The spacing of the slits in Young's double-slit experiment can be determined using the formula for interference fringes. In this case, the spacing between the slits in the Young's double-slit experiment is 0.147 mm.
The tenth interference minimum is observed at a distance of 7.45 mm from the central maximum. With a known wavelength of 550 nm and a distance of 2.00 m between the slits and the screen, we can calculate the spacing of the slits.
To find the spacing of the slits, we can use the formula:
d * sin(θ) = m * λ
Where:
d is the spacing of the slits,
θ is the angle between the central maximum and the desired interference minimum,
m is the order of the interference minimum, and
λ is the wavelength of light.
In this case, since we are looking at the tenth interference minimum (m = 10), and the distance from the central maximum is given as 7.45 mm (0.00745 m), we can rearrange the formula to solve for d:
d = (m * λ) / sin(θ)
Using the given values, we can calculate the spacing of the slits.
Learn more about Young's double-slit experiment here:
brainly.com/question/30452257
#SPJ11
How fast is a boy spinning on a merry-go-round if the radius of
boys path is 2.00m? The boys has a mass of 35.0kg and the net
centripetal force is 275N.
The boy spinning on a merry-go-round if the radius of the boy's path is 2.00m can be calculated using the formula for angular momentum, centripetal force. The boy has a mass of 35.0kg, the net centripetal force is 275N and the boy’s angular momentum is 365 Ns.
The boy with the above conditions should be moving with linear velocity (v)=3.96 m/s and Angular Velocity (w)=1.98 rad/sec
The formula for the centripetal force (F) is: F = mv²/r
Therefore,
v² = Fr/m
v=[tex]\sqrt{\frac{275*2}{35} }[/tex]
v=3.96 m/s
Angular Velocity(w)=v/r
w=1.98 rad/sec
The formula for angular momentum is given by,
L = mvr
Where,
m = mass of the boy
v = velocity of the boy
r = radius of the circle
Putting the value of v² in the formula of angular momentum,
L = m × r × √(Fr/m) = r√(Fmr)
We know that the radius of the boy’s path is 2.00m and the net centripetal force is 275N.
Substituting the values, we get,
L = 2.00 × √(275 × 35 × 2.00)≈ 365 Ns
The boy’s angular momentum is 365 Ns.
For Further Information on Centripetal force visit:
https://brainly.com/question/1757932
#SPJ11
. The hottest place on the Earth is Al-'Aziziyah, Libya, where the temperature has soared to 136.4 ∘ F. The coldest place is Vostok, Antarctica, where the temperature has plunged to −126.9 ∘ F. Express these temperatures in degrees Celsius and in Kelvins.
Here are the temperatures in degrees Celsius and Kelvins
Temperature | Degrees Fahrenheit | Degrees Celsius | Kelvins
Al-'Aziziyah, Libya | 136.4 | 58.0 | 331.15
Vostok, Antarctica | −126.9 | −88.28 | 184.87
To convert from degrees Fahrenheit to degrees Celsius, you can use the following formula:
°C = (°F − 32) × 5/9
To convert from degrees Celsius to Kelvins, you can use the following formula:
K = °C + 273.15
Lern more about degrees with the given link,
https://brainly.com/question/30403653
#SPJ11
An electron is confined within a region of atomic dimensions, of the order of 10-10m. Find the uncertainty in its momentum. Repeat the calculation for a proton confined to a region of nuclear dimensions, of the order of 10-14m.
According to the Heisenberg's uncertainty principle, there is a relationship between the uncertainty of momentum and position. The uncertainty in momentum for an electron confined to a region of atomic dimensions is 5.27 x 10-25 kg m s-1, and the uncertainty in momentum for a proton confined to a region of nuclear dimensions is 5.27 x 10-21 kg m s-1.
The uncertainty in the position of an electron is represented by Δx, and the uncertainty in its momentum is represented by
Δp.ΔxΔp ≥ h/4π
where h is Planck's constant. ΔxΔp = h/4π
Here, Δx = 10-10m (for an electron) and
Δx = 10-14m (for a proton).
Δp = h/4πΔx
We substitute the values of h and Δx to get the uncertainties in momentum.
Δp = (6.626 x 10-34 J s)/(4π x 1.0546 x 10-34 J s m-1) x (1/10-10m)
= 5.27 x 10-25 kg m s-1 (for an electron)
Δp = (6.626 x 10-34 J s)/(4π x 1.0546 x 10-34 J s m-1) x (1/10-14m)
= 5.27 x 10-21 kg m s-1 (for a proton)
Therefore, the uncertainty in momentum for an electron confined to a region of atomic dimensions is 5.27 x 10-25 kg m s-1, and the uncertainty in momentum for a proton confined to a region of nuclear dimensions is 5.27 x 10-21 kg m s-1.
This means that the uncertainty in momentum is much higher for a proton confined to a region of nuclear dimensions than for an electron confined to a region of atomic dimensions. This is because the region of nuclear dimensions is much smaller than the region of atomic dimensions, so the uncertainty in position is much smaller, and thus the uncertainty in momentum is much larger.
To know more about momentum visit :
https://brainly.com/question/30677308
#SPJ11
Consider the following substances all at room temperature: (1)
aluminum, (2) copper, (3) steel, and (4) wood. Which one would feel
the coolest if held in your hand? Note: Your hand is at a
temperature
If we consider substances at room temperature, which is typically around 20-25 degrees Celsius, the one that would feel the coolest when held in your hand would be wood. Option 4 is correct.
Wood is generally a poor conductor of heat compared to metals like aluminum and copper, as well as steel. When you touch an object, heat transfers from your hand to the object or vice versa. Since wood is a poor conductor, it does not readily absorb heat from your hand, resulting in a sensation of coolness.
On the other hand, metals such as aluminum, copper, and steel are good conductors of heat. When you touch them, they rapidly absorb heat from your hand, making them feel warmer or even hot.
So, among the given substances, wood would feel the coolest if held in your hand at room temperature.
Learn more about room temperature-
brainly.com/question/30459668
#SPJ11
A 710-kg car stopped at an intersection is rear- ended by a 1720-kg truck moving with a speed of 14.5 m/s. You may want to review (Pages 278 - 279) Part A If the car was in neutral and its brakes were off, so that the collision is approximately elastic, find the final speed of the truck. Part B Find the final speed of the car.
The final speed of the truck is approximately 6.77 m/s and the final speed of the car is approximately 20.03 m/s.
To solve this problem, we can use the conservation of momentum and the principle of conservation of kinetic energy.
Part A:
Using the conservation of momentum, we can write the equation:
(m₁ * v₁) + (m₂ * v₂) = (m₁ * vf₁) + (m₂ * vf₂),
where m₁ and m₂ are the masses of the car and the truck respectively, v₁ and v₂ are their initial velocities, and vf₁ and vf₂ are their final velocities.
Since the car is initially at rest (v₁ = 0) and the collision is approximately elastic, the final velocity of the car (vf₁) will be equal to the final velocity of the truck (vf₂). Rearranging the equation, we get:
(m₂ * v₂) = (m₁ + m₂) * vf₂.
Plugging in the given values, we have:
(1720 kg * 14.5 m/s) = (710 kg + 1720 kg) * vf₂,
which gives us vf₂ ≈ 6.77 m/s as the final speed of the truck.
Part B:
Using the principle of conservation of kinetic energy, we can write the equation:
(1/2 * m₁ * v₁²) + (1/2 * m₂ * v₂²) = (1/2 * m₁ * vf₁²) + (1/2 * m₂ * vf₂²).
Since the car is initially at rest (v₁ = 0), the equation simplifies to:
(1/2 * 1720 kg * 14.5 m/s²) = (1/2 * 710 kg * vf₁²).
Solving for vf₁, we find:
vf₁ ≈ 20.03 m/s as the final speed of the car.
Therefore, the final speed of the truck is approximately 6.77 m/s and the final speed of the car is approximately 20.03 m/s.
To learn more about final speed visit:
brainly.com/question/28721263
#SPJ11
What is the angle of refraction if a ray that makes an angle of
35.0o with the normal in water (n=1.33) travels to
Quarts (n=1.46)?
39.0o
0.542o
31.5o
0.630o
The angle of refraction when a ray of light travels from water (n=1.33) to quartz (n=1.46) is approximately 31.5°.
The angle of refraction can be determined using Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the velocities of light in the two media. Mathematically, it can be expressed as:
n₁ sin(θ₁) = n₂ sin(θ₂)
Where n₁ and n₂ are the refractive indices of the initial and final mediums respectively, and θ₁ and θ₂ are the angles of incidence and refraction.
In this case, the angle of incidence (θ₁) is given as 35.0°. The refractive index of water (n₁) is 1.33 and the refractive index of quartz (n₂) is 1.46.
We can rearrange Snell's law to solve for θ₂:
sin(θ₂) = (n₁ / n₂) * sin(θ₁)
Plugging in the given values, we have:
sin(θ₂) = (1.33 / 1.46) * sin(35.0°)
Calculating the right side of the equation gives us approximately 0.911. To find θ₂, we take the inverse sine (or arcsine) of 0.911:
θ₂ = arcsin(0.911)
Evaluating this expression, we find that the angle of refraction (θ₂) is approximately 31.5°.
Learn more about refraction here ;
https://brainly.com/question/14760207
#SPJ11
A solid uniform sphere of mass 127 kg and radius 1.53 m starts from rest and rolls without slipping down an inclined plane of vertical height 5.28 m. What is the angular speed of the sphere at the bottom of the inclined plane? Give your answer in rad/s.
The angular speed of the sphere at the bottom of the inclined plane is 4.26 rad/s (approx).
The given details of the problem are:
Mass of the solid uniform sphere, m = 127 kg
Radius of the sphere, r = 1.53 m
Height of the inclined plane, h = 5.28 m
Let I be the moment of inertia of the sphere about an axis passing through its center and perpendicular to its plane of motion. The acceleration of the sphere down the inclined plane is given as;
a = gsinθ (1)
Also, the torque on the sphere about an axis through its center of mass is
τ = Iα (2)
Where α is the angular acceleration of the sphere, and τ is the torque that is due to the gravitational force.The force acting on the sphere down the incline is given by;
F = mgsinθ (3)
The torque τ = Fr, where r is the radius of the sphere. Thus;
τ = mgsinθr (4)
Since the sphere rolls without slipping, we can relate the linear velocity, v and the angular velocity, ω of the sphere.
ω = v/r (5)
The kinetic energy of the sphere at the bottom of the inclined plane is given by:
K.E = 1/2mv² + 1/2Iω² (6)
At the top of the inclined plane, the potential energy of the sphere, Ep = mgh.
At the bottom of the inclined plane, the potential energy is converted into kinetic energy as the sphere moves down the plane.So, equating the potential energy at the top to the kinetic energy at the bottom, we have;
Ep = K.E = 1/2mv² + 1/2Iω² (7)
Substituting equations (1), (3), (4), (5) and (7) into equation (6) gives;
mgh = 1/2mv² + 1/2I(v/r²)² + 1/2m(v/r)²gh
= 1/2mv² + 1/2I(v²/r²) + 1/2mv²/r²gh
= 3/2mv² + 1/2I(v²/r²)gh
= (3/2)m(v² + (I/mr²))v²
= (2gh)/(3 + (I/mr²))
Substituting the values of the given variables, we have;
v² = (2*9.81*5.28)/(3 + (2/5)*127*(1.53)²)
v = 6.52 m/s
ω = v/rω = 6.52/1.53
ω = 4.26 rad/s
Therefore, the angular speed of the sphere at the bottom of the inclined plane is 4.26 rad/s (approx).
To know more about angular speed visit:
https://brainly.com/question/29058152
#SPJ11
Q 12A: A rocket has an initial velocity V; and mass M= 2000 KG. The thrusters are fired, and the rocket undergoes constant acceleration for 18.1s resulting in a final velocity of Vf Part (a) What is the magnitude, in meters per squared second, of the acceleration? Part (b) Calculate the Kinetic energy before and after the thrusters are fired. ū; =(-25.7 m/s) î+(13.8 m/s) į Ūg =(31.8 m/s) î+(30.4 m/s) Î.
Let the acceleration of the rocket be denoted as a. During the constant acceleration phase, the final velocity (Vf) can be calculated using the equation Vf = V + a * t, where V is the initial velocity and t is the time interval.
Given that the initial velocity V is 0 (the rocket starts from rest) and the final velocity Vf is known, we have:
Vf = a * t
0.183 m/s² = a * 18.1 s
Therefore, the magnitude of the acceleration is 0.183 meters per squared second.
Part (b):
The kinetic energy (K.E) of an object is given by the formula K.E = (1/2) * m * v², where m is the mass of the object and v is its velocity.
Before the thrusters are fired, the rocket has an initial velocity of zero. Using the given values of mass (M = 2000 kg) and the velocity vector (ū; = (-25.7 m/s) î + (13.8 m/s) į), we can calculate the initial kinetic energy.
K.E before thrusters are fired = (1/2) * M * (ū;)^2
K.E before thrusters are fired = (1/2) * 2000 kg * ((-25.7 m/s)^2 + (13.8 m/s)^2)
K.E before thrusters are fired = 2.04 × 10⁶ J
After the thrusters are fired, the final velocity vector is given as Ūg = (31.8 m/s) î + (30.4 m/s) Î. Using the same formula, we can calculate the final kinetic energy.
K.E after thrusters are fired = (1/2) * M * (Ūg)^2
K.E after thrusters are fired = (1/2) * 2000 kg * ((31.8 m/s)^2 + (30.4 m/s)^2)
K.E after thrusters are fired = 9.58 × 10⁵ J
Therefore, the kinetic energy before the thrusters are fired is 2.04 × 10⁶ J, and the kinetic energy after the thrusters are fired is 9.58 × 10⁵ J.
To Learn more about velocity. Click this!
brainly.com/question/33264778
#SPJ11
Consider an RC circuit with R=7.10kΩ,C=1.60μF. The ms applied voltage is 240 V at 60.0 Hz. Part A What is the rms current in the circuit?
The final answer is the rms current in the circuit is 0.109 A. The rms current in the circuit can be calculated using the formula; Irms=Vrms/Z where Z is the impedance of the circuit.
The impedance of a series RC circuit is given as;
Z=√(R²+(1/(ωC))²) where R is the resistance, C is the capacitance, and ω=2πf is the angular frequency with f being the frequency.
Substituting the given values; R = 7.10 kΩ = 7100 ΩC = 1.60 μFω = 2πf = 2π(60.0 Hz) = 377.0 rad/s
Z = √(7100² + (1/(377.0×1.60×10^-6))²)≈ 2.20×10^3 Ω
Using the given voltage Vrms = 240 V;
Irms=Vrms/Z=240 V/2.20×10³ Ω≈ 0.109 A
Therefore, the rms current in the circuit is 0.109 A.
Learn more about the calculation of rms values: https://brainly.com/question/22974871
#SPJ11
An elevator has mass 630 kg, not including passengers. The elevator is designed to ascend, at constant speed, a vertical distance of 22.0 m (five floors) in 16.0 s, and it is driven by a motor that can provide up to 36 hp to the elevator. What is the maximum number of passengers that can ride in the elevator?
To calculate the maximum number of passengers that can ride in the elevator, we consider the work done by the motor and the average weight of each passenger. With the given values, the maximum number of passengers is approximately 619.
To calculate the maximum number of passengers that can ride in the elevator, we need to consider the total weight the elevator can handle without exceeding the power limit of the motor.
First, let's calculate the work done by the motor to lift the elevator. The work done is equal to the change in potential energy of the elevator, which can be calculated using the formula: **Work = mgh**.
Mass of the elevator (excluding passengers) = 630 kg
Vertical distance ascended = 22.0 m
The work done by the motor is:
Work = (630 kg) x (9.8 m/s²) x (22.0 m) = 137,214 J
Since the elevator is ascending at a constant speed, the work done by the motor is equal to the power provided multiplied by the time taken:
Work = Power x Time
Given:
Power provided by the motor = 36 hp
Time taken = 16.0 s
Converting the power to joules per second:
Power provided by the motor = 36 hp x 745.7 W/hp = 26,845.2 W
Therefore,
26,845.2 W x 16.0 s = 429,523.2 J
Now, we can determine the maximum number of passengers by considering their average weight. Let's assume an average weight of 70 kg per passenger.
Total work done by the motor / (average weight per passenger x g) = Maximum number of passengers
429,523.2 J / (70 kg x 9.8 m/s²) = 619.6 passengers
Since we can't have fractional passengers, the maximum number of passengers that can ride in the elevator is 619.
learn more about "average weight":- https://brainly.com/question/31525444
#SPJ11
An unpolarized ray is passed through three polarizing sheets, so that the ray The passing end has an intensity of 2% of the initial light intensity. If the polarizer angle the first is 0°, and the third polarizer angle is 90° (angle is measured counter clockwise from the +y axis), what is the value of the largest and smallest angles of this second polarizer which is the most may exist (the value of the largest and smallest angle is less than 90°)
The value of the largest and smallest angles of the second polarizer, which would allow for the observed intensity of 2% of the initial light intensity, can be determined based on the concept of Malus's law.
Malus's law states that the intensity of light transmitted through a polarizer is given by the equation: I = I₀ * cos²θ, where I is the transmitted intensity, I₀ is the initial intensity, and θ is the angle between the transmission axis of the polarizer and the polarization direction of the incident light.
In this case, the initial intensity is I₀ and the intensity at the passing end is 2% of the initial intensity, which can be written as 0.02 * I₀.
Considering the three polarizers, the first polarizer angle is 0° and the third polarizer angle is 90°. Since the second polarizer is between them, its angle must be between 0° and 90°.
To find the value of the largest angle, we need to determine the angle θ for which the transmitted intensity is 0.02 * I₀. Solving the equation 0.02 * I₀ = I₀ * cos²θ for cos²θ, we find cos²θ = 0.02.
Taking the square root of both sides, we have cosθ = √0.02. Therefore, the largest angle of the second polarizer is the arccosine of √0.02, which is approximately 81.8°.
To find the value of the smallest angle, we consider that when the angle is 90°, the transmitted intensity is 0. Therefore, the smallest angle of the second polarizer is 90°.
Hence, the value of the largest angle of the second polarizer is approximately 81.8°, and the value of the smallest angle is 90°.
learn more about "intensity":- https://brainly.com/question/28145811
#SPJ11
Parallel light of wavelength 730.4 nm is incident normally on a slit 0.3850 mm wide. A lens with a focal length of 50.0 cm is located just behind the slit bringing the diffraction pattern to focus on a white screen. Find the distance from the centre of the principal maximum to: 2 a. The second maximum b. The second minimum.
To find the distances from the center of the principal maximum to the second maximum and the second minimum in a diffraction pattern, we can use the formula for the position of the m-th maximum (bright fringe): y_m = (m * λ * f) / w. For the position of the m-th minimum (dark fringe): y_m = [(2m - 1) * λ * f] / (2 * w).
We are given λ = 730.4 nm = 730.4 × 10^(-9) m.
w = 0.3850 mm = 0.3850 × 10^(-3) m.
f = 50.0 cm = 50.0 × 10^(-2) m.
(a) For the second maximum (m = 2): y_2 = (2 * λ * f) / w.
Substituting the values: y_2 = (2 * 730.4 × 10^(-9) * 50.0 × 10^(-2)) / (0.3850 × 10^(-3)).
Calculate y_2.
(b) For the second minimum (m = 2): y_2_min = [(2 * 2 - 1) * λ * f] / (2 * w).
Substituting the values: y_2_min = [(2 * 2 - 1) * 730.4 × 10^(-9) * 50.0 × 10^(-2)] / (2 * 0.3850 × 10^(-3)).
Calculate y_2_min.
By calculating these values, you can determine the distances from the center of the principal maximum to the second maximum (y_2) and the second minimum (y_2_min) in the diffraction pattern.
Read more about Wavelength.
https://brainly.com/question/31143857
#SPJ11
A thick layer of an unknown transparent liquid sits on top of water.
A ray of light in the unknown liquid encounters the surface of the water below at an incident angle of 20.0°. The ray refracts to an angle of 22.1°. If the index of refraction of water is 1.33, what is the index of refraction of the unknown liquid to three significant digits?
The index of refraction of the unknown transparent liquid is 1.21. When a ray of light goes from one medium into another, it bends or refracts at the boundary of the two media. The angle at which the incident ray approaches the boundary line is known as the angle of incidence, and the angle at which it refracts into the second medium is known as the angle of refraction.
The index of refraction for a material is a measure of how much the speed of light changes when it passes from a vacuum to the material. It may also be stated as the ratio of the speed of light in a vacuum to the speed of light in the material. It may also be used to determine the degree to which light is bent or refracted when it passes from one material to another with a different index of refraction. The following is the answer to the question:A ray of light travelling through the unknown transparent liquid has an incident angle of 20.0° and is then refracted to 22.1° upon reaching the water below.
The index of refraction for the unknown transparent liquid can be found using the following equation:
n1sinθ1 = n2sinθ2
where,θ1 is the angle of incidence,θ2 is the angle of refraction,n1 is the index of refraction of the first medium,n2 is the index of refraction of the second medium.
By substituting the values of θ1, θ2, and n1 into the above equation, we get:
n2 = n1 sin θ1 / sin θ2n1 = 1.33 (given)
n2 = n1 sin θ1 / sin θ2
= 1.33 sin 20.0° / sin 22.1°
= 1.21 to three significant figures.
To know more about refraction visit:-
https://brainly.com/question/13088981
#SPJ11
A horizontally-launched projectile arcs out and hits the ground below. The vertical displacement and the horizontal displacement are measured. What is the best equation to use to find the time the projectile was in the air?
The best equation to use in order to find the time the horizontally-launched projectile was in the air is the range equation, also known as the horizontal displacement equation.
The range equation, derived from the kinematic equations of motion, allows us to calculate the time of flight when the vertical displacement and horizontal displacement of the projectile are known. The equation is given by:
Range = horizontal displacement = initial velocity * time
In this case, the horizontal displacement represents the distance travelled by the projectile in the horizontal direction, while the initial velocity is the velocity at which the projectile was launched. By rearranging the equation, we can solve for time:
Time = horizontal displacement / initial velocity
By plugging in the known values for the horizontal displacement and initial velocity, we can calculate the time the projectile was in the air.
To learn more about displacement, click here:
brainly.com/question/11934397
#SPJ11
Suppose the position vector for a particle is given as a function of time by F(t)= x(+ y(t), with x(t)-at + b and y(t)- ct+d, where a 1.10 m/s, b=1:50 m, c= 0.130 m/s², and d = 1.20 m. (a) Calculate the average velocity during the time interval from t-1.85 s to t4.05 s. VM _______________ m/s (b) Determine the velocity at t 1.85 V ___________ m/s Determine the speed at t-1.85 s. V ___________ m/s
The average velocity during the time interval from t = 1.85 s to t = 4.05 s is approximately 1.60 m/s. The velocity at t = 1.85 s is 1.10 m/s. The speed at t = 1.85 s is 1.10 m/s.
(a) To find the average velocity between t = 1.85 s and t = 4.05 s, we calculate the change in position (displacement) during that time interval and divide it by the duration of the interval.
The displacement during the time interval from t = 1.85 s to t = 4.05 s can be determined by subtracting the initial position at t = 1.85 s from the final position at t = 4.05 s.
Let's calculate the average velocity:
Initial position at t = 1.85 s:
x(1.85) = a(1.85) + b = (1.10 m/s)(1.85 s) + 1.50 m = 3.03 m
Final position at t = 4.05 s:
x(4.05) = a(4.05) + b = (1.10 m/s)(4.05 s) + 1.50 m = 6.555 m
Displacement = Final position - Initial position = 6.555 m - 3.03 m = 3.525 m
Time interval = t_final - t_initial = 4.05 s - 1.85 s = 2.20 s
Average velocity = Displacement / Time interval = 3.525 m / 2.20 s ≈ 1.60 m/s
Hence, the average velocity during the time interval from t = 1.85 s to t = 4.05 s is approximately 1.60 m/s.
(b) To determine the velocity at t = 1.85 s, we can differentiate the position function with respect to time:
x'(t) = a
Substituting the given value of a, we find:
x'(1.85) = 1.10 m/s
Therefore, the velocity at t = 1.85 s is 1.10 m/s.
(c) To determine the speed at t = 1.85 s, we take the absolute value of the velocity since speed is the magnitude of velocity:
The speed, which is the magnitude of velocity, is equal to 1.10 m/s.
Therefore, the speed at t = 1.85 s is 1.10 m/s.
Learn more about velocity at: https://brainly.com/question/80295
#SPJ11
: Light with a wavelength 440 nm passes through a double-slit system that has a slit separation d = 0.200 mm. Determine how far away a screen must be placed in order that a dark fringe appear directly opposite both slits, with just one bright fringe between them.
The screen must be placed at a distance of 0.200 x 10^(-3) m (or 0.2 mm) from the double slits for a dark fringe to appear directly opposite both slits, with one bright fringe between them.
To determine the distance at which a screen must be placed for a dark fringe to appear directly opposite both slits, with one bright fringe between them, we can use the formula for the position of dark fringes in a double-slit interference pattern:
y = (m * λ * L) / d
Where:
y is the distance from the central maximum to the dark fringe, m is the order of the fringe (in this case, m = 1), λ is the wavelength of light, L is the distance from the double slits to the screen, d is the slit separation.In this case, we want a dark fringe directly opposite both slits, which means the dark fringe should be at the center of the interference pattern.
Since the bright fringe is between the dark fringes, we can consider the distance between the bright fringe and the central maximum as y.
Since m = 1, we have:
y = (1 * λ * L) / d
We want y to be equal to the distance between the bright fringe and the central maximum, so:
y = λ
Setting these two equations equal to each other, we get:
(1 * λ * L) / d = λ
Simplifying, we can solve for L:
L = d
Substituting the values given, with the slit separation
d = 0.200 mm = 0.200 x 10^(-3) m, we have:
L = 0.200 x 10^(-3) m
Therefore, the screen must be placed at a distance of 0.200 x 10^(-3) m (or 0.2 mm) from the double slits for a dark fringe to appear directly opposite both slits, with one bright fringe between them.
To learn more about dark fringe: https://brainly.com/question/31576174
#SPJ11
A well-known technique for achieving a very tight fit between two components is to "expand by heating and then cool to shrink fit." For example, an aluminum ring of inner radius 5.98 cm
needs to be firmly bonded to a cylindrical shaft of radius 6.00 cm. (Measurements are at 20°C.) Calculate the minimum temperature to which the aluminum ring needs to be heated before it
can be slipped over the shaft for fitting.
A) 140°C B) 850°C C) 120°C D) 160°C E) 180°C
Solving for ΔT, we find that the minimum temperature change needed is approximately 160°C. Therefore, the correct answer is D) 160°C.
To achieve a tight fit between the aluminum ring and the cylindrical shaft, the ring needs to be heated and then cooled to shrink fit. In this case, the inner radius of the ring is 5.98 cm, while the radius of the shaft is 6.00 cm. At 20°C, the ring is slightly smaller than the shaft.
To calculate the minimum temperature to which the ring needs to be heated, we can use the coefficient of thermal expansion. For aluminum, the coefficient of linear expansion is approximately 0.000022/°C.
We can use the formula:
[tex]ΔL = α * L0 * ΔT[/tex]
Where:
ΔL is the change in length
α is the coefficient of linear expansion
L0 is the initial length
ΔT is the change in temperature
In this case, ΔL represents the difference in radii between the ring and the shaft, which is 0.02 cm. L0 is the initial length of the ring, which is 5.98 cm. ΔT is the temperature change we need to find.
Plugging in the values, we get:
0.02 cm = (0.000022/°C) * 5.98 cm * ΔT
Solving for ΔT, we find that the minimum temperature change needed is approximately 160°C.
Therefore, the correct answer is D) 160°C.
To know more about temperature visit-
https://brainly.com/question/7510619
#SPJ11
A 725-kg two-stage rocket is traveling at a speed of 6.60 x 10³ m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a speed of 2.80 x 10³ m/s relative to each other along the original line of motion. (a) What is the speed and direction of each section (relative to Earth) after the explosion? (b) How much energy was supplied by the explosion? [Hint: What is the change in kinetic energy as a result of the explosion?]
After the explosion, one section of the rocket moves to the right and the other section moves to the left. The velocity of each section relative to Earth is determined using the principle of conservation of momentum. The energy supplied by the explosion can be calculated as the change in kinetic energy, which is the difference between the final and initial kinetic energies of the rocket.
(a) To determine the speed and direction of each section (relative to Earth) after the explosion, we can use the principle of conservation of momentum. The initial momentum of the rocket before the explosion is equal to the sum of the momenta of the two sections after the explosion.
Mass of the rocket, m = 725 kg
Initial velocity of the rocket, v₁ = 6.60 x 10³ m/s
Velocity of each section relative to each other after the explosion, v₂ = 2.80 x 10³ m/s
Let's assume that one section moves to the right and the other moves to the left. The mass of each section is 725 kg / 2 = 362.5 kg.
Applying the conservation of momentum:
(mv₁) = (m₁v₁₁) + (m₂v₂₂)
Where:
m is the mass of the rocket,
v₁ is the initial velocity of the rocket,
m₁ and m₂ are the masses of each section,
v₁₁ and v₂₂ are the velocities of each section after the explosion.
Plugging in the values:
(725 kg)(6.60 x 10³ m/s) = (362.5 kg)(v₁₁) + (362.5 kg)(-v₂₂)
Solving for v₁₁:
v₁₁ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(-v₂₂)] / (362.5 kg)
Similarly, for the section moving to the left:
v₂₂ = [(725 kg)(6.60 x 10³ m/s) - (362.5 kg)(v₁₁)] / (362.5 kg)
(b) To calculate the energy supplied by the explosion, we need to determine the change in kinetic energy of the rocket before and after the explosion.
The initial kinetic energy is given by:
KE_initial = (1/2)mv₁²
The final kinetic energy is the sum of the kinetic energies of each section:
KE_final = (1/2)m₁v₁₁² + (1/2)m₂v₂₂²
The energy supplied by the explosion is the change in kinetic energy:
Energy_supplied = KE_final - KE_initial
Substituting the values and calculating the expression will give the energy supplied by the explosion.
Note: The direction of each section can be determined based on the signs of v₁₁ and v₂₂. The magnitude of the velocities will provide the speed of each section.
To know more about kinetic energy refer to-
https://brainly.com/question/999862
#SPJ11
Question 17 A shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional areal of 1.0 x 10-5 m, and shear modulus of 2.5 x1010 N/m². As a result the rod is sheared through a distance of: zero 2.0 mm 2.0 cm 8.0 mm 8.0 cm
The rod is sheared through a distance of 2.0 mm as a result of the applied force.
When a shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional area of 1.0 x 10-5 m², and a shear modulus of 2.5 x 1010 N/m², the rod is sheared through a distance of 2.0 mm.
What is the Shear Modulus? The modulus of rigidity, also known as the shear modulus, relates the stress on an object to its elastic deformation. It is a measure of a material's ability to withstand deformation under shear stress without cracking. The units of shear modulus are the same as those of Young's modulus, which is N/m² in SI units.
The shear modulus is calculated by dividing the shear stress by the shear strain. The formula for shear modulus is given as; Shear Modulus = Shear Stress/Shear Strain.
How to calculate the distance through which the rod is sheared?
The formula for shearing strain is given as;
Shear Strain = Shear Stress/Shear Modulus
= F/(A*G)*L
where, F = Shear force
A = Cross-sectional area
G = Shear modulus
L = Length of the rod Using the above formula, we have;
Shear strain = 100/(1.0 x 10^-5 x 2.5 x 10^10) * 20
= 2.0 x 10^-3 m = 2.0 mm
Therefore, the rod is sheared through a distance of 2.0 mm.
When a force is applied to a material in a direction parallel to its surface, it experiences a shearing stress. The ratio of shear stress to shear strain is known as the shear modulus. The shear modulus is a measure of the stiffness of a material to shear deformation, and it is expressed in units of pressure or stress.
Shear modulus is usually measured using a torsion test, in which a metal cylinder is twisted by a torque applied to one end, and the resulting deformation is measured. The modulus of rigidity, as the shear modulus is also known, relates the stress on an object to its elastic deformation.
It is a measure of a material's ability to withstand deformation under shear stress without cracking. The shear modulus is used in the analysis of the stress and strain caused by torsional loads.
A shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional area of 1.0 x 10-5 m², and a shear modulus of 2.5 x 1010 N/m².
To know more about force visit:
https://brainly.com/question/30507236
#SPJ11
An AC generator with a peak voltage of 120 volts is placed
across a 10-Ω resistor. What is the average power dissipated?
A.
650W
b.
1000W
c.
500W
d
120W
E
720W
In an AC circuit, the voltage and current vary sinusoidally over time. The peak voltage (Vp) refers to the maximum value reached by the voltage waveform.
The RMS voltage (Vrms) is obtained by dividing the peak voltage by the square root of 2 (Vrms = Vp/√2). This value represents the equivalent DC voltage that would deliver the same amount of power in a resistive circuit.
Vrms = 120/√2, resulting in Vrms = 84.85 V.
P = Vrms^2/R, where P represents the average power and R is the resistance.
Plugging in the values, we have P = (84.85)^2 / 10, which simplifies to P = 720 W.
Therefore, the average power dissipated in the resistor is 720 watts. This value indicates the rate at which energy is converted to heat in the resistor.
It's worth noting that the average power dissipated can also be calculated using the formula P = (Vrms * Irms) * cosφ, where Irms is the RMS current and cosφ is the power factor.
However, in this scenario, the given information only includes the peak voltage and the resistance, making the first method more appropriate for calculation.
Overall, the average power dissipated in the resistor is a crucial factor to consider when analyzing AC circuits, as it determines the energy consumption and heat generation in the circuit component.
know more about Voltage here : brainly.com/question/29867409
#SPJ11
If 100 members of an orchestra are all sounding their
instruments at the same frequency and intensity, and a total sound
level of 80 dB is measured. What is the sound level of single
instrument?
The sound level of a single instrument is 50 - 10 log(I/I₀)
The frequency and intensity of all instruments are the same.
Sound level of 80 dB is measured.
Number of members in the orchestra is 100.
Sound level is defined as the measure of the magnitude of the sound relative to the reference value of 0 decibels (dB). The sound level is given by the formula:
L = 10 log(I/I₀)
Where, I is the intensity of sound, and
I₀ is the reference value of intensity which is 10⁻¹² W/m².
As given, the total sound level of the orchestra with 100 members is 80 dB. Let's denote the sound level of a single instrument as L₁.
Sound level of 100 instruments:
L = 10 log(I/I₀)L₁ + L₁ + L₁ + ...100 times
= 8010 log(I/I₀)
= 80L₁
= 80 - 10 log(100 I/I₀)L₁
= 80 - 10 (2 + log(I/I₀))L₁
= 80 - 20 - 10 log(I/I₀)L₁
= 50 - 10 log(I/I₀)
Therefore, the sound level of a single instrument is 50 - 10 log(I/I₀).
Learn more About frequency from the given link
https://brainly.com/question/254161
#SPJ11
A 3.0 V electron impacts on a barrier of width 0.00 nm. Find the probability of the electron to tunnel through the barrier if the barrier height is as follows. (a) 7.5 V (b). 15 V
The probability of the electron to tunnel through the barrier for both cases is 1 .
The probability of the electron to tunnel through the barrier is given by the expression as follows:
P(E) = exp (-2W/G)
where P(E) is the probability of the electron to tunnel through the barrier, W is the width of the barrier, and G is the decay constant.
The decay constant is calculated as follows:
G = (2m/h_bar²) [V(x) - E]¹⁾²
where m is the mass of the electron, h_bar is the Planck's constant divided by 2π, V(x) is the potential energy of the barrier at the position x, and E is the energy of the electron.
We have been given the energy of the electron to be 3.0 V.
Therefore, we can calculate the value of G as follows:
G = (2 × 9.11 × 10⁻³¹ kg / (6.626 × 10³⁴ J s / (2π)) ) [V(x) - E]¹⁾²
G = (1.227 × 10²⁰) [V(x) - 3]¹⁾²)
For the given barrier height, the potential energy of the barrier at position x is as follows:
(a) V(x) = 7.5 V(b)
V(x) = 15 V
Using the expression for G, we can calculate the value of G for both cases as follows:
For (a) G = (1.227 × 10²⁰ [7.5 - 3]¹⁾²G
= 3.685 × 10²¹
For (b)
G = (1.227 × 10²⁰ [15 - 3]¹⁾²)G
= 6.512 × 10²¹
Now, we can substitute the values of W and G in the expression for P(E) to calculate the probability of the electron to tunnel through the barrier for both cases as follows:
For (a) W = 0.00 nm
= 0.00 m
P(E) = exp (-2W/G)
P(E) = exp (0)
= 1
For (b) W = 0.00 nm
= 0.00 m
P(E) = exp (-2W/G)
P(E) = exp (0)
= 1
Therefore, the probability of the electron to tunnel through the barrier for both cases is 1.
Learn more about Planck's constant :
brainly.com/question/31667538
#SPJ11
10 m A plane mirror is 10 m away from and parallel to a second plane mirror, as shown in the figure. An object is positioned 3 m from Mirror 1. D Mirror 1 Mirror 2 Enter the magnitudes d., i = 1,2,...,5, of the distances from Mirror 1 of the first five images formed by Mirror 1 as a comma-separated list. du. = m Enter the magnitudes d2.j, j = 1,2, ...,5, of the distances to Mirror 2 of the first five images formed by Mirror 2 as a comma-separated list. d2.j SS m
"The distances from Mirror 1 of the first five images formed by Mirror 1 are: -3 m, -3 m, -3 m, -3 m, -3 m."
To determine the distances of the images formed by the mirrors, we can use the mirror formula:
1/f = 1/di + 1/do
where f is the focal length of the mirror, di is the image distance, and do is the object distance.
Since the mirrors are parallel, the focal length of each mirror is considered infinite. Therefore, we can simplify the mirror formula to:
1/di + 1/do = 0
The object distance (do) is 3 m, we can calculate the image distances (di) for the first five images formed by Mirror 1:
For the first image:
1/d1 + 1/3 = 0
1/d1 = -1/3
d1 = -3 m
For the second image:
1/d2 + 1/3 = 0
1/d2 = -1/3
d2 = -3 m
For the third image:
1/d3 + 1/3 = 0
1/d3 = -1/3
d3 = -3 m
For the fourth image:
1/d4 + 1/3 = 0
1/d4 = -1/3
d4 = -3 m
For the fifth image:
1/d5 + 1/3 = 0
1/d5 = -1/3
d5 = -3 m
Therefore, the distances from Mirror 1 of the first five images formed by Mirror 1 are -3 m, -3 m, -3 m, -3 m, -3 m.
Since Mirror 2 is parallel to Mirror 1, the distances to Mirror 2 of the images formed by Mirror 2 will be the same as the distances from Mirror 1. Hence, the distances to Mirror 2 of the first five images formed by Mirror 2 are also: -3 m, -3 m, -3 m, -3 m, -3 m.
To know more about image formation by mirror visit:
https://brainly.com/question/1126858
#SPJ11
How much would a lead brick 2.0 cm x 2.0 cm x 6.0 cm weigh if placed in oil with density 940 kg/m³ (Density of lead = 11340 kg/m³)
A 2.0 cm x 2.0 cm x 6.0 cm brick will weigh 0.27216 kg if placed in oil with a density of 940 kg/m³.
Density problemDimensions of the lead brick: 2.0 cm x 2.0 cm x 6.0 cm
Density of lead (ρ_lead): 11340 kg/m³
Density of oil (ρ_oil): 940 kg/m³
Calculate the volume of the lead brick:
Volume = length x width x height
Volume = 2.0 cm x 2.0 cm x 6.0 cm
Volume = 24 cm³
Convert the volume from cm³ to m³:
Volume = 24 cm³ x (1 m / 100 cm)³
Volume = 0.000024 m³
Calculate the weight of the lead brick using its volume and density:
Weight = Volume x Density
Weight = 0.000024 m³ x 11340 kg/m³
Weight = 0.27216 kg
Therefore, the lead brick would weigh approximately 0.27216 kg when placed in oil with a density of 940 kg/m³.
More on density can be found here: https://brainly.com/question/29775886
#SPJ4
The weight of the lead brick is 0.004 N.
Given that
Density of lead (ρ₁) = 11340 kg/m³
Density of oil (ρ₂) = 940 kg/m³
Volume of lead brick = 2.0 cm x 2.0 cm x 6.0 cm
= 24 cm³
= 24 x 10^-6 m³
Now, we can calculate the weight of the lead brick if placed in oil using the formula given below;
Weight of lead brick in oil = Weight of lead brick - Upthrust of oil on the lead brick
Weight of lead brick = Density x Volume x g
= ρ₁ x V x g
= 11340 x 24 x 10^-6 x 9.8
= 0.026 N
Upthrust of oil on the lead brick = Density x Volume x g
= ρ₂ x V x g
= 940 x 24 x 10^-6 x 9.8
= 0.022 N
Weight of lead brick in oil = Weight of lead brick - Upthrust of oil on the lead brick
= 0.026 - 0.022
= 0.004 N
Learn more about Density from the given link
https://brainly.com/question/1354972
#SPJ11
A sinusoidal voltage of 50.0 V rms and a frequency of 100 Hz is applied separately to three different components: first to a 400−Ω resistor, then to a 0.500−H inductor, and finally to a 30.0−μF capacitor. Calculate the maximum current iR,max through the resistor. iR,max= A Calculate the average power PR,average delivered to the resistor. PR, average = W Calculate the maximum current iL,max through the inductor. iL,max= A Calculate the average power PL,average delivered to the inductor. PL, average = W Calculate the maximum current ic,max through the capacitor. ic,max= Calculate the average power PC average delivered to the capacitor. PC, average = W
The average power (PR,average) delivered to the resistor is approximately 6.208 W. For a 0.500 H inductor, the maximum current (iL,max) is approximately 0.1592 A, and the average power (PL,average) delivered to the inductor is zero. In the case of a 30.0 μF capacitor, the maximum current (ic,max) is approximately 0.0942 A, and the average power (PC,average) delivered to the capacitor is also zero.
A sinusoidal voltage of 50.0 V rms and a frequency of 100 Hz is applied separately to a 400 Ω resistor, a 0.500 H inductor, and a 30.0 μF capacitor. We need to calculate the maximum current through each component and the average power delivered to each component.
For the 400 Ω resistor:
The maximum current through the resistor, iR,max, can be calculated using Ohm's Law. The RMS voltage (Vrms) and the resistance (R) are given. The maximum current can be obtained by multiplying the RMS voltage by the square root of 2 and dividing it by the resistance.
iR,max = √2 * Vrms / R
iR,max = √2 * 50.0 V / 400 Ω
iR,max ≈ 0.1766 A
The average power delivered to the resistor, PR,average, can be calculated using the formula:
PR,average = (iR,max^2 * R) / 2
PR,average = (0.1766 A)^2 * 400 Ω / 2
PR,average ≈ 6.208 W
For the 0.500 H inductor:
The maximum current through the inductor, iL,max, can be calculated using the formula:
iL,max = Vrms / (2πfL)
iL,max = 50.0 V / (2π * 100 Hz * 0.500 H)
iL,max ≈ 0.1592 A
The average power delivered to the inductor, PL,average, in an AC circuit is zero because inductors do not dissipate power.
For the 30.0 μF capacitor:
The maximum current through the capacitor, ic,max, can be calculated using the formula:
ic,max = 2πfC * Vrms
ic,max = 2π * 100 Hz * 30.0 μF * 50.0 V
ic,max ≈ 0.0942 A
The average power delivered to the capacitor, PC, average, in an AC circuit is also zero because capacitors do not dissipate power.
To know more about calculating power in AC circuits, refer here:
https://brainly.com/question/33196890#
#SPJ11
What height should an open bag of whole blood be held above a
patient to produce a total fluid pressure of 845 mmHg at the bottom
of the tube? The density of whole blood is 1.05 g/cm³.
To produce a total fluid pressure of 845 mmHg at the bottom of a tube containing whole blood, the open bag of blood should be held at a certain height above the patient.
The density of whole blood is given as 1.05 g/cm³. The total fluid pressure at a certain depth within a fluid column is given by the equation P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the height or depth of the fluid column.
In this case, we want to determine the height at which the open bag of whole blood should be held above the patient to produce a total fluid pressure of 845 mmHg at the bottom of the tube. We can convert 845 mmHg to the corresponding pressure unit of mmHg to obtain the pressure value. Using the equation P = ρgh, we can rearrange it to solve for h: h = P / (ρg). By substituting the given values, including the density of whole blood (1.05 g/cm³) and the acceleration due to gravity, we can calculate the height required to produce the desired total fluid pressure at the bottom of the tube.
To know more about fluid pressure click here: brainly.com/question/29039042
#SPJ11
A ladder with a length of 12.3 m and weight of 591.0 N rests against a frictionless wall, making an angle of 61.0° with the horizontal. Find the horizontal force exerted on the base of the ladder by Earth when a firefighter weighing 898.0 N is 3.91 m from the bottom of the ladder. Answer in units of N.
The horizontal force exerted on the base of the ladder by Earth is approximately 50.9 N.
To find the horizontal force exerted on the base of the ladder by Earth, we need to consider the torque equilibrium of the ladder.
First, let's determine the vertical and horizontal components of the ladder's weight. The weight of the ladder is given as 591.0 N. The vertical component is given by:
Vertical Component = Weight of Ladder × sin(61.0°)
= 591.0 N × sin(61.0°)
≈ 505.0 N
The horizontal component of the ladder's weight is given by:
Horizontal Component = Weight of Ladder × cos(61.0°)
= 591.0 N × cos(61.0°)
≈ 299.7 N
Next, we need to consider the weight of the firefighter. The weight of the firefighter is given as 898.0 N. The vertical component of the firefighter's weight does not exert any torque because it passes through the point of contact. Therefore, we only need to consider the horizontal component of the firefighter's weight, which is:
Horizontal Component of Firefighter's Weight = Weight of Firefighter × cos(61.0°)
= 898.0 N × cos(61.0°)
≈ 453.7 N
Now, let's consider the torque equilibrium. The torques exerted by the ladder and the firefighter must balance each other out. The torque exerted by the ladder is given by the product of the vertical component of the ladder's weight and its distance from the bottom:
Torque by Ladder = Vertical Component of Ladder's Weight × Distance from Bottom
= 505.0 N × 3.91 m
≈ 1976.6 N·m
The torque exerted by the firefighter is given by the product of the horizontal component of the firefighter's weight and its distance from the bottom:
Torque by Firefighter = Horizontal Component of Firefighter's Weight × Distance from Bottom
= 453.7 N × 3.91 m
≈ 1775.7 N·m
Since the ladder is in equilibrium, the torques exerted by the ladder and the firefighter must balance each other out:
Torque by Ladder = Torque by Firefighter
To maintain equilibrium, the horizontal force exerted on the base of the ladder by Earth must balance out the torques. Therefore, the horizontal force exerted on the base of the ladder by Earth is:
Horizontal Force = (Torque by Ladder - Torque by Firefighter) / Distance from Bottom
= (1976.6 N·m - 1775.7 N·m) / 3.91 m
≈ 50.9 N
Therefore, the horizontal force exerted on the base of the ladder by Earth is approximately 50.9 N.
Learn more about Force https://brainly.com/question/12979825
#SPJ11
Explain to other people about the electron, electricity, magnetism and its use in electrical machines, mirrors, lenses, perspectives, illusion.
Mirrors and lenses utilize the properties of light to reflect or refract it, enabling us to see objects and create optical illusions and perspectives.
Electrons are subatomic particles that carry a negative charge. They play a crucial role in electricity and magnetism. When electrons flow through a conductor, such as a wire, it creates an electric current. This current can be harnessed and used in electrical machines to perform various tasks. Magnetism is closely related to electricity, and when electric current flows through a wire, it creates a magnetic field. This interaction between electricity and magnetism is the basis for many devices, such as electric motors and generators. Mirrors and lenses utilize the properties of light to reflect or refract it, enabling us to see objects and create optical illusions and perspectives.
Learn more about Electrons here:
https://brainly.com/question/860094
#SPJ11
The following time-dependent net torque acts on a uniformly dense rigid rod: Tnet (t) = (3) Nm/v t The rod is free to rotate around a frictionless axle located at one end of the rod. The mass and length of the rod are 6 kg and 0.9 m, respectively. If the rod starts from rest, what is the magnitude of its final angular momentum (in kgm2/s) after the torque has been applied for 6 s?
The magnitude of the final angular momentum of the rod is 18 kgm2/s. This is because the torque is directly proportional to the angular momentum, and the torque has been applied for a constant amount of time.
The torque is given by the equation T = Iα, where I is the moment of inertia and α is the angular acceleration. The moment of inertia of a uniform rod about an axis through one end is given by the equation I = 1/3ML^2, where M is the mass of the rod and L is the length of the rod.
The angular acceleration is given by the equation α = T/I. Plugging in the known values, we get:
α = (3 Nm/s)/(1/3 * 6 kg * 0.9 m^2) = 20 rad/s^2
The angular momentum is given by the equation L = Iαt. Plugging in the known values, we get:
L = (1/3 * 6 kg * 0.9 m^2) * 20 rad/s^2 * 6 s = 18 kgm^2/s
Therefore, the magnitude of the final angular momentum of the rod is 18 kgm2/s.
Learn more about torque here:
brainly.com/question/30338175
#SPJ11
Date First Name, 3. If a 500-ml glass beaker is filled to the brim with water at a temperature of 23 °C, how much will overflow when its temperature reaches 30 °C7 [10 points] Given: To Find: Solution: (5 points total) Ans (2 points) = Did the water overflow? (3 points total) Yes/No (1 points) Why? (2 points)
Answer:
The amount of water that will overflow when the temperature increases from 23 °C to 30 °C is approximately 0.119 ml.
Explanation:
o calculate the amount of water that will overflow from the glass beaker when its temperature increases from 23 °C to 30 °C, we need to consider the thermal expansion of water.
Given:
Initial volume of water (V1): 500 ml
Initial temperature (T1): 23 °C
Final temperature (T2): 30 °C
To Find:
Amount of water that will overflow
Solution:
Convert the initial volume from milliliters (ml) to cubic centimeters (cm³) since they are equivalent: 1 ml = 1 cm³.
V1 = 500 cm³
Calculate the change in volume (∆V) due to thermal expansion using the formula:
∆V = V1 * β * ∆T
Where:
β is the coefficient of volumetric expansion of water, which is approximately 0.00034 (1/°C).
∆T is the change in temperature, which is T2 - T1.
∆V = 500 cm³ * 0.00034 (1/°C) * (30 °C - 23 °C)
∆V = 500 cm³ * 0.00034 * 7
∆V ≈ 0.119 cm³
Since 1 cm³ is equivalent to 1 ml, the amount of water that will overflow is approximately 0.119 ml.
Answer:
The amount of water that will overflow when the temperature increases from 23 °C to 30 °C is approximately 0.119 ml.
Did the water overflow?
Yes
Why?
The water overflows because its volume increases as the temperature rises, causing it to expand and exceed the capacity of the beaker.
Learn more about thermal expansion here:
https://brainly.com/question/30077641
#SPJ11