The mutual inductance between the two coils is 22 mH.
Faraday's law of electromagnetic induction is a fundamental concept in the field of electromagnetism that describes the relationship between changing magnetic fields and the induction of electric currents. It states that an emf (electromotive force) is induced in a circuit whenever the magnetic flux through the circuit changes with time. This law applies to both stationary and moving charges.
According to Faraday's law of electromagnetic induction, the emf induced in a coil is proportional to the rate of change of magnetic flux linking the coil. In mathematical terms, this law can be expressed as follows:
E = -dΦ/dt
where E is the emf induced in the coil, Φ is the magnetic flux linking the coil, and t is time. The negative sign signifies that the induced electromotive force (emf) acts in a direction that opposes the change in magnetic flux responsible for its generation.
In the given problem, we are given that two coils are placed close together to demonstrate Faraday's law of induction. One coil has a current of 5.5 A that is switched off in 1.75 ms, while the other coil has an average emf of 11 V induced in it. Our objective is to determine the mutual inductance existing between the two coils.
Mutual inductance can be defined as the relationship between the induced electromotive force (emf) in one coil and the rate of change of current in another coil. Mathematically, it can be expressed as:
M = E2/dI1, Here, M represents the mutual inductance between the two coils. E2 corresponds to the electromotive force induced in one coil as a result of the changing current in the other coil, and dI1 denotes the rate of change of current in the other coil.
We are given that E2 = 11 V, I1 = 5.5 A, and dI1/dt = -I1/t1where t1 is the time taken to switch off the current in the first coil.
Substituting these values in the equation for mutual inductance, we get:
M = E2/dI1= 11 V / [5.5 A / (1.75 x 10⁻³ s)]= 22 mH
Therefore, the mutual inductance between the two coils is 22 mH.
Learn more about inductance at: https://brainly.com/question/29462791
#SPJ11
A millisievert is equivalent to
A) I rem B) 0.1 rem
: D) 0.001 re C) 0.01 rem
A millisievert is equivalent to 0.1 rem. A rem is an acronym for Roentgen equivalent man, and it is used to measure the dosage of radiation in humans.
A millisievert, abbreviated as mSv, is a measure of the amount of radiation that a person is exposed to. It is a measure of the dose of ionizing radiation in the International System of Units (SI).The millirem (mrem) is a unit of measurement that is used in the United States of America to measure radiation exposure in humans. One rem is equivalent to 1000 millirems (mrem), while one millisievert (mSv) is equal to 100 rem or 100000 millirems. Therefore, one millirem is equal to 0.001 rem. When we convert this to millisieverts, we get one millisievert is equivalent to 0.1 rem.
So the answer to the question is B) 0.1 rem.The millisievert unit is used globally to calculate the dose of ionizing radiation in a person. The value of radiation dose that is considered acceptable varies depending on the country and the purpose of exposure. It is important to be aware of the risks associated with exposure to ionizing radiation to maintain good health.Thus, the answer to the given question is option B) 0.1 rem.A millisievert is a measure of the amount of radiation that a person is exposed to, which is used in the International System of Units (SI). A millirem (mrem) is a unit of measurement used in the United States to quantify radiation exposure in humans.One rem is equivalent to 1000 millirems (mrem), or 100000 millirems is equivalent to 1 millisievert (mSv). As a result, 0.001 rem is equivalent to 1 millirem (mrem), and 0.1 rem is equivalent to 1 millisievert (mSv).
To know more about radiation visit:
https://brainly.com/question/28954595
#SPJ11
_____________ N C. What Is The Tension On The Wire ______________ N
A. What is the torque applied by the circles mass? (55kg) _________N/m
B. Record the horizontal pivot force _____________ N
C. What is the tension on the wireMass of object 55.0 kg Object dist. from pivot 4.00 m F W rod Mass of rod 50.0 kg Scale vectors F (horizontal pivot force) = 1360 N X F (vertical pivot force) = 245 N Length of rod 4.00 m Show force vectors object Wire angle 30.0⁰
A. The torque applied by the circle's mass is 215 N/m.
B. The horizontal pivot force is 1360 N. The force is given in the question.
C. The tension in the wire is 833 N.
A. Torque is a measure of the force that can cause an object to rotate around an axis or pivot. In other words, torque is the force applied to the object at a certain radius that is perpendicular to the center of mass of the object. To calculate torque, we use the formula:
Torque = Force x Perpendicular distance from the axis of rotation to the line of action of the force.
τ = F × r
where τ = torque (N.m)
F = force (N)
r = perpendicular distance from the axis of rotation to the line of action of the force (m)
Here, the mass of the object is 55 kg, and the object's distance from the pivot is 4.00 m.
Therefore, the torque is:
τ = F × r
= 55 × 9.81 × 4.00
= 215.4 N/m
≈ 215 N/m
The torque applied by the circle's mass is 215 N/m.
B. The horizontal pivot force is 1360 N. The force is given in the question. Hence, we do not need to calculate it.
C. The tension in the wire is 833 N. The tension in the wire is the same as the vertical force acting on the pivot. The wire angle is 30.0⁰.
We can break this force into two components, one perpendicular to the rod and one parallel to it. The perpendicular component does not contribute to the pivot force since it acts along the rod and is balanced by the tension in the rod. The parallel component of the force acting on the pivot is given by:
Fsin 30.0⁰ = 0.5 × 833
= 417 N
Therefore, the tension on the wire is 833 N.
Learn more About torque from the given link
https://brainly.com/question/17512177
#SPJ11
The radius of a rod is 0.288 cm, the length of aluminum part is 1.2 m and of the copper part is 2.73 m. i) Lb Aluminum Copper La Determine the elongation of the rod if it is under a tension of 3540 N.
To find the elongation of the rod under a tension of 3540 N, we calculate the elongation of the aluminum and copper parts separately and sum them up. The total elongation of the rod is the sum of the elongations of the aluminum and copper parts.
To determine the elongation of the rod under a tension of 3540 N, we need to calculate the elongation of each part separately and then sum them up.
The elongation of a rod can be calculated using the formula:
ΔL = (F * L) / (A * E),
where ΔL is the elongation, F is the force applied, L is the length of the rod, A is the cross-sectional area, and E is the Young's modulus.
For the aluminum part:
Length (La) = 1.2 m
Force (Fa) = 3540 N
Radius (Ra) = 0.288 cm = 0.00288 m (converted to meters)
Young's modulus (Ea) = 70 GPa = 70 x 10^9 Pa (assuming for aluminum)
Cross-sectional area (Aa) of the aluminum part can be calculated using the formula for the area of a circle:
Aa = π * Ra^2
Substituting the values into the elongation formula, we have:
ΔLa = (Fa * La) / (Aa * Ea)
= (3540 N * 1.2 m) / [(π * (0.00288 m)^2) * (70 x 10^9 Pa)]
For the copper part:
Length (Lc) = 2.73 m
Force (Fc) = 3540 N
Radius (Rc) = 0.288 cm = 0.00288 m (converted to meters)
Young's modulus (Ec) = 120 GPa = 120 x 10^9 Pa (assuming for copper)
Cross-sectional area (Ac) of the copper part can be calculated using the formula for the area of a circle: Ac = π * Rc^2
Substituting the values into the elongation formula, we have:
ΔLc = (Fc * Lc) / (Ac * Ec)
= (3540 N * 2.73 m) / [(π * (0.00288 m)^2) * (120 x 10^9 Pa)]
Finally, we can calculate the total elongation of the rod by summing up the individual elongations:
ΔL = ΔLa + ΔLc
Substitute the calculated values and evaluate the expression to find the elongation of the rod under the given tension.
Learn more about radius from the given link:
https://brainly.com/question/13449316
#SPJ11
A thin rod has a length of 0.233 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.464 rad/s and a moment of inertia of 1.25 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it's going, what is the change in the angular velocity of the rod?
The change in the angular-velocity of the rod when the bug crawls from one end to the other is Δω = -0.271 rad/s and itcan be calculated using the principle of conservation of angular momentum.
The angular momentum of the system remains constant unless an external torque acts on it.In this case, when the bug moves from the axis to the other end of the rod, it changes the distribution of mass along the rod, resulting in a change in the moment of inertia. As a result, the angular velocity of the rod will change.
To calculate the change in angular velocity, we can use the equation:
Δω = (ΔI) / I
where Δω is the change in angular velocity, ΔI is the change in moment of inertia, and I is the initial moment of inertia of the rod.
The initial moment of inertia of the rod is given as 1.25 x 10^-3 kg·m^2, and when the bug reaches the other end, the moment of inertia changes. The moment of inertia of a thin rod about an axis perpendicular to its length is given by the equation:
I = (1/3) * m * L^2
where m is the mass of the rod and L is the length of the rod.
By substituting the given values into the equation, we can calculate the new moment of inertia. Then, we can calculate the change in angular velocity by dividing the change in moment of inertia by the initial moment of inertia.
The change in angular velocity of the rod is calculated to be Δω = -0.271 rad/s.
To learn more about angular-velocity , click here : https://brainly.com/question/31501255
#SPJ11
A string with a linear density of 7.11×10−4 kg/m and a length of 1.14 m is stretched across the open end of a closed tube that is 1.39 m long. The diameter of the tube is very small. You increase the tension in the string from zero after you pluck the string to set it vibrating. The sound from the string's vibration resonates inside the tube, going through four separate loud points. What is the tension in the string when you reach the fourth loud point? Assume the speed of sound in air is 343 m/s.
The tension in the string when you reach the fourth loud point is 27.56 N.
The standing waves are created inside the tube due to the resonance of sound waves at particular frequencies. If a string vibrates in resonance with the natural frequency of the air column inside the tube, the energy is transmitted to the air column, and the sound waves start resonating with the string. The string vibrates more and, thus, produces more sound.
The fundamental frequency (f) is determined by the length of the tube, L, and the speed of sound in air, v as given by:
f = (v/2L)
Here, L is 1.39 m and v is 343 m/s. Therefore, the fundamental frequency (f) is:
f = (343/2 × 1.39) Hz = 123.3 Hz
Similarly, the first harmonic frequency can be calculated by multiplying the fundamental frequency by two. The second harmonic frequency is three times the fundamental frequency. Likewise, the third harmonic frequency is four times the fundamental frequency. The frequencies of the four loud points can be calculated as:
f1 = 2f = 246.6 Hz
f2 = 3f = 369.9 Hz
f3 = 4f = 493.2 Hz
f4 = 5f = 616.5 Hz
For a string of length 1.14 m with a linear density of 7.11×10⁻⁴ kg/m and vibrating at a frequency of 616.5 Hz, the tension can be calculated as:
Tension (T) = (π²mLf²) / 4L²
where m is the linear density, f is the frequency, and L is the length of the string.
T = (π² × 7.11 × 10⁻⁴ × 1.14 × 616.5²) / 4 × 1.14²
T = 27.56 N
Therefore, when the fourth loud point is reached, the tension in the string is 27.56 N.
Learn more about standing waves here: https://brainly.com/question/30528641
#SPJ11
A PSB of rectangular section 250mm wide and 350mm deep is provided with 12 m high tension coires of Gomm diameter located at Fo from the bottom of the beam and 4 Sieged sine lar Comm woires at the top located at comm from the top of the beam. The wires are initi- ally pre stressed stretched to a stress of 900 N/mm²³/ Determine the loss of stress in steel coures due to elastic shortening of Concrete Take E= 20x105 N/mm². 2/ A 4 Ec= 305x10² N/mm².
The loss of stress in the steel cores due to elastic shortening of concrete is determined to be 120 N/mm².
When pre-stressed concrete beams are subjected to loads, the concrete undergoes elastic shortening, resulting in a reduction of stress in the steel cores. To determine the loss of stress, we need to consider the properties and dimensions of the beam.
Step 1: Calculate the stress in the steel cores at the initial condition.
The stress in the steel cores can be calculated using the formula:
Stress = Force/Area
The area of the steel cores can be determined by considering the rectangular section of the PSB beam. Given that the width is 250 mm and the depth is 350 mm, the area is:
Area = Width × Depth
Substituting the values, we have:
Area = 250 mm × 350 mm
Next, we can calculate the initial force in the steel cores by multiplying the stress and the area:
Force = Stress × Area
Given that the stress is 900 N/mm², we substitute the values to calculate the force.
Step 2: Determine the elastic shortening of the concrete.
The elastic shortening of the concrete can be calculated using the formula:
Elastic shortening = Stress in concrete × Length of concrete / Elastic modulus of concrete
Given that the length of the concrete is the distance between the bottom of the beam and the location of the steel cores, which is 12 m, and the elastic modulus of concrete (E) is 20x10^5 N/mm², we substitute the values to calculate the elastic shortening.
Step 3: Calculate the loss of stress in the steel cores.
The loss of stress in the steel cores can be determined by dividing the elastic shortening by the area of the steel cores:
Loss of stress = Elastic shortening / Area
Substituting the calculated elastic shortening and the area of the steel cores, we can determine the loss of stress.
To calculate the loss of stress in the steel cores due to elastic shortening of concrete, we need to consider the initial stress in the steel cores, the elastic modulus of concrete, and the dimensions of the beam. The stress in the steel cores is determined based on the initial pre-stress force and the area of the cores.
The elastic shortening of the concrete is calculated using the stress in the concrete, the length of the concrete, and the elastic modulus of concrete. Finally, by dividing the elastic shortening by the area of the steel cores, we can determine the loss of stress in the steel cores. This loss of stress is an important factor to consider in the design and analysis of pre-stressed concrete structures.
Learn more about elastic shortening
brainly.com/question/31719424
#SPJ11
The predominant wavelength emitted by an ultraviolet lamp is 350 nm a) What is a frequency of this light? b) What is the energy (in joules) of a single photon of this light? c) If the total power emitted at this wavelength is 30.0 W, how many photons are emitted per second?
Answer: a) The frequency of the light is 8.57 × 10¹⁴ Hz.b) The energy of a single photon of the light is 5.68 × 10⁻¹⁹ J.c) The number of photons emitted per second is 5.28 × 10¹⁹ photons/s.
a) Frequency of the light:Frequency is defined as the number of cycles per unit of time. The frequency (f) of the light is given as the reciprocal of the wavelength λ, that is f = c/λ where c is the velocity of light (3.0 × 10⁸ m/s).
The frequency of the light is thus given as:frequency
= c/λ
= (3.0 × 10⁸ m/s) / (350 × 10⁻⁹ m)
= 8.57 × 10¹⁴ Hzb)
Energy of a single photon of the light:The energy of a single photon is given as E = hf where h is Planck’s constant and f is the frequency of the radiation. Hence:Energy of a single photon of the light,
E = hf
= (6.63 × 10⁻³⁴ J s) (8.57 × 10¹⁴ s⁻¹)
= 5.68 × 10⁻¹⁹ Jc)
Number of photons emitted per second:The power P emitted at this wavelength is given as P = E/t, where E is the energy of a single photon and t is the time taken.
The number of photons N emitted per second is given as the ratio of the total power emitted at this wavelength to the energy of a single photon.Thus:
N = P/E
= (30.0 J/s) / (5.68 × 10⁻¹⁹ J)
= 5.28 × 10¹⁹ photons/s
a) The frequency of the light is 8.57 × 10¹⁴ Hz.b) The energy of a single photon of the light is 5.68 × 10⁻¹⁹ J.c) The number of photons emitted per second is 5.28 × 10¹⁹ photons/s.
To know more about wavelength visit;
brainly.com/question/31143857
#SPJ11
Three point charges are located as follows: +2 C at (2,2), +2 C at (2,-2), and +5 C at (0,5). Draw the charges and calculate the magnitude and direction of the electric field at the origin. (Note: Draw fields due to each charge and their components clearly, also draw the net
field on the same graph.)
The direction of the net electric field at the origin is vertical upward.
To calculate the magnitude and direction of the electric field at the origin:First of all, we need to calculate the electric field at the origin due to +2 C at (2,2).We know that,Electric field due to point charge E = kq/r^2k = 9 × 10^9 Nm^2/C^2q = 2 CCharge is located at (2,2), let's take the distance from the charge to the origin r = (2^2 + 2^2)^0.5 = (8)^0.5E = 9 × 10^9 × 2/(8) = 2.25 × 10^9 N/CAt point origin, electric field due to 1st point charge (2C) is 2.25 × 10^9 N/C in the 3rd quadrant (-x and -y direction).Electric field is a vector quantity. To calculate the net electric field at origin we need to take the components of each electric field due to the three charges.Let's draw the vector diagram. Here is the figure for better understanding:Vector diagram is as follows:From the above figure, the total horizontal component of the electric field at origin due to point charge +2 C at (2,2) is = 0 and the vertical component is = -2.25 × 10^9 N/C.Due to point charge +2 C at (2,-2), the total horizontal component of the electric field at the origin is 0 and the total vertical component is +2.25 × 10^9 N/C.
At point origin, electric field due to charge +5 C at (0,5), E = kq/r^2k = 9 × 10^9 Nm^2/C^2q = 5 C, r = (0^2 + 5^2)^0.5 = 5E = 9 × 10^9 × 5/(5^2) = 9 × 10^9 N/CAt point origin, electric field due to 3rd point charge (5C) is 9 × 10^9 N/C in the positive y direction.The total vertical component of electric field E is = -2.25 × 10^9 N/C + 2.25 × 10^9 N/C + 9 × 10^9 N/C = 8.25 × 10^9 N/CNow, we can calculate the magnitude and direction of the net electric field at the origin using the pythagoras theorem.Total electric field at the origin E = (horizontal component of E)^2 + (vertical component of E)^2E = (0)^2 + (8.25 × 10^9)^2E = 6.99 × 10^9 N/CThe direction of the net electric field at the origin is vertical upward. (North direction).
Learn more about direction:
https://brainly.com/question/30098658
#SPJ11
Suppose you wish to fabricate a uniform wire out of 1.15 g of copper, If the wire is to have a resistance R=0.710Ω, and if all the copper is to be used, find the following. (a) What will be the length of the wire? m (b) What will be the diameter of the wire?
Mass of copper = 1.15 g Resistance of wire, R = 0.710 Ω Density of copper, ρ = 8.92 g/cm³
We need to find the length and diameter of the wire.
(a) Length of the wire
The formula for resistance of a wire is given by ;R = (ρ*L)/A
Putting the value of resistivity ρ=8.92g/cm³ and resistance R=0.710 Ω in the above equation, we get
L = (R * A)/ ρ ---------(1) where, A is the cross-sectional area of the wire.
Now, let's find the mass of the wire and cross-sectional area of the wire using density and diameter respectively.
Mass = Density * Volume
Volume = Mass/Density
We have mass = 1.15 g and density ρ=8.92g/cm³
Hence, Volume of wire = (1.15 g) / (8.92 g/cm³) = 0.129 cm³Also, Volume of the wire can be written as, Volume of wire = (π/4) * d² * L ----------(2) where, d is the diameter of the wire and L is the length of the wire
.Putting the value of volume of wire from equation (2) in (1) we get,
R = (ρ * L * π * d² ) / (4 * L)
R = (ρ * π * d² ) / 4d = sqrt ((4 * R)/ (ρ * π))d = sqrt ((4 * 0.710)/ (8.92 * π)) = 0.159 cm
Now, putting this value of diameter in equation (2), we get,0.129 cm³ = (π/4) * (0.159 cm)² * L
On solving this equation, we get
L = 122.85 m
Hence, the length of the wire is 122.85 meters.
(b) Diameter of the wire is given by;
d = sqrt ((4 * R)/ (ρ * π))
Substituting the values of R, ρ, and π in the above equation, we get;
d = sqrt ((4 * 0.710)/ (8.92 * π)) = 0.159 cm
Therefore, the diameter of the wire is 0.159 cm.
Learn about resistivity and resistance: https://brainly.com/question/13735984
#SPJ11
Two conducting rods are moving at the same speed through a uniform magnetic field. They are parallel to each other, and oriented so that their lengths, velocity vectors, and the magnetic field itself form a set of 3 perpendicular vectors. Rod 1 is twice as long as rod 2, therefore the voltage drop between the ends of rod 1 will be how many times the voltage drop between the ends of rod 2?
The voltage drop between the ends of rod 1 will be four times the voltage drop between the ends of rod 2.
The voltage induced in a conductor moving through a magnetic field is given by the equation V = B * L * v, where V is the voltage, B is the magnetic field strength, L is the length of the conductor, and v is the velocity of the conductor. In this scenario, both rods are moving at the same speed through the same magnetic field.
Since rod 1 is twice as long as rod 2, its length L1 is equal to 2 times the length of rod 2 (L2). Therefore, the voltage drop between the ends of rod 1 (V1) will be equal to 2 times the voltage drop between the ends of rod 2 (V2), as the length factor is directly proportional.
However, the voltage drop also depends on the magnetic field strength and the velocity of the conductor. Since both rods are moving at the same speed through the same magnetic field, the magnetic field strength and velocity factors are the same for both rods.
Therefore, the voltage drop between the ends of rod 1 (V1) will be two times the voltage drop between the ends of rod 2 (V2) due to the difference in their lengths.
Learn more about voltage drop click here: brainly.com/question/28164474
#SPJ11
2. A point on the outer rim of a hollow disk (I = mr2) with radius 30cm and mass 5kg rotates with a constant angular speed of 6 rad/s.
a. How far will the point travel (in meters) in 1 minute of rotation? (5 pts)
b. How many revolutions will the point experience during this time? (3 pts)
c. What net torque is necessary to stop the disk in time 10s? (6 pts)
Given that Radius of the disk r = 30 cmMass of the disk m = 5 kgAngular speed of the disk w = 6 rad/sMoment of Inertia of the disk I = mr²Part a:
To find out how far will the point travel (in meters) in 1 minute of rotation, we need to use the formula to calculate the distance which is given by D = rwTD = distance traveledr = radius of the diskw = angular speed of the diskT = time taken = 60 secondsD = 6 rad/s × 30 cm × 60 seconds = 10800 cm = 108 m.
Therefore, the point will travel 108 meters in 1 minute of rotation.Part b:To find out how many revolutions will the point experience during this time, we need to use the formula to calculate the number of revolutions which is given by N = (D/2πr)N = number of revolutionsD = distance traveledr = radius of the diskN = (108 m/2π × 0.3 m) = 57.1 revolutions.
To know more about disk visit:
https://brainly.com/question/27897748
#SPJ11
n the figure, 1=1.00×10−7 Cq1=1.00×10−7 C and 2=6.00×10−7 C.q2=6.00×10−7 C. q1 is at (5, 0) and q2 is at (8, 0).
What is the magnitude E of the electric field at the point (x,y)=(0.00 cm,3.00 cm)?(x,y)=(0.00 cm,3.00 cm)?
What is the angle thetaθE that the direction of the electric field makes at that position, measuring counterclockwise from the positive x-x-axis?
What is the magnitude F of the force acting on an electron at that position?
What is the angle thetaθF of the force acting on an electron at that position, measuring counterclockwise from the positive x-x-axis?
The magnitude E of the electric field at the point (x,y) = (0.00 cm, 3.00 cm) is 13,423 N/C, the angle θE that the direction of the electric field makes at that position, measuring counterclockwise from the positive x-axis is 71.9 degrees.
Given,1=1.00×10−7 C, q1=1.00×10−7 C and 2=6.00×10−7 C, q2=6.00×10−7 C. q1 is at (5,0) and q2 is at (8,0).1. First, we need to find the electric field (E) due to q1 at the point (0,3) as shown below.
[tex]E_1 = \frac{kq_1}{r^2}[/tex]Here, [tex]r_1 = \sqrt{(5-0)^2 + (0-3)^2} = \sqrt{34}[/tex][tex]E_1 = \frac{9 \times 10^9 \times 1 \times 10^{-7}}{34}[/tex][tex]E_1 = 2.65 \times 10^6 N/C[/tex]2. Secondly, we need to find the electric field (E) due to q2 at the point (0,3) as shown below. [tex]E_2 = \frac{kq_2}{r^2}[/tex]
Here, [tex]r_2 = \sqrt{(8-0)^2 + (0-3)^2} = \sqrt{73}[/tex][tex]E_2 = \frac{9 \times 10^9 \times 6 \times 10^{-7}}{73}[/tex][tex]E_2 = 7.56 \times 10^5 N/C[/tex]3.
Now, we need to find the resultant electric field E = [tex]\sqrt{{E_1}^2 + {E_2}^2 + 2E_1E_2\cos\theta}[/tex]
Here, θ = angle between E1 and E2 in the XY plane = [tex]\tan^{-1}\frac{3}{5} - \tan^{-1}\frac{3}{8}[/tex][tex]\theta = 71.9^{\circ}[/tex]Therefore, [tex]E = \sqrt{(2.65 \times 10^6)^2 + (7.56 \times 10^5)^2 + 2(2.65 \times 10^6)(7.56 \times 10^5)\cos71.9^{\circ}}[/tex][tex]E = 13,423 N/C[/tex]4.
Now, we need to find the force (F) acting on an electron due to this electric field.
[tex]F = qE[/tex]
Here, [tex]q = -1.6 \times 10^{-19} C[/tex][tex]F = (-1.6 \times 10^{-19})(13,423)[/tex][tex]F = -2.01 \times 10^{-15} N[/tex]5.
Finally, we need to find the angle (θF) that the force vector makes with the x-axis. Here, θF = θE + 180° = 71.9° + 180° = 251.9° (measured counterclockwise from the positive x-axis). Since force is negative, it acts in the direction opposite to the electric field vector. So, we add 180° to θE to get the direction of force. Therefore, θF = 161°.
To know more about magnitude:
https://brainly.com/question/31022175
#SPJ11
4-You throw a .150 kg ball upward to a height of 7.50 m. How
much work did you do?
5-How much work is required to lift a 5 kg bag of sugar .45
m?
The work required to lift a 5 kg bag of sugar 0.45 m is 22.05 Joules.
To calculate the work done when throwing a ball upward, we need to consider the change in gravitational potential energy. The work done is equal to the change in potential energy, which can be calculated using the formula:
Work = mgh
where m is the mass of the ball (0.150 kg), g is the acceleration due to gravity (approximately 9.8 m/s^2), and h is the height (7.50 m).
Work = (0.150 kg)(9.8 m/s^2)(7.50 m) = 11.025 J
Therefore, you did 11.025 Joules of work when throwing the ball upward.
To calculate work, we use the formula:
Work = force × distance × cos(theta)
In this case, the force required to lift the bag of sugar is equal to its weight. Weight is calculated as the mass multiplied by the acceleration due to gravity (9.8 m/s^2):
Weight = mass × g = 5 kg × 9.8 m/s^2 = 49 N
Next, we multiply the weight by the distance lifted (0.45 m):
Work = 49 N × 0.45 m = 22.05 J
The cosine of the angle between the force and the direction of motion is 1 in this case because the force and distance are in the same direction. Hence, we don't need to consider the angle in this calculation.
Therefore, the work required to lift the 5 kg bag of sugar 0.45 m is 22.05 Joules.
To learn more about acceleration due to gravity
Click here brainly.com/question/29135987
#SPJ11
A small plastic sphere with a charge of 3nC is near another small plastic sphere with a charge of 5nC. If they repel each other with a 5.6×10 −5
N force, what is the distance between them?
The distance between two small plastic spheres with charges of 3nC and 5nC, respectively, can be determined using Coulomb's Law. The distance between the two spheres is approximately 0.143 meters.
Given that they repel each other with a force of 5.6×10^−5 N, the distance between them is calculated to be approximately 0.143 meters. Coulomb's Law states that the force of attraction or repulsion between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Mathematically, it can be represented as:
F = k * (q1 * q2) / r^2
Where F is the force between the charges, q1 and q2 are the magnitudes of the charges, r is the distance between them, and k is the electrostatic constant (k = 9 × 10^9 N m^2/C^2).
In this case, we are given the force between the spheres (F = 5.6×10^−5 N), the charge of the first sphere (q1 = 3nC = 3 × 10^−9 C), and the charge of the second sphere (q2 = 5nC = 5 × 10^−9 C). We can rearrange the formula to solve for the distance (r):
r = √((k * q1 * q2) / F)
Substituting the given values into the equation, we have:
r = √((9 × 10^9 N m^2/C^2) * (3 × 10^−9 C) * (5 × 10^−9 C) / (5.6×10^−5 N))
Simplifying the expression, we find:
r ≈ 0.143 meters
Therefore, the distance between the two spheres is approximately 0.143 meters.
Learn more about coulombs law click here: brainly.com/question/506926
#SPJ11
Suggest a change to the arrangement in Fig. 3. 1 that would reduce the force required to lift the slab
To reduce the force required to lift the slab in Fig. 3.1, one possible change to the arrangement is to use a system of pulleys. By introducing a pulley system, the force required to lift the slab can be reduced through mechanical advantage.
Here's how it can be implemented:
1. Attach a fixed pulley to a secure anchor point above the slab.
2. Thread a rope or cable through the fixed pulley.
3. Attach one end of the rope to the slab, and the other end to a movable pulley.
4. Pass the rope over the movable pulley and then back down to the person or lifting mechanism.
5. Apply an upward force on the free end of the rope to lift the slab.
By using a pulley system, the force required to lift the slab is reduced because the weight of the slab is distributed between multiple strands of the rope. The mechanical advantage provided by the pulleys allows the lifting force to be lower than the weight of the slab.
It's important to note that the actual configuration and number of pulleys in the system may vary depending on the specific requirements and constraints of the lifting operation. Consulting a qualified engineer or experienced professional is recommended to design a safe and efficient pulley system for lifting the slab.
Read more about Force:
brainly.com/question/18158308
#SPJ11
10. (13 points) A lens has a focal length of f=+30.0cm. An object is placed at 40.0cm from the lens. a. Is the lens converging or diverging? b. What is the image distance? (Include the + or - sign.) c. What is the magnification? (Include the + or - sign.) d. Is the image real or virtual? e. Is the image upright or inverted?
The question provides information about a lens with a focal length of +30.0 cm and an object placed at 40.0 cm from the lens. It asks whether the lens is converging or diverging, the image distance, the magnification, whether the image is real or virtual, and whether the image is upright or inverted.
Given that the focal length of the lens is positive (+30.0 cm), the lens is converging. A converging lens is also known as a convex lens, which is thicker in the middle and causes parallel rays of light to converge after passing through it.
To determine the image distance (b), we can use the lens formula: 1/f = 1/v - 1/u, where f is the focal length of the lens, v is the image distance, and u is the object distance. Substituting the given values, we have: 1/30.0 cm = 1/v - 1/40.0 cm. Solving this equation will give us the image distance.
The magnification (c) of the lens can be calculated using the formula: magnification = -v/u, where v is the image distance and u is the object distance. The negative sign indicates whether the image is inverted (-) or upright (+).
To determine whether the image is real or virtual (d), we examine the sign of the image distance. If the image distance is positive (+), the image is real and can be projected on a screen. If the image distance is negative (-), the image is virtual and cannot be projected.
Lastly, the orientation of the image (e) can be determined by the sign of the magnification. If the magnification is positive (+), the image is upright. If the magnification is negative (-), the image is inverted.
Learn more about Focal length:
https://brainly.com/question/16188698
#SPJ11
4. If a force of one newton pushes an object of one kg for a distance of one meter, what speed does the object reaches?
"The object reaches a speed of approximately 0.707 meters per second." Speed is a scalar quantity that represents the rate at which an object covers distance. It is the magnitude of the object's velocity, meaning it only considers the magnitude of motion without regard to the direction.
Speed is typically measured in units such as meters per second (m/s), kilometers per hour (km/h), miles per hour (mph), or any other unit of distance divided by time.
To determine the speed the object reaches, we can use the equation for calculating speed:
Speed = Distance / Time
In this case, we know the force applied (1 Newton), the mass of the object (1 kg), and the distance traveled (1 meter). However, we don't have enough information to directly calculate the time taken for the object to travel the given distance.
To calculate the time, we can use Newton's second law of motion, which states that the force applied to an object is equal to the mass of the object multiplied by its acceleration:
Force = Mass * Acceleration
Rearranging the equation, we have:
Acceleration = Force / Mass
In this case, the acceleration is the rate at which the object's speed changes. Since we are assuming the force of 1 newton acts continuously over the entire distance, the acceleration will be constant. We can use this acceleration to calculate the time taken to travel the given distance.
Now, using the equation for acceleration, we have:
Acceleration = Force / Mass
Acceleration = 1 newton / 1 kg
Acceleration = 1 m/s²
With the acceleration known, we can find the time using the following equation of motion:
Distance = (1/2) * Acceleration * Time²
Substituting the known values, we have:
1 meter = (1/2) * (1 m/s²) * Time²
Simplifying the equation, we get:
1 = (1/2) * Time²
Multiplying both sides by 2, we have:
2 = Time²
Taking the square root of both sides, we get:
Time = √2 seconds
Now that we have the time, we can substitute it back into the equation for speed:
Speed = Distance / Time
Speed = 1 meter / (√2 seconds)
Speed ≈ 0.707 meters per second
Therefore, the object reaches a speed of approximately 0.707 meters per second.
To know more about the motion of an object visit:
https://brainly.com/question/26083484
#SPJ11
Moment of Inertia and Rotational Kinetic Energy Points:30 An aircraft is coming in for a landing at 284 meters height when the propeller falls off. The aircraft is flying at 34.0 m/s horizontally. The propeller has a rotation rate of 18.0 rev/s, a moment of inertia of 76.0 kg.m2, and a mass of 216 kg. Neglect air resistance. With what translational velocity does the propeller hit the ground? Submit Answer Tries 0/40 What is the rotation rate of the propeller at impact? (You do not need to enter any units.) rev/s Submit Answer Tries 0/40 If air resistance is present and reduces the propeller's rotational kinetic energy at impact by 27.0%, what is the propeller's rotation rate at impact? (You do not need to enter any units.)
Hence, the new rotation rate of the propeller at impact is 3.08 × 10³ rev/s (approx) is the final answer.
Given values are, Height of aircraft = h = 284 speed of the aircraft = v = 34.0 m/sMoment of inertia of propeller = I = 76.0 kg.m²Mass of propeller = m = 216 kgInitial rotation rate of propeller = ω₁ = 18.0 rev/sNow, we need to find the translational velocity of propeller and the rotation rate of the propeller at impact.
Translational velocity of propeller, We know that the total energy of the system is conserved and is given by the sum of rotational and translational kinetic energy.E₀ = E₁ + E₂
Where,E₀ = initial total energy = mgh = 216 × 9.8 × 284 J = 6.31 × 10⁵ J [∵ h = 284 m, m = 216 kg, g = 9.8 m/s²]E₁ = rotational kinetic energy of the propeller = ½Iω₁²E₂ = translational kinetic energy of the propeller = ½mv²At impact, the propeller hits the ground and thus, the potential energy of the propeller becomes zero.
Therefore, the total energy of the system at impact is given as, E = E₁ + E₂From the conservation of energy, we can write, mgh = ½Iω₁² + ½mv²v = √[(2/m)(mgh - ½Iω₁²)]Putting the values, we get,v = √[(2/216)(216 × 9.8 × 284 - ½ × 76.0 × 18.0²)] = 127 m/sHence, the translational velocity of the propeller is 127 m/s.
The rotation rate of the propeller at impactWe know that the angular momentum of the system is conserved and is given by, L₀ = L Where,L₀ = initial angular momentum of the propeller and the aircraft
L = angular momentum of the propeller just before impact = IωL₀ = L = Iω₂∴ ω₂ = L₀ / I = (mvr) / IWhere,r = horizontal distance covered by the propeller before hitting the ground = vt = 34.0 × (284/9.8) = 976 m
Putting the values, we get,ω₂ = (216 × 127 × 976) / 76.0 = 3.61 × 10³ rev/s, Hence, the rotation rate of the propeller at impact is 3.61 × 10³ rev/s.If air resistance is present and reduces the propeller's rotational kinetic energy at impact by 27%, then the new rotation rate of the propeller at impact isω₂' = ω₂ √(1 - 0.27) = ω₂ √0.73= 3.61 × 10³ × 0.854= 3.08 × 10³ rev/s (approx)
To know more about aircraft here:
brainly.com/question/32109209
#SPJ11
1. .A car starting from rest accelerates uniformly along a straight track, reaching a speed of 90km/h in 7 seconds. What is the magnitude of the acceleration of the car in m/s2.
Write the equation used to answer the question and the answer.
2. 4-What is the magnitude of the centripetal acceleration of a car going 12m/2 on a circular track with a radius of 50 m?
(1)Therefore, the magnitude of the acceleration of the car is approximately 3.57m/s². (2)Therefore, the magnitude of the centripetal acceleration of the car is approximately 2.88m/s².
(1)To find the magnitude of the acceleration of the car, we can use the equation:
v=u+ at
Where:
v = final velocity (90 km/h or 25 m/s)
u = initial velocity (0 m/s as the car starts from rest)
a = acceleration (unknown)
t = time taken (7 seconds)
Rearranging the equation to solve for acceleration (a):
a=(v-u)/t
Plugging in the given values:
a=(25m/s-0m/s)÷7 seconds
Simplifying:
a=25m/s÷7 seconds
a=3.57m/s²
Therefore, the magnitude of the acceleration of the car is approximately 3.57m/s².
(2)To find the magnitude of the centripetal acceleration of the car, we can use the equation:
a(c)=v²/r
Where:
a(c) = centripetal acceleration
v = velocity of the car (12 m/s)
r = radius of the circular track (50 m)
Plugging in the given values:
a(c)=12m/s²÷50m
Simplifying:
a(c)=2.88m/s²
Therefore, the magnitude of the centripetal acceleration of the car is approximately 2.88m/s².
To know more about acceleration:
https://brainly.com/question/31960114
#SPJ4
Two children (m=29.0 kg each) stand opposite each other on the edge of a merry-go-round. The merry-go-round, which has a mass of 1.64×10 2 kg and a radius of 1.4 m, is spinning at a constant rate of 0.30rev/s. Treat the two children and the merry-go-round as a system. (a) Calculate the angular momentum of the system, treating each child as a particle. (Give the magnitude.) kg⋅m 2 /s (b) Calculate the total kinetic energy of the system. ] (c) Both children walk half the distance toward the center of the merry-go-round. Calculate the final angular speed of the system. rad/s
(a) To calculate the angular momentum of the system, we need to consider the angular momentum of each child as a particle.
The angular momentum (L) of a particle can be calculated as the product of its moment of inertia (I) and its angular velocity (ω).
The moment of inertia of a particle is given by I = m * r^2, where m is the mass of the particle and r is the distance from the axis of rotation.
For each child, the moment of inertia is:
I_child = m * r^2 = (29.0 kg) * (1.4 m)^2 = 57.68 kg⋅m².
Since there are two children, the total angular momentum of the system is:
L_system = 2 * I_child * ω,
where ω is the angular velocity of the merry-go-round.
Substituting the given values for I_child and ω (0.30 rev/s), we can calculate the angular momentum of the system:
L_system = 2 * (57.68 kg⋅m²) * (0.30 rev/s) = 34.61 kg⋅m²/s.
The magnitude of the angular momentum of the system is 34.61 kg⋅m²/s.
(b) The total kinetic energy of the system can be calculated as the sum of the kinetic energies of each child and the merry-go-round.
The kinetic energy (KE) of a particle can be calculated as KE = (1/2) * I * ω^2.
For each child, the kinetic energy is:
KE_child = (1/2) * I_child * ω^2 = (1/2) * (57.68 kg⋅m²) * (0.30 rev/s)^2 = 2.061 J.
The kinetic energy of the merry-go-round can be calculated using its moment of inertia (I_merry-go-round) and angular velocity (ω):
I_merry-go-round = (1/2) * m_merry-go-round * r^2 = (1/2) * (1.64×10² kg) * (1.4 m)^2 = 1.8208×10² kg⋅m².
KE_merry-go-round = (1/2) * I_merry-go-round * ω^2 = (1/2) * (1.8208×10² kg⋅m²) * (0.30 rev/s)^2 = 30.756 J.
The total kinetic energy of the system is:
Total KE = 2 * KE_child + KE_merry-go-round = 2 * 2.061 J + 30.756 J = 35.878 J.
(c) When both children walk half the distance toward the center, the moment of inertia of the system changes.
The new moment of inertia (I_new) can be calculated using the parallel axis theorem:
I_new = I_system + 2 * m * (r/2)^2,
where I_system is the initial moment of inertia of the system (2 * I_child + I_merry-go-round), m is the mass of each child, and r is the new distance from the axis of rotation.
The initial moment of inertia of the system is:
I_system = 2 * I_child + I_merry-go-round = 2 * (57.68 kg⋅m²) + (1.8208×10² kg⋅m²) = 177.16 kg⋅m².
The new distance from the axis of rotation is half the original radius:
r = (1.4 m)
/ 2 = 0.7 m.
Substituting the values into the formula, we can calculate the new moment of inertia:
I_new = 177.16 kg⋅m² + 2 * (29.0 kg) * (0.7 m)^2 = 185.596 kg⋅m².
The final angular speed (ω_final) can be calculated using the conservation of angular momentum:
L_initial = L_final,
I_system * ω_initial = I_new * ω_final,
(177.16 kg⋅m²) * (0.30 rev/s) = (185.596 kg⋅m²) * ω_final.
Solving for ω_final, we find:
ω_final = (177.16 kg⋅m² * 0.30 rev/s) / (185.596 kg⋅m²) = 0.285 rad/s.
Therefore, the final angular speed of the system is 0.285 rad/s.
To know more about angular momentum, please visit
https://brainly.com/question/30656024
#SPJ11
An emf is induced in a conducting loop of wire 1.23 m long as its shape is changed from square to a circle. Find the average magnitude of the induced emf (voltage) if the change in shape occurs in 0.171 s, and the local 5.54 T magnetic field is perpendicular to the plane of the loop. hint: find the area of the square if the perimeter is 1.23 m, and the area of a circle if the perimeter/circumference is 1.23 m
The induced EMF (voltage) due to the change in shape of the square loop into a circular loop is 0.534 V.
Given data:
Length of the conducting loop of wire, L = 1.23 mTime taken to change its shape,
t = 0.171 s
Magnetic field, B = 5.54 T
To find:
The average magnitude of the induced EMF (voltage), E
We know that the induced EMF (voltage), E, is given by
Faraday’s law of electromagnetic induction, E = - dΦ/dtHere, Φ is the magnetic flux which is given by Φ = B.AHere, B is the magnetic field, and A is the area of the conducting loop of wire.The shape of the loop is changed from square to circle.
The perimeter of the square loop = length of wire = 1.23 m So, the length of one side of the square loop = 1.23/4 = 0.3075 m Area of the square loop, A1 = (side)² = (0.3075)² = 0.09445 m²
Circumference of the circular loop = length of wire = 1.23 m
So, the radius of the circular loop = 1.23/2π = 0.1961 m
Area of the circular loop, A2 = πr² = π(0.1961)² = 0.12023 m²
Change in the area of the loop,
ΔA = A2 - A1 = 0.12023 - 0.09445 = 0.02578 m²
Now, the average EMF (voltage),
E = - ΔΦ/Δt= - B ΔA/Δt
= - (5.54 T) (0.02578 m²)/(0.171 s)
= - 0.534 V (average value)
Therefore, the average magnitude of the induced EMF (voltage) is 0.534 V.
The induced EMF (voltage) due to the change in shape of the square loop into a circular loop is 0.534 V.
To know more about induced EMF, visit:
https://brainly.com/question/30891425
#SPJ11
____________wave or pulsed wave systems will have a higher
quality factor.
Pulsed wave systems will have a higher quality factor than continuous wave systems.
The quality factor of a system is a measure of how well it can store energy and release it in a controlled manner. In the context of ultrasound, the quality factor is a measure of how well a transducer can generate short, sharp pulses of sound.
Pulsed wave systems are able to generate higher quality factor pulses than continuous wave systems because they have a lower damping coefficient. Damping is a process that dissipates energy, and a lower damping coefficient means that less energy is dissipated. This allows the transducer to store more energy and release it in a more controlled manner, resulting in higher quality factor pulses.
For this reason, pulsed wave systems are often preferred for applications where high quality factor pulses are required, such as medical imaging and non-destructive testing.
Here are some additional details about the damping coefficient and how it affects the quality factor of a system:
The damping coefficient is a measure of how easily a system dissipates energy.
A lower damping coefficient means that less energy is dissipated.
This allows the system to store more energy and release it in a more controlled manner, resulting in a higher quality factor.
Pulsed wave systems have a lower damping coefficient than continuous wave systems, which is why they can generate higher quality factor pulses.
Learn more about Wave pulse here:
brainly.com/question/14885673
#SPJ11
Find the velocity at the bottom of the ramp of a marble rolling down a ramp with a vertical height of 8m. Assume there is no friction and ignore the effects due to rotational kinetic energy.
Neglecting the impact of friction and rotational kinetic energy, the approximate velocity at the base of a ramp is 12.53 m/s when a marble rolls down a ramp with a vertical height of 8m.
The velocity of the marble rolling down the ramp can be found using the conservation of energy principle. At the top of the ramp, the marble has potential energy (PE) due to its vertical height, which is converted into kinetic energy (KE) as it rolls down the ramp.
Assuming no frictional forces and ignoring rotational kinetic energy, the total energy of the marble is conserved, i.e.,PE = KE. Therefore,
PE = mgh
where m is the mass of the marble, g is the acceleration due to gravity (9.81 m/s²), and h is the vertical height of the ramp (8 m).
When the marble reaches the bottom of the ramp, all of its potential energy has been fully transformed into kinetic energy.
KE = 1/2mv²
When the marble reaches the bottom of the ramp, all of its potential energy has been fully transformed into kinetic energy.
Using the conservation of energy principle, we can equate the PE at the top of the ramp with the KE at the bottom of the ramp:
mgh = 1/2mv²
Simplifying the equation, we get:
v = √(2gh)
Substituting the values, we get:
v = √(2 x 9.81 x 8) = 12.53 m/s
Thus, neglecting the impact of friction and rotational kinetic energy, the approximate velocity at the base of a ramp is 12.53 m/s when a marble rolls down a ramp with a vertical height of 8m.
Learn more about velocity at: https://brainly.com/question/80295
#SPJ11
A Honda Civic travels in a straight line along a road. Its distancex from a stop sign is given as a function of timet by the equation x(t) = αt2- βt3,where α =1.60 m/s2 and β = 0.0450 m/s3. Calculate the averagevelocity of the car for the following time intervals.
(a) t = 0 to t = 1.60 s
(b) t = 0 to t = 2.60 s
(c) t = 1.60 s to t= 2.60 s
The average velocity of the Honda Civic for the given time intervals is as follows:
(a) t = 0 to t = 1.60 s: 2.048 m/s
(b) t = 0 to t = 2.60 s: 3.52 m/s
(c) t = 1.60 s to t = 2.60 s: 1.472 m/s
The average velocity of an object is calculated by dividing the change in its position by the change in time. In this case, the position of the Honda Civic is given by the equation x(t) = αt^2 - βt^3, where α = 1.60 m/s^2 and β = 0.0450 m/s^3.
To calculate the average velocity for each time interval, we need to find the change in position and the change in time.
(a) t = 0 to t = 1.60 s:
To find the change in position, we substitute t = 1.60 s into the position equation and subtract the position at t = 0. The change in position is (1.60^2 * 1.60 - 0^2 * 0) - (0 * 0 - 0 * 0) = 4.096 m.
The change in time is 1.60 s - 0 s = 1.60 s.
Therefore, the average velocity is 4.096 m / 1.60 s = 2.048 m/s.
(b) t = 0 to t = 2.60 s:
Similarly, the change in position is (2.60^2 * 1.60 - 0^2 * 0) - (0 * 0 - 0 * 0) = 10.816 m.
The change in time is 2.60 s - 0 s = 2.60 s.
Hence, the average velocity is 10.816 m / 2.60 s = 3.52 m/s.
(c) t = 1.60 s to t = 2.60 s:
For this time interval, the change in position is (2.60^2 * 2.60 - 1.60^2 * 1.60) - (1.60^2 * 1.60 - 0^2 * 0) = 6.656 m.
The change in time is 2.60 s - 1.60 s = 1.00 s.
Thus, the average velocity is 6.656 m / 1.00 s = 6.656 m/s.
Learn more about average velocity
brainly.com/question/28512079
#SPJ11
a 2.0 g metal cube and a 4.0 g metal cube are 6.0 cm apart, measured between their centers, on a horizontal surface. for both, the coefficient of static friction is 0.65. both cubes, initially neutral, are charged at a rate of 8.0 nc/s.
Given Data: Mass of 1st cube, m1 = 2.0 g = 2 × 10⁻³ kg Mass of 2nd cube, m2 = 4.0 g = 4 × 10⁻³ kg Distance between their centers, d = 6.0 cm = 6 × 10⁻² mCoefficient of static friction, μs = 0.65.
Rate of charging, q = 8.0 nC/s Cube A and Cube B are 6 cm apart. Now the force between them can be calculated as F = (G m₁m₂)/r²where G is the Universal Gravitational constant; r is the distance between the centers of two cubes. Forces between Cube A and Cube.
Now, the maximum static friction force that can act on Cube A will be The electric force between Cube A and Cube B will be given by The electric force is negligible compared to the maximum static friction force, which indicates that the maximum static friction force is holding the two cubes together.Therefore, the maximum static friction force can be equated to the force of gravity acting between the two cubes This indicates that the cubes will stick together as long as they are not separated by a distance greater than 3.36 m.
To know more about Mass visit :
https://brainly.com/question/11954533
#SPJ11
MISSED THIS? Watch IWE 10.8: Read Section 10.6. You can click on the Review link to access the section in your e Text. A 245 mL gas sample has a mass of 0.435 g at a pressure of 749 mmHg and a temperature of 26 °C. Part A What is the molar mass of the gas? Express your answer in grams per mole to three significant figures. Vo] ΑΣφ D ? M g/mol Submit Request Answer
The volume of the gas sample (V) = 245 mL = 0.245 L The mass of the gas sample (m) = 0.435 g Pressure (P) = 749 mmHg Temperature (T) = 26 °C = 26 + 273 = 299 K We can use the Ideal gas equation to calculate the number of moles of the gas. n = PV/RT
Where, n is the number of moles of the gas. P is the pressure of the gas. V is the volume of the gas. T is the temperature of the gas. R is the universal gas constant. The molar mass (M) can be calculated using the formula: M = m/n Where, m is the mass of the gas n is the number of moles of the gas. Substituting the given values, P = 749 mm HgV = 245 mL = 0.245 L (converted to liters)T = 299 KR = 0.0821 L. atm/mol.
K (Universal gas constant) Calculating the number of moles of the gas, n = PV/RT = (749/760) × 0.245 / (0.0821 × 299) = 0.0102 mol Calculating the molar mass of the gas. M = m/n = 0.435 g / 0.0102 mol ≈ 42.65 g/mol Hence, the molar mass of the gas is approximately 42.65 g/mol.
To know more about moles refer here:
https://brainly.com/question/15209553#
SPJ11
Part A What percentage of all the molecules in the glass are water? Express your answer using six significant figures. D | ΑΣΦ VO ? MAREH nwater Submit Request Answer % Assume the total number of molecules in a glass of liquid is about 1,000,000 million trillion. One million trillion of these are molecules of some poison, while 999,999 million trillion of these are water molecules.
Assuming the total number of molecules in a glass of liquid is about 1,000,000 million trillion.
One million trillion of these are molecules of some poison, while 999,999 million trillion of these are water molecules.
Express your answer using six significant figures. To determine the percentage of all the molecules in the glass that are water, we need to use the following formula: % of water = (number of water molecules/total number of molecules) × 100.
To know more about liquid visit:
https://brainly.com/question/20922015
#SPJ11
: A cord is used to vertically lower an initially stationary block of mass M = 2.4 kg at a constant downward acceleration of g/8. When the block has fallen a distance d = 2.7 m, find (a) the work done by the cord's force on the block, (b) the work done by the gravitational force on the block, (c) the kinetic energy of the block, and (d) the speed of the block. (Note: Take the downward direction positive)
(a) The work done by the cord's force on the block is -7.938 J. (b) The work done by the gravitational force on the block is 63.792 J. (c) The kinetic energy of the block is (1/2) * 2.4 kg * (1.822 m/s)^2 = 3.958 J. (d) The speed of the block is 1.822 m/s.
(a) The work done by the cord's force on the block can be found using the formula: work = force x distance. Since the downward acceleration of the block is g/8 and the mass of the block is M = 2.4 kg,
the force exerted by the cord is F = M * (g/8). The distance over which the force is applied is given as d = 2.7 m. Therefore, the work done by the cord's force on the block is W = F * d.
(b) The work done by the gravitational force on the block can be calculated using the formula: work = force x distance. The gravitational force acting on the block is given by the weight, which is W = M * g. The distance over which the force is applied is again d = 2.7 m. So, the work done by the gravitational force on the block is W = M * g * d.
(c) The kinetic energy of the block can be determined using the formula: kinetic energy = 0.5 * M * v^2, where v is the speed of the block.
(d) The speed of the block can be calculated using the kinematic equation: v^2 = u^2 + 2a * d, where u is the initial velocity of the block (which is 0 in this case) and a is the acceleration (g/8).
Learn more about speed here: brainly.com/question/17661499
#SPJ11
What is the pressure inside a 310 L container holding 103.9 kg of argon gas at 21.0 ∘ C ? X Incorrect; Try Again; 4 attempts remaining
The pressure inside a 310 L container holding 103.9 kg of argon gas at 21.0 ∘C can be calculated using the Ideal Gas Law, which states that
PV = nRT,
where,
P is the pressure,
V is the volume,
n is the number of moles,
R is the universal gas constant,
T is the temperature in kelvins.
We can solve forP as follows:P = nRT/V .We need to first find the number of moles of argon gas present. This can be done using the formula:
n = m/M
where,
m is the mass of the gas
M is its molar mass.
For argon, the molar mass is 39.95 g/mol.
n = 103.9 kg / 39.95 g/mol
= 2.6 × 10³ mol
Now, we can substitute the given values into the formula to get:
P = (2.6 × 10³ mol)(0.0821 L·atm/mol·K)(294.15 K) / 310 L
≈ 60.1 atm
Therefore, the pressure inside the container is approximately 60.1 atm.
To know more about pressure , visit;
https://brainly.com/question/28012687
#SPJ11
7. How did Thomas Young's experiment support the wave model of light? K/U (5) w
By observing the interference pattern produced when light passed through two closely spaced slits, Young demonstrated that light exhibited characteristics of wave behavior such as diffraction and interference.
In Young's double-slit experiment, a beam of light was directed at a barrier with two closely spaced slits. Behind the barrier, a screen was placed to capture the light that passed through the slits. The resulting pattern on the screen showed alternating bright and dark regions known as interference fringes.
The key observation from this experiment was that the interference pattern could only be explained if light behaved as a wave. When two waves interact, they can either reinforce each other (constructive interference) or cancel each other out (destructive interference).
The interference pattern observed in Young's experiment could only be explained if the light waves were overlapping and interfering with each other, indicating their wave-like nature.
This experiment provided strong evidence against the prevailing particle theory of light and supported the wave model. It demonstrated that light could exhibit interference, diffraction, and other wave-like phenomena, which could not be explained by the particle theory.
Young's experiment was a milestone in the understanding of light and played a significant role in the development of the wave theory of light.
Learn more about interference here: brainly.com/question/23202500
#SPJ11