non-expansion work that can be extracted from a thermodynamic system at constant temperature and pressure. A negative ∆G indicates that the reaction will proceed spontaneously, meaning that it will occur without the need for an external energy source. A positive ∆G indicates that the reaction is non-spontaneous, meaning that it will not occur without an external energy source.

c) The Gibbs energy for the combustion reaction of hydrogen and oxygen to form water is negative at 773 K, which means that the reaction is spontaneous under these conditions. This is because the negative ∆G value indicates that the reaction will release energy, and therefore the reaction will occur without the need for an external energy source. In other words, the products of the reaction (water) are at a lower energy state than the reactants (hydrogen and oxygen), which means that the reaction will proceed spontaneously in the direction of forming the products.

From the data below, determine what reaction will happen at the anode and what reaction will happen at the cathode for a 1.0 M CdBr₂ solution. In addition, determine the minimum voltage required for the onset of the electrolysis reaction.
O2(g) + 4H(aq) (10 M)+ 4e→ 2H₂O E° = 0.816 V
2H2O+ 2e H2(g) + 20H() (107 M) E°=-0.414 V
Bras) + 2e2Br() E° = 1.09 V
Cd2 (aq) +2e Cd) E° = -0.403 V

Answers

In a 1.0 M CdBr₂ solution, the reaction at the anode will be the oxidation of Br⁻ to Br₂(g) with a potential of 1.09 V.

In a 1.0 M CdBr₂ solution, the reaction at the anode will be the oxidation of Br⁻ to Br₂(g) with a potential of 1.09 V. The reaction at the cathode will be the reduction of Cd²⁺ to Cd(s) with a potential of -0.403 V. The overall reaction for the electrolysis of CdBr₂ can be written as 2Br⁻(aq) + Cd²⁺(aq) → Br₂(g) + Cd(s). The minimum voltage required for the onset of the electrolysis reaction can be determined by adding the potentials of the anode and cathode reactions. Therefore, the minimum voltage required is 1.09 V - 0.403 V = 0.687 V. It is important to note that this minimum voltage requirement may not be enough to drive the electrolysis reaction at a sufficient rate and additional voltage may be required to maintain a steady flow of electrons.

To know more about solution visit: https://brainly.com/question/1616939

#SPJ11

Understanding connections between descriptions of weak... In an aqueous solution of a certain acid the acid is 56.% dissociated and the pH is 2.02. Calculate the acid dissociation constant K of the acid. Round your answer to 2 significant digits.

Answers

The acid dissociation constant (K) of the acid in the aqueous solution, given that the acid is 56% dissociated and the pH is 2.02, is approximately 5.8 × 10⁻³.

What is percent dissociation of an acid?

The percent dissociation of an acid is the ratio of the concentration of dissociated acid to the initial concentration of the acid, multiplied by 100%. In this case, the acid is 56% dissociated, so the concentration of dissociated acid ([A⁻]) is 0.56 times the initial concentration of the acid ([HA]).

pH is defined as the negative logarithm of the hydrogen ion concentration ([H⁺]). In this case, the pH is 2.02, indicating a hydrogen ion concentration of [tex]10^{(-2.02)[/tex] M.

For a weak acid, the equilibrium expression for dissociation is: [A⁻][H⁺] / [HA]. Since the acid is 56% dissociated, we can substitute the values into the equilibrium expression:

[tex](0.56[HA])(10^{(-2.02)})[/tex] / [HA] = K

Simplifying the expression, we get:

[tex]0.56 \times 10^{(-2.02)} = K[/tex]

K ≈ 5.8 × 10⁻³

Therefore, the acid dissociation constant (K) of the acid is approximately 5.8 × 10⁻³.

To know more about acid dissociation constant, refer here:
https://brainly.com/question/15012972
#SPJ4

The voltage delivered by a primary battery is: Select the correct answer below:
a. directly proportional to its size
b. inversely proportional to its size
c. directly proportional to the square of its size
d. unrelated to its size

Answers

The correct answer is b. inversely proportional to its size. This means that as the size of a primary battery decreases, the voltage it delivers increases.

This is because the voltage of a primary battery is determined by the chemical reactions that occur within it, and these reactions are more concentrated in smaller batteries. However, it is important to note that the voltage delivered by a primary battery can also be affected by factors such as temperature and the age of the battery. Additionally, it is important to consider the specific type of primary battery being used, as different types may have different voltage outputs.

Overall, understanding the relationship between battery size and voltage is important for selecting the right battery for a given application.

To know more about voltage visit:

https://brainly.com/question/32002804

#SPJ11

what is the temperature (in k) of a sample of helium with an root-mean-square velocity of 394.0 m/s? the universal gas constant, r=8.3145 j/mol・k.

Answers

The temperature of the helium sample is approximately 9650 Kelvin.

To find the temperature of a sample of helium with a root-mean-square velocity of 394.0 m/s, we can use the formula:
v = √(\frac{3kT}{m})
where v is the root-mean-square velocity, k is the Boltzmann constant (which is equal to the universal gas constant divided by Avogadro's number), T is the temperature in Kelvin, and m is the molar mass of helium.
Rearranging this formula, we can solve for T:
T =\frac{ (m*v^2)}{(3k)}
The molar mass of helium is 4.003 g/mol. Plugging in the given values and the universal gas constant (r = 8.3145 J/mol*K), we get:
T =\frac{ (4.003 g/mol * (394.0 m/s)^2) }{ (3 * 8.3145 J/mol*K)}
T = 9650 K
Therefore, the temperature of the helium sample is approximately 9650 Kelvin.

learn more about helium Refer: https://brainly.com/question/10897530

#SPJ11

which of the following is not true of reduction? group of answer choices there are fewer bonds to heteroatoms it is a decrease in oxidation number it is a gain of electrons there are fewer bonds to hydrogen atoms

Answers

The statement "there are fewer bonds to hydrogen atoms" is not true of reduction. Reduction is a chemical reaction that involves the gain of electrons by an atom or molecule.

The statement "there are fewer bonds to hydrogen atoms" is not true of reduction. Reduction is a chemical reaction that involves the gain of electrons by an atom or molecule. During a reduction reaction, the oxidation state of the atom or molecule decreases, which means there is a gain of electrons. This gain of electrons can lead to the formation of new bonds with hydrogen atoms, so the statement "there are fewer bonds to hydrogen atoms" is not true.
On the other hand, reduction can lead to a decrease in the number of bonds to heteroatoms. Heteroatoms are atoms other than carbon and hydrogen that are present in a molecule, such as nitrogen, oxygen, sulfur, and others. Reduction can cause the reduction of these heteroatoms to form new, less oxidized compounds. Additionally, reduction leads to a decrease in the oxidation number of the molecule or atom, which is an indication of the electron distribution in a molecule. Therefore, the statement "it is a decrease in oxidation number" and "it is a gain of electrons" are both true of reduction.

To know more about reduction visit: https://brainly.com/question/13161826

#SPJ11

the following pair has both reduced forms of electron carriers:
- NADH / FAD
- NAD+ / FADH2
- NADH / FADH2
- NAD+ / FAD

Answers

The pair that has both reduced forms of electron carriers is NADH/FADH2. NADH is a reduced form of nicotinamide adenine dinucleotide (NAD+), which becomes reduced when it gains a pair of electrons and a hydrogen ion.

FADH2 is a reduced form of flavin adenine dinucleotide (FAD), which also becomes reduced when it gains a pair of electrons and two hydrogen ions. These reduced forms of electron carriers play important roles in cellular respiration, particularly in the electron transport chain. NADH and FADH2 donate their electrons to the electron transport chain, which then uses them to generate ATP through oxidative phosphorylation.

Overall, the reduction of NAD+ and FAD to their respective reduced forms, NADH and FADH2, is essential for energy production in cells.

To know more about electrons visit:

https://brainly.com/question/12001116

#SPJ11

an additional 0.114 mol of gas is added to the balloon (at the same temperature and pressure), what will its final volume be? express your answer in liters to three significant figures.

Answers

The final volume of the balloon is 1.145 times the initial volume when an additional 0.114 mol of gas is added to the balloon.

To determine the final volume of the balloon when an additional 0.114 mol of gas is added, we need to use the ideal gas law equation, which states:

PV = nRT

Where:

P is the pressure

V is the volume

n is the number of moles

R is the ideal gas constant (0.0821 L·atm/(mol·K))

T is the temperature in Kelvin

Since the temperature and pressure are constant, we can write the equation as:

V₁/n₁ = V₂/n₂

Where:

V₁ is the initial volume of the balloon

n₁ is the initial number of moles of gas

V₂ is the final volume of the balloon

n₂ is the final number of moles of gas

Given that the initial volume is known and we add 0.114 mol of gas, we can calculate the final volume as follows:

V₂ = (V₁/n₁) * n₂ = (V₁/0.786 mol) * (0.786 mol + 0.114 mol)

V₂ = V₁ * (1 + 0.114/0.786)

V₂ = V₁ * 1.145

To learn more about volume click here https://brainly.com/question/25252629

#SPJ11

identify the functional groups in the following molecules h2n ch3 ch3

Answers

The given molecule, H2N-CH3-CH3, contains two functional groups: an amino group (NH2) and two methyl groups (CH3). The amino group is a characteristic functional group found in amines, while the methyl group is a common alkyl group.

In the given molecule, H2N-CH3-CH3, we can identify two functional groups. The first functional group is the amino group (NH2) located at the beginning of the molecule. The amino group consists of a nitrogen atom (N) bonded to two hydrogen atoms (H), forming an amine functional group.

The second functional group is the methyl group (CH3), which is repeated twice in the molecule. The methyl group is an alkyl group, specifically a one-carbon alkyl group. It consists of a carbon atom (C) bonded to three hydrogen atoms (H), representing a simple alkyl substitution.

Therefore, the functional groups present in the molecule are the amino group (NH2), characteristic of amines, and two methyl groups (CH3), which are alkyl groups.

Learn more about functional group here:

https://brainly.com/question/28563874

#SPJ11

Other Questions
II. Show that: 1. sin6x = 2 sin 3x cos 3x 2. (cosx- sinx) =1-sin 2x 3 sin(x+x)=-sinx When a fan is switched on, it achieves an angular acceleration of 250 rad/s2. After 1.2 s, what is the angular velocity in revolutions per minute?A) 33.1 rev/minB) 39.8 rev/minC) 40.0 rev/minD) 47.7 rev/min Each of the following three declarations and program segments has errors. Locate as many as you can use the text area below to list the errors. A: class Circle: { private double centerx; double centery; double radius; setCenter (double, double); setRadius (double); } B: Class Moon; { Private; double earthweight; double moonweight; Public; moonweight (double ew); // Constructor { earthweight = ew; moonweight = earthweight / 6; } double getMoonweight(); { return moonweight; } double earth; cout >> "What is your weight? "; cin in which situations does hair evidence have the greatest significance gesturing is often synonymous with reassurance understanding and caring If f(x) x[f(x)]} = -9x + 3 and f(1)=2, find f'(1). A solution is made by mixing 569 mL of water and 238 mL ethanol. What is the concentration of ethanol in units of volume/volume percent? Set up the double or triple that would give the volume of the solid that is bounded above by z= 4 - x2 - y2 and below by z = 0 a) Using rectangular coordinates (do not evaluate) b) Convert to polar coordinates and evaluate the volume. The cost of making x items is C(x)=15+2x. The cost p per item and the number made x are related by the equation p+x=25. Profit is then represented by px-C(x) [revenue minus cost) a) Find profit as a function of x b) Find x that makes profit as large as possible c) Find p that makes profit maximum. Assume that as the firms in a perfectly competitive industry expand output, the prices of productive inputs increase. All else constant, this would cause the individual firms' marginal cost curves to _____ and the market supply curve to become _____.a) shift down; steeperb) shift down; flatterc) shift up; steeperd) shift up; flatter Find the following quantity if v = 4i - 5j + 3k and w= - 41 + 3- 2k. 2v - 3w k 2v- 3w=i+Di+ (Simplify your answer.) Find the given quantity if v = 4i - 3j + 4k and w= - 31+ 3j - 4k. [v-wl ||v-w=0 (S .One of the most important reasons to map out the process to acquire a paying customer is to understand the length of the sales cycle.True or false? Which response best reflects the dilemma of pork in legislation?a. Programmatic requests (pork barrel provisions) are beneficial to taxpayers butdetrimental to reelection.b. Programmatic requests favor federal employees at the expense of state employees.c. Programmatic requests favor one district at the expense of all American taxpayers.d. Programmatic requests are typically beneficial to districts but allow the federalgovernment to collect an undue share of tax revenue. how would you summarize communication skills for resolving conflicts Alpha is a multinational company and expects to receive 5,000,000 Japanese yen in 180 days from a Japanese company. You are given the following information: Deltas 180-day account receivable: JPY5,000,000 Spot rate : JPY107.91 / USD Deltas best estimate of the expected spot rate in 180 days: JPY112.50 / USD. Deposit rate in USD is 2% Deposit rate in JPY is 9% Calculate the 180 days forward rate. in one of the powerpoint slides the new irs law known as fatca was revealed. what does this fatca law do? What is the stoichiometric factor between N2 and NO in the following balanced chemical equation?N2+O2?2NO May I please get a little help with this question? Thank you so much. the chi-square test was used to check whether miami sales among income groups were consistent with chicagos. the appropriate degrees of freedom for the chi-square test would be a. 4.b. 5.c. 500.d. 499.e. none of the above. 2. Evaluate f(-up de fl-1 dx + 5x dy) along the boundary of the region having vertices -y (0, -1), (2, -3), (2,3), and (0,1) (with counterclockwise orientation) Steam Workshop Downloader