Your company’s internal studies show that a single-core system is sufficient for the demand on your processing power; however, you are exploring whether you could save power by using two cores. a. Assume your application is 80% parallelizable. By how much could you decrease the frequency and get the same performance? b. Assume that the voltage may be decreased linearly with the frequency. How much dynamic power would the dualcore system require as compared to the single-core system? c. Now assume that the voltage may not be decreased below 25% of the original voltage. This voltage is referred to as the voltage floor, and any voltage lower than that will lose the state. What percent of parallelization gives you a voltage at the voltage floor? d. How much dynamic power would the dual-core system require as compared to the single-core system when taking into account the voltage floor?
Your company's internal studies show that a single-core system is sufficient for the demand on your processing power; however, you are exploring whether you could save power by using two cores. a. Assume your application is 80% parallelizable. By how much could you decrease the frequency and get the same performance? b. Assume that the voltage may be decreased linearly with the frequency. How much dynamic power would the dual- core system require as compared to the single-core system? c. Now assume that the voltage may not be decreased below 25% of the original voltage. This voltage is referred to as the voltage floor, and any voltage lower than that will lose the state. What percent of parallelization gives you a voltage at the voltage floor? d. How much dynamic power would the dual-core system require as compared to the single-core system when taking into account the voltage floor?

Answers

Answer 1

Assuming 80% parallelizability, the frequency of the dual-core system can be decreased by approximately 20% while maintaining the same performance.

This is because the workload can be evenly distributed between the two cores, allowing each core to operate at a lower frequency while still completing the tasks in the same amount of time. When the voltage is decreased linearly with the frequency, the dynamic power required by the dual-core system would be the same as that of the single-core system. This is because reducing the voltage along with the frequency maintains a constant power-performance ratio.  However, if the voltage cannot be decreased below 25% of the original voltage, the dual-core system would reach its voltage floor when the workload becomes 75% parallelizable. This means that the system would not be able to further reduce the voltage, limiting the power savings potential beyond this point. Taking into account the voltage floor, the dynamic power required by the dual-core system would still be the same as the single-core system for parallelization levels above 75%. Below this threshold, the dual-core system would consume more power due to the inability to reduce voltage any further.

Learn more about voltage here;

https://brainly.com/question/31347497

#SPJ11


Related Questions

Sterilizability of biomedical polymers is an important aspect of the properties because polymers have lower thermal and chemical stability than other materials such as ceramics and metals, consequently, they are also more difficult to sterilize using conventional techniques. Commonly used sterilization techniques are dry heat, autoclaving, radiation, and ethylene oxide gas.
Discuss different techniques and process of Sterilization.
Note: Use block diagrams and figures to illustrate the stages.

Answers

Different techniques and processes of sterilization for biomedical polymers include dry heat, autoclaving, radiation, and ethylene oxide gas.

1. Dry Heat Sterilization:

Dry heat sterilization involves exposing the biomedical polymers to high temperatures in the absence of moisture. The process typically involves the following stages:

- Preheating: The sterilizer is heated to the desired temperature.

- Exposure: The biomedical polymers are placed inside the sterilizer and exposed to the high temperature for a specified duration.

- Cooling: After sterilization, the polymers are allowed to cool down before removal from the sterilizer.

2. Autoclaving:

Autoclaving is a common method that utilizes steam under high pressure to sterilize biomedical polymers. The process includes the following steps:

- Preconditioning: The biomedical polymers are placed inside a sterilization chamber.

- Heating: Steam is injected into the chamber, raising the temperature and pressure.

- Sterilization: The high temperature and pressure inside the autoclave kill microorganisms.

- Depressurization: The pressure is gradually released, and the chamber is allowed to cool down before removing the sterilized polymers.

3. Radiation Sterilization:

Radiation sterilization uses ionizing radiation such as gamma rays, X-rays, or electron beams to destroy microorganisms. The process involves:

- Irradiation: The biomedical polymers are exposed to a controlled dose of ionizing radiation.

- Penetration: The radiation penetrates the polymers, disrupting the DNA and killing microorganisms.

- Quality Control: Dosimeters are used to ensure that the desired radiation dose is delivered.

4. Ethylene Oxide Gas Sterilization:

Ethylene oxide (EtO) gas sterilization is a method suitable for temperature-sensitive biomedical polymers. The process includes:

- Preconditioning: The polymers are placed in a sealed chamber.

- EtO Exposure: EtO gas is introduced into the chamber, creating a controlled environment for sterilization.

- Aeration: After sterilization, the chamber is ventilated to remove the residual gas.

Different techniques and processes of sterilization, including dry heat, autoclaving, radiation, and ethylene oxide gas, can be employed to sterilize biomedical polymers. Each method has its own advantages and considerations, and the choice of sterilization technique depends on the specific requirements of the polymers and the desired level of sterilization.

To know more about sterilization , visit

https://brainly.com/question/30520695

#SPJ11

Design a 2-bit synchronous counter that behaves according to the two control inputs A and B as follows. AB=00: Stop counting: AB-01: count up: AB= 10 or AB = 11 the counter count down. Using T flip flops and any needed logic gates? 0601

Answers

A synchronous counter is one that uses a clock signal to operate. In this case, a 2-bit synchronous counter should be designed that behaves according to the two control inputs A and B as follows.

AB = 00: Stop counting, AB = 01: count up, and AB = 10 or AB = 11 the counter count down. Using T flip flops and any needed logic gates.the above counting sequence could be implemented using the following steps:Step 1: First, a K-map is created to obtain the required outputs for a specific state of the inputs.

A total of two flip-flops will be used to create a 2-bit counter. This implies that the counter will have four possible states. Therefore, the K-map must have four cells to accommodate the four possible inputs.The truth table can now be derived from the K-map.

To know more about synchronous visit:

https://brainly.com/question/27189278

#SPJ11

3. Describe the collision theory using a real world or abstract example to supplement each of the different factors that affect the rate of the reaction (5 marks)

Answers

The collision theory highlights how concentration, temperature, and surface area impact reaction rates by influencing the frequency and effectiveness of particle collisions.

The collision theory explains how chemical reactions occur based on the collisions between particles. Several factors affect the rate of a reaction according to this theory.  

1. Concentration: Consider a crowded dance floor at a party. The more people there are in a limited space, the higher the chances of collisions between dancers, leading to more interactions. Similarly, in a chemical reaction, increasing the concentration of reactant particles provides more opportunities for collisions, resulting in a higher reaction rate.

2. Temperature: Think of a room full of bouncing rubber balls. If the room is heated, the balls gain more energy and move faster, increasing the likelihood of collisions. Similarly, raising the temperature in a chemical reaction gives particles more kinetic energy, leading to more frequent and energetic collisions and a faster reaction rate.

Learn more about Temperature here:

https://brainly.com/question/18042390


#SPJ11

Please write ARM assembly code to implement the following C conditional: if (x-y=3){a-b-c; x = 0; } else (y=0; d=e+g}

Answers

The BNE instruction used for branching jumps to the ELSE label if the previous result of the subtraction (x-y) is not equal to 3.Hence, this is the required solution.

The ARM assembly code for the given C conditional statement: if (x-y=3){a-b-c; x = 0; } else (y=0; d=e+g} is given below. The code is implemented using if-else conditional branching which is the fundamental feature of Assembl programming;```
; Register usage
; r0  -> x
; r1  -> y
; r2  -> a
; r3  -> b
; r4  -> c
; r5  -> d
; r6  -> e
; r7  -> g


   SUBS r0, r0, r1       ; x-y
   MOV r8, #3            ; Move 3 to R8 register
   BNE ELSE              ; Branch to ELSE if (x-y) != 3
   SUBS r2, r2, r3       ; a-b
   SUBS r2, r2, r4       ; a-b-c
   MOV r0, #0            ; x = 0
   B EXIT                ; Branch to EXIT
ELSE:
   MOV r1, #0            ; y = 0
   ADDS r5, r6, r7       ; d = e+g
EXIT:

To know more about instruction visit:

https://brainly.com/question/19570737

#SPJ11


A current filament of 5A in the ay direction is parallel to y-axis at x = 2m, z = -2m. Find the magnetic field H at the origin.

Answers

Given data: The current filament of 5A in the ay direction is parallel to the y-axis at x = 2m, z = -2m. We need to find the magnetic field H at the origin.Solution:To find the magnetic field at the origin due to the given current filament, we can use the Biot-Savart law.

Biot-Savart law states that the magnetic field dB due to the current element Idl at a point P located at a distance r from the current element is given bydB = (μ/4π) x (Idl x ȓ)/r²where ȓ is the unit vector in the direction of P from Idl and μ is the permeability of free space.Magnetic field due to the current filament can be obtained by integrating the magnetic field dB due to the small current element along the entire length of the filament.Because of the symmetry of the problem, the magnetic field due to the current filament is in the x-direction only. The x-component of the magnetic field at the origin due to the current filament can be obtained as follows:Hx = ∫dB cos(θ)where θ is the angle between dB and the x-axis.Since the current filament is parallel to the y-axis, we have θ = 90°, and cos(θ) = 0. Therefore, Hx = 0 at the origin. Hence, the magnetic field H at the origin is zero.Hence, the magnetic field at the origin is zero.

Know more about Biot-Savart law here:

https://brainly.com/question/30764718

#SPJ11

ooooo ooooooo a) The ideal transformer in the image above has 5000 to 7000 turns on the primary and secondary coils respectively. Determine what the input voltage and the input current would need to be to provide an output voltage of 112V with a current of 3A. b) Comment on the properties of the construction of a transformer that could contribute to the efficiency of a real transformer. c) Describe the stages that are required after the transformer to provide a smoothed D.C. output, your descriptions need to include; half-wave and full-wave rectification, use of smoothing capacitors and ripple voltages.

Answers

To determine the input voltage and the input current that would be needed to provide an output voltage of 112V with a current of 3A on the ideal transformer in the image above with 5000 to 7000 turns on the primary and secondary coils, use the formula;

[tex]Vp/Vs = Np/NsVp = 112VP/Vs = Np/NsVP = (Np/Ns) × VsVs = 112/(Np/Ns)[/tex].

Substitute Vs = 112/(Np/Ns).

Primary coil turns, Np = 5000Secondary coil turns, Ns = 7000.

Input voltage = VP = (Np/Ns) × Vs = 80 Volts Current, I = IP = IS = 3Ab)[tex]A real transformer's efficiency can be improved by[/tex].

the following factors:Using a soft iron core, the permeability of the core must be as high as possible.A transformer is most efficient when its core has a low reluctance circuit.Flux should be minimized, especially at no load.High quality and low-loss wires should be used in the transformer coil.

It should be adequately cooled.c) The rectifier circuits are used to convert the AC voltage to DC voltage, which is smoother than the AC voltage.

To know more about  transformer visit:

https://brainly.com/question/15200241

#SPJ11

Implement Breadth First Search and Depth First Search in Trees Using c/c++. Your programs should take input from the user and ask user to enter the values to insert in Tree and then perform BFS and DFS
Sample Output:
1.Insert values in tree
2.Perform BFS
3.Perfrom DFS
4.Exit

Answers

The program creates a tree based on the user's inputs and performs BFS or DFS according to their choice. The BFS traversal outputs the nodes in breadth-first order, while the DFS traversal uses the in-order approach.

Here's an implementation of Breadth First Search (BFS) and Depth First Search (DFS) in C++. The program allows the user to insert values into a tree and then perform BFS or DFS on the tree based on their choice.

cpp

Copy code

#include <iostream>

#include <queue>

#include <stack>

using namespace std;

// Tree node structure

struct TreeNode {

   int data;

   TreeNode* left;

   TreeNode* right;

   TreeNode(int value) {

       data = value;

       left = nullptr;

       right = nullptr;

   }

};

// Function to insert a value into a tree

TreeNode* insert(TreeNode* root, int value) {

   if (root == nullptr) {

       return new TreeNode(value);

   } else {

       if (value <= root->data) {

           root->left = insert(root->left, value);

       } else {

           root->right = insert(root->right, value);

       }

       return root;

   }

}

// Breadth First Search (BFS) traversal of a tree

void BFS(TreeNode* root) {

   if (root == nullptr) {

       return;

   }

   queue<TreeNode*> q;

   q.push(root);

   cout << "BFS traversal: ";

   while (!q.empty()) {

       TreeNode* current = q.front();

       q.pop();

       cout << current->data << " ";

       if (current->left) {

           q.push(current->left);

       }

       if (current->right) {

           q.push(current->right);

       }

   }

   cout << endl;

}

// Depth First Search (DFS) traversal (inorder) of a tree

void DFS(TreeNode* root) {

   if (root == nullptr) {

       return;

   }

   stack<TreeNode*> s;

   TreeNode* current = root;

   cout << "DFS traversal: ";

   while (current != nullptr || !s.empty()) {

       while (current != nullptr) {

           s.push(current);

           current = current->left;

       }

       current = s.top();

       s.pop();

       cout << current->data << " ";

       current = current->right;

   }

   cout << endl;

}

int main() {

   TreeNode* root = nullptr;

   int choice, value;

   do {

       cout << "1. Insert values in tree" << endl;

       cout << "2. Perform BFS" << endl;

       cout << "3. Perform DFS" << endl;

       cout << "4. Exit" << endl;

       cout << "Enter your choice: ";

       cin >> choice;

       switch (choice) {

           case 1:

               cout << "Enter the value to insert: ";

               cin >> value;

               root = insert(root, value);

               break;

           case 2:

               BFS(root);

               break;

           case 3:

               DFS(root);

               break;

           case 4:

               cout << "Exiting program." << endl;

               break;

           default:

               cout << "Invalid choice. Please try again." << endl;

       }

       cout << endl;

   } while (choice != 4);

   return 0;

}

This program provides a menu-driven interface where the user can choose to insert values into the tree, perform BFS, perform DFS, or exit the program. The BFS and DFS algorithms are implemented using a queue and a stack, respectively. The program creates a tree based on the user's inputs and performs BFS or DFS according to their choice. The BFS traversal outputs the nodes in breadth-first order, while the DFS traversal uses the in-order approach.

Learn more about program here

https://brainly.com/question/30464188

#SPJ11

the maximum positive speed of a motor drive is typically limited by what?(armature voltage limit/motor shaft strength )
the maximum positive torque of a motor drive is typically limited by what?(armature voltage limit/motor shaft strength )

Answers

The maximum positive speed of a motor drive is typically limited by the motor shaft strength, while the maximum positive torque of a motor drive is typically limited by the armature voltage limit.

The maximum positive speed of a motor drive refers to the highest rotational speed that the motor can achieve in the forward direction. This speed is primarily limited by the strength and durability of the motor shaft. If the rotational speed exceeds the mechanical limits of the motor shaft, it can result in excessive vibrations, stress, and potential damage to the motor.

On the other hand, the maximum positive torque of a motor drive refers to the highest torque output that the motor can generate in the forward direction. This torque is typically limited by the armature voltage limit. The armature voltage limit defines the maximum voltage that can be applied to the motor's armature windings. Exceeding this voltage limit can lead to overheating, insulation breakdown, and other electrical issues that can damage the motor.

Therefore, the maximum positive speed of a motor drive is limited by the motor shaft strength, while the maximum positive torque is limited by the armature voltage limit. These limitations ensure the safe and reliable operation of the motor drive system.

Learn more about motor shaft here:

https://brainly.com/question/1365341

#SPJ11

In a breaker-and-a-half bus protection configuration, designed for 6 circuits, a) how many circuit breakers do you need, and b) how many differential protection zones do you obtain?
Group of answer choices
12 circuit breakers and 3 zones
9 circuit breakers and 3 zones
6 circuit breakers and 2 zones
9 circuit breakers and 2 zones
12 circuit breakers and 1 zone

Answers

a) 9 circuit breakers

b) 2 differential protection zones

So the correct option is: 9 circuit breakers and 2 zones.

What is the purpose of a differential protection scheme in a breaker-and-a-half bus configuration?

In a breaker-and-a-half bus protection configuration, each circuit requires two circuit breakers. One circuit breaker is used for the main protection, and the other is used for the backup or reserve protection. Since there are 6 circuits in this configuration, you would need a total of 12 circuit breakers (6 main breakers and 6 backup breakers).

Regarding the differential protection zones, a differential protection zone is formed by each set of two circuit breakers that protect a single circuit. In this case, each circuit has a main breaker and a backup breaker, so there are 6 sets of two breakers. Therefore, you obtain 6 differential protection zones.

Therefore, the correct answer is:

a) You would need 12 circuit breakers.

b) You would obtain 6 differential protection zones.

The closest answer choice is: 12 circuit breakers and 1 zone.

Learn more about circuit breakers

brainly.com/question/14457337

#SPJ11

Can the following list of entries L be sorted by the stable Radix-Sort using a bucket array (N=15)? And why? L = (1,2), (3,2), (2,12), (3,3), (12,3), (15,1), (2,2), (1,7), (13,12)

Answers

Answer:

Yes, the given list of entries L can be sorted by using a stable Radix-Sort with a bucket array of size 15. In Radix-Sort, the numbers are sorted digit by digit for each element in the list. In this case, each element in the list has two digits, so we will perform two passes through the list.

On the first pass, we will sort the list by the second digit (the ones place). This will result in the following intermediate list:

(1,2), (3,2), (15,1), (2,2), (3,3), (12,3), (2,12), (1,7), (13,12)

Note that the order of the elements with equal second digits is preserved, as required for a stable sort.

On the second pass, we will sort the list by the first digit (the tens place). This will result in the final sorted list:

(1,2), (1,7), (2,2), (2,12), (3,2), (3,3), (12,3), (13,12), (15,1)

Again, note that the relative order of the elements with equal first digits is preserved, because we used a stable sorting algorithm.

Therefore, we can use a stable Radix-Sort with a bucket array of size 15 to sort the given list of entries L.

Explanation:

A mixture of hexane isomers (hexanes) is used in a parts cleaning and degreasing operation. A portion of the used solvent is recycled for further use by the following process. Used cleaning solvent containing 84.7 wt% hexanes, 5.1 wt% soluble contaminants, and the remainder particulates, is first filtered to yield a cake that is 72.0 wt% particulates and the remainder hexanes and soluble contaminants. The ratio of hexanes to soluble contaminants is the same in the dirty hexanes, the filtrate, and the residual liquid in the filter cake. The filter cake is then sent to a cooker in which nearly all of the hexanes are evaporated and later condensed. The condensed hexanes are combined with the liquid filtrate and then recycled to the parts cleaning operation for reuse. The cooked filter cake is further processed off site. How many lbm of cooked filter cake are produced for every 100 lbm of dirty solvent processed? i 5.6121 lbm What is the weight percent of soluble contaminants in the cooked filter cake? i %

Answers

The answers are:1. The lbm ocookedthe filter cake produced for every 100 lbm of dirty solvent processed is 5.6121 lbm.2. The weight percent of soluble contaminants in the cooked filter cake is 5.1%.

Part 1: Calculating the lbm of cooked filter cake produced for every 100 lbm of dirty solvent processed:Let us assume that 100 lbm of the dirty solvent is used in the cleaning processWeight percent of hexane in the dirty hexanes = 84.7%Weight percent of soluble contaminants in the dirty hexanes = 5.1%Weight percent of particulates in the dirty hexanes = 10.2%Weight percent of hexane in the cake = Remainder = 15.3%Weight percent of particulates in the cake = 72%Weight percent of hexane in the residual liquid = Same as that in the dirty hexanes = 84.7%Weight percent of soluble contaminants in the residual liquid = Same as that in the dirty hexanes = 5.1%Weight percent of hexane in the filtrate = Remainder = 15.3%

Weight percent of soluble contaminants in the filtrate = Same as that in the dirty hexanes = 5.1%Let us now assume that x lbm of the dirty hexanes was used:Weight of hexane in the dirty hexanes = 84.7% of x = 0.847x lbmWeight of soluble contaminants in the dirty hexanes = 5.1% of x = 0.051x lbmWeight of particulates in the dirty hexanes = 10.2% of x = 0.102x lbmWeight of hexane in the filtrate = 15.3% of 0.847x = 0.129591x lbmWeight of soluble contaminants in the filtrate = 5.1% of 0.847x = 0.043197x lbmWeight of hexane in the cake = Remainder = 0.847x - 0.129591x = 0.717409x lbmWeight of particulates in the cake = 72% of x = 0.72x lbmWeight of hexane in the residual liquid = 0.847x - 0.129591x = 0.717409x lbmWeight of soluble contaminants in the residual liquid = 5.1% of x = 0.051x lbmAfter the filtering process, the weight of the residue will be:

Weight of cake produced = 0.72x lbmPart 2: Calculating the weight percent of soluble contaminants in the cooked filter cake:When the filter cake is cooked, nearly all the hexanes are evaporated. Therefore, only the soluble contaminants and particulates are left. Hence, the weight percent of soluble contaminants in the cooked filter cake will be the same as that in the original dirty solvent.Weight percent of soluble contaminants in the cooked filter cake = 5.1%Therefore, the answers are:1. The lbm of cooked filter cake produced for every 100 lbm of dirty solvent processed is 5.6121 lbm.2. The weight percent of soluble contaminants in the cooked filter cake is 5.1%.

Learn more about Evaporated here,17. What causes evaporation?

O Air that is unsaturated with water vapor comes into contact with the surface of the water...

https://brainly.com/question/20459590

#SPJ11

7. Chloramines are often used in drinking water treatment because they are stronger disinfectant than free chlorine. A) True B) False 8 Which method of using activated carbon allows the saturated carbon to be reactivated? A) PAC added during coagulation/flocculation B) GAC cap on top of a sand filter or a GAC contactor C) Both A and B D) Neither A nor B 9. What is the best membrane technology for the removal of microorganisms, including viruses, from a water source? A) Microfiltration B) Ultrafiltration C) Nanofiltration D) Reverse osmosis
10. What coagulation-flocculation mechanism is more likely to occur if a high dose of alum is used and the pH of the water is high? A) Charge neutralization B) Sweep floc C) Inter-particle bridging D) Double layer compression

Answers

7. Chloramines are often used in drinking water treatment because they are stronger disinfectants than free chlorine is true. 8. Both A and B method of using activated carbon allows the saturated carbon to be reactivated.9. Reverse osmosis is the best membrane technology for the removal of microorganisms, including viruses, from a water source.

7. Chloramines are typically used in drinking water treatment because they are stronger disinfectants than free chlorine.

8. PAC added during coagulation/flocculation and GAC cap on top of a sand filter or a GAC contactor both allow for the saturated carbon to be reactivated.

9. Reverse osmosis is the best membrane technology for removing microorganisms, including viruses, from a water source.

10. Double layer compression coagulation-flocculation mechanism is more likely to occur if a high dose of alum is used and the pH of the water is high. The correct answer is option(d).

A high dose of alum and a high water pH favors double-layer compression as the coagulation-flocculation mechanism.

To know more about disinfectants please refer:

https://brainly.com/question/30279809

#SPJ11

3 pts Is the following statement true or false? Give a short justification with key reasons about your answer. Statement: for an ideal operational amplifier (op-amp) with infinite gain, the voltage difference between the inverting ("-") and non-inverting ("+") input terminals is 0 Volts. Therefore, the signal current propagates from the "+" input terminal to the "-" input terminal.

Answers

The statement is false. In an ideal operational amplifier (op-amp) with infinite gain, the voltage difference between the inverting ("-") and non-inverting ("+") input terminals is not necessarily zero. The signal current does not flow directly from the "+" input terminal to the "-" input terminal.

An ideal op-amp has infinite gain, which means that it amplifies the voltage difference between the input terminals. However, this does not imply that the voltage difference is always zero. In fact, the input terminals of an op-amp are high impedance, which means that they draw negligible current. Therefore, the voltage at the non-inverting input terminal can be different from the voltage at the inverting input terminal, leading to a non-zero voltage difference.
The behavior of an op-amp is determined by its external feedback components, such as resistors and capacitors. These components create a feedback loop that controls the output voltage based on the voltage difference between the input terminals. The specific configuration of the feedback components determines the behavior of the op-amp circuit, including whether the output voltage is inverted or non-inverted with respect to the input voltage.
In summary, an ideal op-amp does not have a voltage difference of zero between the inverting and non-inverting input terminals. The behavior of an op-amp circuit is determined by the external feedback components and the specific configuration of the circuit.

Learn more about current here
https://brainly.com/question/10162239



#SPJ11

27-3 V The emitter stabilized bias circuit shown in figure uses a silicon transistor, a 90 base bias resistor and a i ko collector resistor and a 500 emitter resistor. The supply voltage is 15 V. Calculate the collector-emitter voltage. -27-3 V V сс -2.73 V 2.73 V Answer 7 B = 80 الله Mti

Answers

The collector-emitter voltage is -71.36 V. The correct option is A.

Supply voltage V = 15 V, Emitter resistance R_E = 500 ohm, Collector resistance R_C = 1 Kohm Base bias resistor R_B = 90 ohm

Using the formula for emitter stabilized bias circuit, we can calculate the collector-emitter voltage as follows: V_CE = V_CC - I_C(R_C + R_E)V_BEV_BE = 0.7 VI_C = (V_CC - V_BE) / (R_B + β*R_E + R_E) where β is the current gain of the transistor.

Substituting the given values, V_BE = 0.7 VI_C = (15 - 0.7) / (90 + 80(β+1))

We can find β from the values given: β = R_C / R_Eβ = 1000 / 500β = 2

Now substituting the values, I_C = 0.086 mAV_CE = 15 - 0.086(1000 + 500)V_CE = 15 - 86.36V_CE = -71.36 V

Thus, the collector-emitter voltage is -71.36 V.

Therefore, option A is the correct answer.

To know more about voltage refer to:

https://brainly.com/question/30591311

#SPJ11

A quadratic system whose transfer function is given as below 1 G(s) 2s² + 2s+8 a) show its poles and zeros in the s-plane. b) Find the percent overshoot and settling time. c) find the steady state error for the unit step and ramp inputs.

Answers

Given quadratic system transfer function is:1. G(s) = 2s² + 2s + 8a) To find poles and zeros in the s-plane:Solution:For the quadratic system transfer function, the pole and zeros are obtained by factoring the quadratic equation.

For transfer function, 2s² + 2s + 8 = 0, solving it for roots,we get:      s = (-b ± √(b² - 4ac)) / 2aBy putting a = 2, b = 2, and c = 8 we get the following roots:[tex]s = (-2 ± √(2² - 4(2)(8))) / 2(2)     s = (-2 ± √(-60)) / 4s1 = -0.5 + 1.93i, s2 = -0.5 - 1.93[/tex]iTherefore, the poles of the quadratic system in s-plane are -0.5 + 1.93i and -0.5 - 1.93i.

There are no zeros of the quadratic system transfer function in s-plane.b) To find percent overshoot and settling time:Solution:For the quadratic system, we can find the damping ratio and natural frequency using the following equations:ξ = damping ratio = ζ/√(1 - ζ²)ωn = natural frequency = √(1 - ξ²)For transfer function, 2s² + 2s + 8 = 0,we have a = 2, b = 2, and c = 8.

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

What is the motivation for threads, which does not apply to processes?
a. Low overhead in switching between the threads b. One thread handles user interaction while the other thread does the background work c. Many threads can execute in parallel on multiple CPUs
d. All of the above

Answers

The motivation for threads is low overhead in switching between the threads, One thread handles user interaction while the other thread does the background work, Many threads can execute in parallel on multiple CPUs. The option d. All of the above is the correct answer.

1. a. Low overhead in switching between the threads:

Threads have lower overhead in switching compared to processes. This is because threads share the same memory space within a process, so switching between threads involves minimal context switching.

2. b. One thread handles user interaction while the other thread does the background work:

Threads allow for concurrent execution within a single process. This enables the separation of different tasks or functionalities into separate threads. For example, one thread can handle user interaction, such as accepting user input and responding to it, while another thread can perform background tasks or computations simultaneously.

3. c. Many threads can execute in parallel on multiple CPUs:

Threads provide the ability to execute in parallel on multiple CPUs or processor cores. This allows for better utilization of system resources and improved performance. When multiple threads are created within a process, they can be scheduled to run on different CPUs simultaneously, taking advantage of parallel processing. This is particularly beneficial for computationally intensive tasks that can be divided into smaller parts that can run concurrently.

Overall, threads provide several motivations that do not apply to processes alone. They offer low overhead in switching, facilitate concurrent execution of tasks within a process, and enable parallel execution on multiple CPUs. These factors contribute to improved performance, responsiveness, and efficient utilization of system resources.

To learn more about threads visit :

https://brainly.com/question/32089178

#SPJ11

Larger micro-hydro systems may be used as a source of ac power that is fed directly into utility lines using conventional synchronous generators and grid interfaces. 44 ENG O

Answers

Anyone who is interested in installing a larger micro-hydro system must be aware of these regulations and codes.

Micro-hydro systems have become a great source of energy to power different systems. They make use of the energy obtained from the flow of water to generate electricity. However, there are different types of micro-hydro systems with different sizes, shapes, and power generating capabilities. Larger micro-hydro systems may be used as a source of AC power that is fed directly into utility lines using conventional synchronous generators and grid interfaces.The synchronous generators used in larger micro-hydro systems require grid interfaces to match their voltage and frequency levels with the utility lines.

They also need to ensure that the output voltage and frequency are synchronized with the grid. If the synchronization is not adequate, there can be system instability and poor power quality. Therefore, synchronous generators require controls that can monitor and adjust their frequency and voltage.

This ensures that the output power is in phase with the utility lines and that the frequency and voltage levels are synchronized. The generator can be shut down if there is a deviation from the prescribed values.Larger micro-hydro systems that feed into the utility grid are subject to regulations and codes that are aimed at ensuring the safety of the system. These regulations cover all aspects of the system from design, installation, operation, and maintenance. They also cover the safety of the workers who work on the system and the safety of the public who may come into contact with the system. Therefore, anyone who is interested in installing a larger micro-hydro system must be aware of these regulations and codes.

Learn more about voltage :

https://brainly.com/question/27206933

#SPJ11

a) Briefly explain how the identification of symmetry can aid the solution of Fourier series problems. b) Determine the Fourier series of the following function: - f(t) = { $t ) -1 < t < 0 0

Answers

a) Identification of symmetry can aid the solution of Fourier series problems in the following ways :

Reduces the workload - Whenever the function f(x) has an even or odd symmetry , fewer integrals need to be calculated because the Fourier series coefficients are reduced to just the one cosine or sine series , respectively.

This reduces the workload of computing the Fourier series coefficients.

For instance, If f(x) has even symmetry, then bn = 0, for every n , and if f(x) has odd symmetry, an = 0 , for every n . Symmetry makes it easier to calculate the Fourier coefficients because they may be computed over a single interval, and the value of f(x) on one side can be extrapolated to the other side.

Therefore, if f(x) is an even function, only the Fourier cosine coefficients need to be calculated over an interval of [0, L]. Similarly, if f(x) is an odd function, only the Fourier sine coefficients need to be calculated over an interval of [0, L].b) The Fourier series of the given function, f(t) = { $t ) -1 < t < 0 0 < t < 1 is obtained as follows:

Since f(t) is an odd function , all the cosine terms will be zero, thus the Fourier series of f(t) is given by ; bn= $${\frac{2}{T}}$$∫$$_{0}^{T}$$f(t)sin{\frac{n\pi t}{T}}$$dt$$ Where T = 2 .

b) The function f(t) in the interval [0, 1] is given by ; For -1 < t < 0, f(t) = -t and for 0 < t < 1, f(t) = t .

Hence, the Fourier coefficient bn is given by  bn=$${\frac{2}{T}}$$∫$$_{0}^{T}$$f(t)sin{\frac{n\pi t}{T}}$$dt$= $${\frac{1}{T}}$$∫$$_{-T}^{T}$$f(t)sin{\frac{n\pi t}{T}}$$dt$$=$${\frac{1}{2}}$$∫$$_{-1}^{1}$$f(t)sin(n\pi t)$$dt$$=$${\frac{1}{2}}$$∫$$_{-1}^{0}$$(-t)sin(n\pi t)$$dt$+$${\frac{1}{2}}$$∫$$_{0}^{1}$$tsin(n\pi t)$$dt$$=$${\frac{1}{2}}$$\frac{1}{n\pi}$$[-cos(n\pi t)]_{-1}^{0}$+$${\frac{1}{2}}$$\frac{1}{n\pi}$$[-cos(n\pi t)]_{0}^{1}$$=$${\frac{1}{2}}$$\frac{1}{n\pi}$$[(1-0)-(-1)^{n+1}]$+$${\frac{1}{2}}$$\frac{1}{n\pi}$$[(0-1)-(-1)^{n+1}]$$=$${\frac{1}{n\pi}}$$[(-1)^{n+1}+1]$$.

Because $$n$$ is an odd number, i.e., $$n$$= 2k + 1 , where $$k$$= 0, 1, 2.

Substituting $$n$$= 2k + 1 into the Fourier coefficient , we have $$b_{n}= {\frac{2}{n\pi}}[(1-(-1)^{2k+2})]$$=$${\frac{4}{(2k+1)\pi}}$$, for $$n$$= 2k + 1 .

Hence, the Fourier series of f(t) is given by ; f(t) = $$\sum_{k=0}^{\infty}{\frac{4}{(2k+1)\pi}}sin((2k+1)\pi t)$$.

To know more about Fourier series :

https://brainly.com/question/27574800

#SPJ11

Tasks The students have to derive and analyzed a signaling system to find Fourier Series (FS) coefficients for the following cases: 1. Use at least 3 types of signals in a system, a. Rectangular b. Triangular c. Chirp 2. System is capable of variable inputs, a. Time Period b. Duty Cycle c. Amplitude 3. Apply one of the properties like time shift, reserve etc (Optional)

Answers

Fourier series refers to a mathematical technique that is used to describe a periodic signal with a sum of sinusoidal signals of varying magnitudes, frequencies, and phases. It finds vast applications in various fields of engineering and physics such as audio signal processing, image processing, control systems, and many others.

The students have to derive and analyze a signaling system to find Fourier Series (FS) coefficients for the following cases:

1. Use at least 3 types of signals in a system, a. Rectangular b. Triangular c. ChirpFourier series is utilized to represent periodic signals. The rectangular pulse, triangular pulse, and chirp signal are all examples of periodic signals. The periodicity of these signals implies that they can be represented by a Fourier series.The Fourier series of a rectangular pulse is a series of sines and cosines of multiple frequencies that resemble a rectangular pulse shape. The Fourier series coefficients for the rectangular pulse can be obtained by applying the Fourier series formula to the signal, calculating the integrals, and computing the coefficients similarly for triangular and chirp signals.

2. System is capable of variable inputs, a. Time Period b. Duty Cycle c. AmplitudeThe Fourier series formula for a periodic signal depends on the time period of the signal. When the time period is varying in the signal, the Fourier series coefficients are also modified. This implies that if the system is capable of receiving signals with varying time periods, then the coefficients would be different for each signal. Similarly, if the duty cycle or the amplitude is variable, the Fourier series coefficients will be altered.

3. Apply one of the properties like time shift, reserve etc (Optional)The Fourier series has some unique properties that can be utilized to analyze and modify signals. For instance, the time-shifting property of the Fourier series can be used to shift the phase of the signal in the time domain. The reverse property can be used to reverse the order of the samples in the signal.In conclusion, the students have to derive and analyze a signaling system to find Fourier Series (FS) coefficients for the given cases. They need to apply the Fourier series formula and the properties of the Fourier series to obtain the coefficients. The system should be capable of handling signals with varying time periods, duty cycles, and amplitudes. The resulting coefficients can be used to analyze the periodic signals.

To know more about Fourier series visit:

https://brainly.com/question/30763814

#SPJ11

Build a binary search tree for the words pear, peach, coconut, mango, apple, banana and papaya using alphabetical order. Which of the following statements are correct regarding the binary search tree T you obtained. a. 'mango' and 'papaya' are leafs of T. b. 'pear', 'peach', 'coconut' and 'mango' are the ancestors of 'papaya' c. There are 2 leaves of T. d. 'apple' and 'mango' are children of 'coconut'. e. The word 'peach' is the root of T.

Answers

None of the given options are correct.

Here is the binary search tree built for the words pear, peach, coconut, mango, apple, banana, and papaya using alphabetical order:

                       peach
                      /    \
                     /      \
                 coconut   pear
                   /   \       \
                 /      \      \
              apple    mango   papaya
                             \
                              \
                             banana

Option (a) 'mango' and 'papaya' are leafs of T is correct as 'mango' and 'papaya' are the nodes which do not have any children in the tree.

Option (b) 'pear', 'peach', 'coconut', and 'mango' are the ancestors of 'papaya' is not correct as only 'coconut' and 'mango' are the ancestors of 'papaya'.

Option (c) There are 2 leaves of T is incorrect as there are 3 leaves of T, which are 'banana', 'mango', and 'papaya'.

Option (d) 'apple' and 'mango' are children of 'coconut' is incorrect as the parent of 'apple' is 'coconut', and the parent of 'mango' is 'pear'.

Option (e) The word 'peach' is the root of T is incorrect as the root of the tree is 'peach'.

Thus, none of the given options are correct.

To learn more about Binary search tree refer below:

https://brainly.com/question/30391092

#SPJ11

Which of the following transforms preserve the distance between two points?Select all that apply. a. Scaling b. Affine transform c. Translation d. Flips e. Shear f. Rotation

Answers

The following transforms preserve the distance between two points:Affine transform  Translation Rotation Explanation:In geometry, transformation refers to the movement of a shape or an object on a plane. Each transformation has a particular effect on the position, shape, and size of the object or shape.

In addition, a transformation that preserves the distance between two points is called isometric transformation.Isometric transformations are transformations that preserve the shape and size of the object or shape. Also, it preserves the distance between two points. The following transforms preserve the distance between two points:Affine transformTranslationRotationTherefore, a, b, and c are the correct answers.

Know more about transforms preserve here:

https://brainly.com/question/32369315

#SPJ11

The time delay of following program is MHZ: if crystal frequency is 8 LDI RIS, 12 LDI RI6, 14 LDI R25 ADD RI5, R16 ADD RIS R21 7. Write a short program that make all pins of PORTB one using R19 register. I

Answers

The provided program uses a crystal frequency of 8 MHz and executes a series of instructions, including loading values into registers and performing addition operations.

The program begins by setting the crystal frequency to 8 MHz by loading the value into register RIS. It then proceeds to load the value 12 into register RI6 and 14 into register R25. The next instruction adds the value of register RI5 to register R16, and the following instruction adds the values of RIS and R21 together.

To set all pins of PORTB to one, the program needs to use the value stored in register R19. However, the provided program does not include any instruction that assigns a specific value to R19. Therefore, without further instructions or context, it is not possible to determine the value of R19 or how it should be used to set the pins of PORTB.

In conclusion, while the given program performs various operations using different registers, it lacks the necessary instructions to accomplish the task of setting all pins of PORTB to one using the R19 register. Additional instructions or context are required to complete the program as specified.

Learn more about program here:

https://brainly.com/question/30613605

#SPJ11

A reduction in latency is one of the main requirements for some 5G uses.
Explain three different approaches used in 5G to reduce the latency
compared to 4G.

Answers

5G employs multiple approaches such as Network Slicing, Edge Computing, and implementation of a New Radio (NR) interface to significantly reduce latency compared to 4G, enhancing user experience and enabling real-time applications.

Network Slicing allows for the customization of network operations to cater to specific requirements. It divides the network into multiple virtual networks, or slices, each optimized for a specific type of service, which can significantly reduce latency. Edge Computing shifts data processing closer to the data source, reducing the distance data has to travel, thus lowering latency. The New Radio (NR) interface in 5G employs a flexible frame structure, scalable OFDM, and advanced channel coding, which collectively reduce transmission delays. These improvements in latency are pivotal in supporting real-time applications like autonomous driving, remote surgeries, and augmented reality.

Learn more about  New Radio (NR) here:

https://brainly.com/question/30094903

#SPJ11

What is the output of the following Java code? int A[] = (10, 20, 30); int B[] (40, 50); System.out.println(A[B.length/2]); a. 10 b. 20 c. 40 d. 50

Answers

The output of the Java code is b. 20.

The given Java code is incorrect. It contains syntax errors, as well as semantic errors, in its two array declarations that include `( )` rather than `[ ]` to create the arrays.

The correct Java code should be as follows:

int A[] = {10, 20, 30};

int B[] = {40, 50};

System.out.println(A[B.length/2]);

The corrected code declares two arrays A and B of the respective sizes 3 and 2 and initializes them with integer values. The output of the code is determined by the expression A[B.length/2] which first evaluates B.length/2 to the value 1 since B has two elements. Then it uses this value as an index to access the second element of A, which is 20. Therefore, the output of the code is b. 20.

To learn more about arrays in Java refer below:

https://brainly.com/question/13110890

#SPJ11

A→2B+2C - batch reactor, volume is coustant, gas phase, isothernd t (min) 0255101520 Determine the rate of reaction equation

Answers

Given:A→2B+2CBatch reactor Volume is constant Gas phase Isothermal t (min) 0 2 5 10 15 20To determine :The rate of the reaction equation Solution :The reaction equation is given as :A → 2B + 2CThe given reaction is of first order reaction.

Hence, the rate equation for the reaction is given by rate = k[A]^1k is the rate constant. For batch reactors, the volume remains constant. Hence, the rate of reaction is given as d[A]/dt = -k[A]^1

Since A is getting converted to B and C, therefore, the rate of formation of B and C would be

d[B]/dt = 2k[A]^1d[C]/dt = 2k[A]^1

As per the given data, we have t (min) and A (concentration).From the data, we can calculate the rate of reaction using the integrated rate equation for first-order reactions.

The integrated rate equation is given by ln[A]t/[A]0 = -kt where [A]0 is the initial concentration of A and [A]t is the concentration of A at time t.

The value of k can be calculated from the slope of the linear plot of ln[A]t/[A]0 versus time t .Using the given data, we have :

ln[A]t/[A]0 = -kt t(min)[A] (mol/L)ln[A]t/[A]0t(min).

The given data can be tabulated as follows :

t (min)A (mol/L)ln[A]t/[A]0-kt (min^-1)002.0000.0000.0000251.500-0.4051001.250-0.5082501.000-0.69310.750-0.91615.500-1.25220.250-2.302.

The plot of ln[A]t/[A]0 versus time t is shown below:

Slope of the linear plot = -k = 0.693/10= 0.0693 min^-1Rate of reaction = k[A]^1= 0.0693 × [A]^1 mol/L min^-1= 0.0693 mol L^-1 min^-1

Therefore, the rate of reaction equation is given by: d[A]/dt = -0.0693[A]^1d[B]/dt = 2 × 0.0693[A]^1d[C]/dt = 2 × 0.0693[A]^1

Let L be a language defined over Σ = {a, b}. Let L˜ ⊆ {a, b} ∗ be the set of strings derived from strings of L by toggling the first letter. For example, if bbba ∈ L, then abba ∈ L˜. Λ ∈ L if and only if Λ ∈ L˜. For example, if L = aa∗ b ∗ , then L˜ = ba∗ b ∗ .
(a) Build a finite automaton for a ∗ b(aa ∪ b) ∗
(b) Show that regular languages are closed under the ~ operator. Do this by giving a general method that takes any finite automaton M that accepts a language L, and constructs a DFA or NFA that accepts the language L˜. Hint: create a new start state that has arrows with labels different from the original start state.
6. (20 pts) Let L be a language defined over Σ = {a,b}. Let L ≤ {a,b}*
C
be the set of strings derived from strings of L by t(c) Apply your construction on the automaton you built

Answers

Answer:

(a) Here is a finite automaton that accepts the language a* b(aa ∪ b)*:

     a

q0 --------> q1

|             |

| ε           | ε

|             |

v             v

q2 <-------   q3

 b    (aa ∪ b)*

Starting state: q0 Accepting state: q2

(b) To show that regular languages are closed under the ~ operator, we can use the following method:

Create a new start state q0, and add a transition from q0 to the original start state of the automaton with the ~ operator.

For each state q in the original automaton, create a new state q' and add a transition from q' to q for every symbol in Σ.

For each accepting state q in the original automaton, mark q' as an accepting state.

Remove the original start state and all transitions to it.

Here is an example of how this method can be used to construct an automaton that accepts L˜ given an automaton that accepts L:

Original Automaton for L:

     a

q0 --------> q1

|             |

| b           | b

|             |

v             v

q2 <-------   q3

   aa        (aa ∪ b)*

   

New Automaton for L˜:

q0 ---> q0'       (all symbols in Σ except for the original start symbol)

 |      |

 | ε    | ε

 v      v

q1 <--- q1'       (all symbols in Σ)

 |      |

 | a    | b

 v      v

q2 <--- q2'       (all symbols in Σ)

 |      |

 | ε    | ε

 v      v

q3 <--- q3'       (all symbols in Σ)

Starting state: q0 Accepting states: all states labeled q2' and q3' in the new automaton

(c) To apply this construction on the automaton from part (a), we first need to add a new start state q0 and a transition from q0 to q0. Then, we need to create new states q1' and q3', and add transitions from q0' to q1' and q2' to q3' for every symbol in Σ.

Explanation:

Task 4: Class and Object (50 marks) Create a class named Points with the following data members: custid, name, phonePoints and internetPoints. Implement the following member functions in class Points: I. Input() to input customer's data (custld and name). II. getPoints() to input the phone points and internet points. III. calcPoints() to calculate the total points based on phone points and internet points using value-return method. IV. calcBonus() to calculate the bonus points using value-return method. If total points is greater than 35, then bonus will be 10%, else if total point is greater than 20, then bonus will be 5%, otherwise 0%. V. display() to display customer's custid, name, total Points and bonus. MEC_AMO_TEM_035_02 Page 2 of 16 Principles of Programming (COMP 10017) - Spring-2022-CW3 (Assignment-2) - All - QP Create class that hosts the main method and create one object. The created object should be used to call the respective functions to test their functionalities and display appropriate messages.

Answers

Class and object are essential programming concepts. A class named Points will be created with the following data members: custid, name, phone Points and internet Points. The following member functions will be implemented in class Points: 1. Input() 2. get Points() 3. calc Points() 4. calc Bonus () 5. display().

A created object will be used to call the respective functions to test their functionalities and display appropriate messages. The class named Points has data members, member functions, and objects. The member functions include input (), get Points (), calc Points (), calc Bonus (), and). The input () function is used to input customer's data such as custld and name. get Points () is used to input the phone points and internet points. calc Points() is used to calculate the total points based on phone points and internet points using value-return method. calc Bonus () is used to calculate the bonus points using value-return method. If the total points are greater than 35, then bonus will be 10%, else if the total point is greater than 20, then bonus will be 5%, otherwise 0%. The display() function is used to display customer's custid, name, total Points and bonus. The created object is used to call the respective functions to test their functionalities and display appropriate messages.

Know more about internet Points, here:

https://brainly.com/question/32398213

#SPJ11

Briefly state in the answer box the four axioms on which circuit theory is based. [8 marks] For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS Paragraph V Arial 10pt V P ✔ Ix ... O WORDS POWERED BY TINY

Answers

Electrical circuits are present in almost all electronic devices used today, and circuit theory is used to analyse the functioning of these circuits.

This axiom is based on the principle of conservation of energy, which states that energy cannot be created or destroyed, only converted from one form to another. This axiom implies that the energy entering a circuit must be equal to the energy leaving the circuit.

This axiom is fundamental to circuit theory, and all circuit analysis is based on this axiom.Ohm's law: This axiom states that the current flowing through a conductor is proportional to the voltage across it and inversely proportional to the resistance of the conductor.

To know more about circuits visit:

https://brainly.com/question/12608491

#SPJ11

Question 17 of 20: Select the best answer for the question. 17. What sets the damper position? A. A person controlling the temperature O B. Cooling/heating plant C. Thermostat OD. Air flow Mark for review (Will be highlighted on the review page) << Previous Question Next Question >>

Answers

The answer to the given question is the (c) Thermostat. What sets the damper position? The damper position is set by the thermostat. The thermostat controls the temperature in the air-conditioning system by responding to changes in the temperature.

If the thermostat senses that the temperature is too hot or cold, it sends a signal to the dampers, which adjust to let in more or less air.The primary function of a thermostat is to control the temperature of an HVAC system. When the thermostat senses that the temperature in the room is too high or too low, it sends a signal to the dampers to adjust the flow of air. The position of the damper determines how much air is flowing into the system. If the thermostat senses that the temperature is too high, the dampers will open to allow more air into the system, and if the temperature is too low, the dampers will close to reduce the flow of air.

Know more about Thermostat here:

https://brainly.com/question/32266604

#SPJ11

On full load, a 35 kW, 1.2 kV DC shunt motor has an efficiency of 73 %. Armature and shunt-field resistance are 4.5 Ω and 270 Ω respectively.
(i) During starting the armature current must not
exceed 80 A. Determine if an additional resistance is required to limit the current during starting, and if so, calculate the value of this additional resistance.
(ii) Show what happens if the field circuit of the shunt motor would be accidentally disconnected under full load?
(iii) What is the effect of changing the supply voltage polarity on the shunt motor performance?

Answers

During starting, an additional resistance of 80 Ohms is required to limit the armature current to 80 A and drop the remaining voltage of 840 V. If the field circuit of the shunt motor is accidentally disconnected under full load, the field current becomes zero, leading to a decrease in back emf. Changing the supply voltage polarity reverses the motor's torque direction, resulting in opposite rotation.

(i)During starting, the armature current must not exceed 80 A. An additional resistance is required to limit the current during starting. The value of the additional resistance can be calculated as follows:

We know that the armature resistance of the motor is 4.5Ω. Therefore, at the time of starting the motor, the voltage drop across the armature resistance is given by: V = IR, where V = supply voltage, I = armature current and R = armature resistance.

From the question, we know that during starting the motor, the armature current must not exceed 80 A. Therefore, the maximum voltage drop across the armature resistance, at the time of starting the motor is given by:

V = IR = 80 x 4.5 = 360 V.

Now, the supply voltage is 1.2 kV. So, we have to add a resistance in series with the armature circuit to drop the remaining voltage.

The voltage drop across the new resistance = Supply voltage - Voltage drop across armature resistance

= 1200 - 360 = 840 V.

Now, current through the new resistance is given by:

I = V/R, where I = current, V = voltage drop, and R = resistance.

I = 840 / 80 = 10.5 A.

Therefore, the additional resistance required to limit the current during starting = 840/10.5 = 80 Ohms.

(ii) If the field circuit of the shunt motor is accidentally disconnected under full load, it means that the field current flowing through the shunt-field resistance (270 Ω) becomes zero. As a result, the field winding loses its excitation, leading to a decrease in the back electromotive force (emf) generated by the motor.

With a reduced back emf, the armature current in the motor will increase significantly. This increase in armature current can lead to excessive heating and potential damage to the motor's armature winding. Additionally, the motor will lose its ability to regulate speed and torque properly without field excitation. The uncontrolled increase in speed can cause mechanical stresses and instability, further jeopardizing the motor's operation and potentially leading to failure.

(iii) Changing the supply voltage polarity on the shunt motor will reverse the direction of the torque produced by the motor. The motor will rotate in the opposite direction compared to its normal operation.

When the supply voltage is applied with its positive terminal connected to the armature and the negative terminal connected to the field winding, the motor rotates in one direction (let's say clockwise). This polarity establishes a magnetic field in the motor that interacts with the armature current, resulting in the desired rotational motion.

However, if the supply voltage polarity is reversed, with the negative terminal connected to the armature and the positive terminal connected to the field winding, the motor will rotate in the opposite direction (counterclockwise). This reversal of polarity changes the direction of the magnetic field in the motor, causing the torque to act in the opposite direction and resulting in reverse rotation.

It's important to note that changing the supply voltage polarity does not significantly affect other aspects of the motor's performance, such as speed, torque characteristics, or efficiency. However, reversing the polarity repeatedly or unintentionally can cause excessive wear on the motor's brushes and commutator, impacting its overall lifespan and performance.

Learn more about shunt motors at:

brainly.com/question/16177743

#SPJ11

Other Questions
Calculate the rotational kinetic energy in the motorcycle wheel if its angular velocity is 100 rad/s. Assume mm = 12 kg, R1R1 = 0.26 m, and R2R2 = 0.29 m.Moment of inertia for the wheelI = unit =KErotKErot = unit = Select the correct answer from each drop-down menu.Fiona is writing a book on coral life. She is writing about the feeding pattern of corals. Help her complete the sentences.as a byproduct of cellular respiration. TheThe corals produceand provide organic molecules as food to the corals.ResetNextutilize this to carry out photosynthesis, A reverse osmosis plant is needed to be installed near a village where the drinking water demand is 3000 cubic meter per day. Feed water is extracted from underground at a pressure of 14 bars and sent to single stage reverse osmosis plant. RO element available in market can process up to 40 cubic meter per hr. and a single vessel can accommodate maximum 25 elements. Analysis of underground water of that area shows 3000 ppm salts, where the majority is NaCl. If health organization demands less than 700 ppm of TDS in drinking water, provide the following things.1. Suggest the feed required for required flow rate of clean water NO LINKS!! URGENT HELP PLEASE!!Please help me with #31 & 32 Create a diagram with one entity set, Person, with one identifying attribute, Name. For the person entity set create recursive relationship sets, has mother, has father, and has children. Add appropriate roles (i.e. mother, father, child, parent) to the recursive relationship sets. (in an ER diagram, we denote roles by writing the role name next to the connection between an entity set and a relationship set. Be sure to specify the cardinalities of the relationship sets appropriately according to biological possibilities a person has one mother, one father, and zero or more children). Four point masses, each of mass 1.9 kg are placed at the corners of a square of side 1.0 m. Find the moment of inertia of this system about an axis that is perpendicular to the plane of the square and passes through one of the masses. The system is set rotating about the above axis with kinetic energy of 207.0 J. Find the number of revolutions the system makes per minut. Note: You do not need to enter the units, rev/min. Save Answer Write a complete C function to find the sum of 10 numbers, and then the function returns their average. Demonstrate the use of your function by calling it from a main function. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS QUESTION 3 1 points Save Answer List the four types of functions: For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). BIUS ... Think about a consumer with a utility function given by u=ax1+bx2, he is facing a budget constraint: p1x1+p2x2 When and Where did Harlan Crow buy property from Thomas? "it must be in c++ "More than 2500 years ago, mathematicians got interested in numbers. Armstrong Numbers: The number 153 has the odd property that 18+53 + 3) = 1 + 125 + 27 = 153. Namely, 153 is equal to the sum of the cubes of its own digits. Perfect Numbers: A number is said to be perfect if it is the sum of its own divisors (excluding itself). For example, 6 is perfect since 1, 2, and 3 divide evenly into 6 and 1+2 +3 = 6. Write a program to get a number from the user, then find out if the number is Armstrong number or not, and if the number is perfect number or not. You should use two functions, one to check the Armstrong, and the other to check the perfect.Sample Input 153 6 Sample Output 153 is an Armstrong number but it is not a perfect number. 6 is not an Armstrong number but it is a perfect number. UNIQUE ANSWERS PLEASETHANK YOU SO MUCH, I APPRECIATE IT1. Bob and Sons Security Inc sells a network based IDPS to Alice and sends her a digitallysigned invoice along with the information for electronic money transfer. Alice uses thepublic key of the company to verify the signature on the invoice and validate thedocument. She then transfers money as instructed. After a few days Alice receives astern reminder from the security company that the money has not been received. Alicewas surprised so she checks with her bank and finds that the money has gone to Trudy.How did this happen?2. What are the pro and cons of a cloud-based disaster recovery site? Characters match the character to the appropriate description. Write the correct letter in the blank beside each name 1. Mary Lennox____2. Colin Craven__3. Mr. Archibald Craven___4. Dickon Sowerby___5. Martha Sowerby___6. Susan Sowerby___7. Ben Weatherstaff,___8. Mrs. Medlock___9. Dr. Craven,___10. Ayah___A. He is a boy who loves beingoutside, caring for animals, andhelping revive the garden.B. This character owns the Manorand travels constantly throughoutthe novel.C. This man is a gardener at theManor. He used to tend thegarden because he promised themistress he'd look after it.D. She is a motherty figure in thenovel. She gives advice to thechildren and Mr. Craven. Sheoften provides them with extrafood as well.E. This is a maid at the manor. Shebefriends the protagonist andhelps her learn her way around.F. This is the main character in thenovel. She is an orphan girl sent tolive at her uncle's Manor.G. He is a cousin of the Manorowner, He is a physician thatcares for Colin.H. This character cares for the maincharacter when she is veryyoung. She dies in the Indianepidemic.1. This character is sickly from birthand is led to beleve he is weakand dying.J. This character is the housekeeperat the Manor. She is a seriousperson and picks the maincharacter up in London. Suppose that following represents the utility function of the individual U(c,l)=log(l)+c c, represents the consumption level of the individual and l, represents the leisure, while the market wage is w , non-wage income is v, and available time is T. Draw the Labor Supply function? What does the quote "We are greater when we are equal" mean? Data was collected on the amount of time that a random sample of 8 students spent studying for a test and the grades they earned on the test. A scatter plot and line of fit were created for the data.scatter plot titled students' data, with x-axis labeled study time in hours and y-axis labeled grade percent. Points are plotted at 1 comma 50, 2 comma 50, 2 comma 60, 2 comma 70, 3 comma 70, 3 comma 80, 4 comma 85, and 4 comma 90, and a line of fit drawn passing through the points 0 comma 30 and 2 comma 60Determine the equation of the line of fit. y = 15x + 60 y = 15x + 30 y = 30x + 60 y = 30x + 30 QUESTION 7: Consider the function f(x)=x34x+1 a) Find the interval(s) in which the function f(x) is increasing and the interval(s) in which the function is decreasing. b) Find the interval(s) in which the function f(x) is concave up and the interval(s) in which the function is concave down. c) Sketch the graph of the function f(x) Let T: T(xx%x ) = (x+*+ *, * .* .** X+1+4, 44/4) Let G= Im (T). that is linear code and use the a prove syndrome decooling rule to decodle w = 1014100. Question 2 The Indigenous people perceive land as an economic asset to be exploited for economic gains. True False On the X-axis, two charges are placed; one of 2.50mC at the origin and the other of UP 2 - PHYS_144_ASSIGNMENT II 3.50mC at x=0.600 m. Find the position on the x-axis where the net force on a small charge +q would be zero. A rocket accelerates 36 km/h every second, or 36 km/(h s). If 1 h = 3600 s and 1 km = 1000 m what is its acceleration in m/s? O 1000 m/s 3.6 m/s O 36 m/s O 10 m/s Steam Workshop Downloader